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In modern nanoelectronics understanding quantum current transport is a fundamental challenge. 

In turn, in quantum mechanics evolution is driven by all the derivatives of the electric potential 

so rapid spatial variations of the potential can determine non-local effects, tunneling, and also 

interference phenomena. Those effects give rise to a complex interplay and cannot be 

decomposed in elementary processes to analyze separately. Thus, numerical modeling is a 

fundamental tool for studying quantum phenomena, since it allows to consider specific 

conditions that are difficult to implement by experimental approaches, e.g., switching between 

different boundary conditions to see how this affects the electron evolution [1] or de-activating 

scattering events [2]. The Wigner formulation of quantum mechanics provides a seamless 

transition to classical evolution, that represents a reference to highlight quantum effects [3]. In 

the signed-particle approach [4], electron evolution is modeled by the evolution of numerical 

particles that move along Newtonian trajectories and carry a sign. This aspect simplifies the 

implementation of “classical” boundary conditions, generally unfeasible in practice 

experimental approaches. We analyze the electron evolution against a repulsive dopant with a 

maximum potential energy of 0.175 eV with two different lateral boundary conditions [5]: 

absorbing boundaries, Fig. 1, and perfect reflecting boundaries, Fig. 2. From the comparison 

between the quantum electron density, Fig. 1b), and corresponding classical counterpart, Fig. 

1a), we can notice the non-locality effects before and around the dopant, and also the tunneling 

that increased the quantum electron density in front of the dopant. Fig. 3a) shows the ratio 

between quantum and classical electron density, allowing to witness both the decrease below 

unity due to nonlocal effects and the peak in front of the dopant that reaches the maximum of 

14 due to tunneling effects. In Fig. 2a) and Fig. 2b), we show the same scenario but for lateral 

reflecting boundaries. The electrons reflected from the lateral boundaries, both in the quantum 

and in the classic case, are injected in front of the dopant but in the quantum case the electron 

density is much more closed around the dopant due to the interplay of the non-locality and 

tunneling effects. As shown in Fig. 3b), the quantum density continues to be greater than the 

classic one in front of the dopant but now limited to a factor of 3 since the electrons reflected 

by the boundaries mitigate the effect of tunneling.  
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a)  b)  
Fig. 1: Electron density around the dopant with 0.175 eV peak energy (yellow isoline represents the 0.15 eV level) with 
lateral absorbing boundary condition: a) classical evolution, b) quantum evolution. 

a)  b)  

Fig. 2: Electron density around a dopant with 0.175 eV peak energy (yellow isoline represents the 0.15 eV level) with 
lateral reflecting boundaries: a) classical evolution b) quantum evolution. 

a)  b)  

Fig. 3: Ratio between quantum and classical electron density: a) lateral absorbing boundaries, b) lateral reflecting 
boundaries. 
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