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Abstract
The evaluation of the spin lifetime in an ultra-thin silicon film is a massive computational challenge because of the necessity
of performing appropriate double integration of the strongly scattering momentum-dependent spin relaxation rates. We have
tackled the problem by dividing the whole computation range into two levels. Our scheme in each level is based on a hybrid
parallelization approach, using the message passing interface MPI and OpenMP. In the first level, the algorithm precalculates
the subband wave functions corresponding to fixed energies and archives the results in a file-based cache to reduce memory
consumption. In the second level, we compute the spin relaxation time by using the archived data in parallel. This two-level
computation approach shows an excellent parallel speedup, and most efficient ways to maximally utilize the computational
resources are described. Finally, how an application of shear strain can dramatically increase the spin lifetime is shown.

Keywords Message passing interface · Open Multi-Processing · Hybrid parallelization · Spin lifetime

1 Introduction

Continuous miniaturization of CMOS devices is the main
reason behind the phenomenal increase in speed and den-
sity of modern integrated circuits (ICs). However, in this
journey, growing technological challenges and soaring costs
have gradually caused MOSFET scaling to an end. Utilizing
electron spin as an additional degree of freedom is gaining
importance for further improving the efficiency of future low-
power ICs [1]. On the other hand, silicon, the main material
in microelectronics, is composed of nuclei with almost zero
magnetic moment, and its weak spin–orbit interaction leads
to a long spin lifetime. As of the paramount importance of
the ongoing shift from bulk field-effect transistors (FETs) to
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transistors with the channel built on ultra-thin body (UTB)
silicon-on-insulator films and FinFET 3D technology for
technology nodes of 14nm and beyond, spin lifetime in such
structures is a very relevant issue under scrutiny. The lower
value of the spin lifetimeobtainedwith a three-terminal injec-
tion scheme is of the order 0.1–1ns [2], which corresponds
to a spin diffusion length maximum of 2μm. Therefore, a
long distance spin propagation combinedwith a possibility of
injecting spin at room temperature [3] makes the fabrication
of spin-based switching devices possible in the near future.
Experimentally observed higher values of the spin relaxation
in electrically gated silicon structures, however, can become
a hindrance in realizing spin-driven devices [1]. These issues
demand a deeper understanding of the spin relaxationmecha-
nism fundamentals in siliconMOSFETs. It ismentioned here
that the calculation of the spin relaxation rate is very com-
putationally expensive. This is because one has to calculate
the strongly scatteringmomentum-dependent spin relaxation
rates, which, in turn, demands a highly parallelized computa-
tional approach. The computational details will be elaborated
in the following sections.

Nowadays, supercomputers are playing major role in
the field of computational electronics. It has become fea-
sible to solve more and more complex problems, because
high-performance computational resources are accessible
for practical calculations. Message passing interface (MPI)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10825-018-1274-x&domain=pdf
http://orcid.org/0000-0001-8952-5716


Journal of Computational Electronics (2019) 18:28–36 29

is a standard for writing message passing programs which
functions over a wide variety of parallel computing archi-
tectures [4]. MPI provides an user a programming model
where processes communicate with each other by calling
library routines to send and receive messages, known as
distributed memory computing. On the other hand, Open
Multi-Processing (OpenMP) is an application programming
interface (API) which supports multi-platform shared mem-
ory programming [5,6]. It is also possible to combine MPI
andOpenMP programmingmodels into a hybrid paradigm to
exploit parallelism.As becausemore processor cores are ded-
icated to large clusters of symmetric multi-processor (SMP)
nodes solving scientific problems, this hybrid programming
technique combining the best of distributed and sharedmem-
ory programs is gaining popularity over time. Of course,
major efforts must be directed to utilize the computational
power in the most effective way.

A considerable part of most algorithms in any computa-
tional problem can be parallelized by dividing the domain
into independent parts, known as domain decomposition.
Each part is calculated in a single MPI process without much
efforts devoted to communication between separateMPI pro-
cesses. However, such an approach becomes limited if each
MPI process requires a high amount of memory or intensive
communication. Indeed, need of a largememory requirement
would depend on the selected problem as well as the chosen
algorithm to solve it. In some cases, memory requirements
are significantly reduced if the calculations are performed by
sharing memory. However, as the number of cores per node
is limited, the reduction of memory requirements leads to an
unacceptable increase of the total calculation time. Never-
theless, for the class of problems for which shared memory
significantly reduces the total amount of memory require-
ments, a combination between MPI and OpenMP approach
becomes promising [6,7].

Several spin relaxation mechanisms in silicon are now
discussed in brief [8–10]. In bulk silicon, Dyakonov–Perel
spin relaxation mechanism is absent because of inversion
symmetry in the silicon lattice. At high temperatures, the
spin relaxation due to the Elliot–Yafet mechanism becomes
most dominating. This mechanism is mediated by the intrin-
sic interactions between the electronic orbital motion with
its spin. The spin–orbit interaction (SOI) does not conserve
the electron spin; thus, it can generate spin flips, which is
the Yafet process. When the microscopic SOI is considered,
the Bloch function with a fixed spin projection is not an
eigenfunction of the total Hamiltonian, and the eigenfunction
contains a contributionwith an opposite spin projection. This
means that theSOI forces the eigenstatewave function to pos-
sess a nonzero contribution with an opposite spin projection
in the fixed basis. Henceforth, even any spin-independent
scattering with phonons can generate a small probability of

spin flips, which is the Elliot process. In the next section, we
explain the spin relaxation model in a UTB silicon film.

2 Model

We calculate the spin lifetime (τS) in (001) ultra-thin silicon
films subjected to [110] uniaxial tensile stress εxy . We take
into account the main mechanisms determining the mobil-
ity in thin silicon films, namely surface roughness (SR) and
electron–phonon scattering (longitudinal LA and transversal
acoustic TA phonons), and analyze their role in spin relax-
ation. The total spin lifetime is calculated by theMatthiessen
rule. In this work, both, the Elliot and the Yafet processes are
takenon equal footing [11]. The spin-flip scattering processes
between two [001] valleys are responsible for spin relaxation
in thin (001) silicon films [11]. The unprimed electron sub-
band energies and the wave functions are obtained with the
two-band k · p Hamiltonian describing the [001] valley dis-
persion including intrinsic spin–orbit coupling [10,12,13].
This Hamiltonian is written at the vicinity of the X -point
along the Z -axis in the Brillouin zone. As the lowest two
conduction bands have their minima just k0 away from the
X -point in the Brillouin zone, a two-band k · p Hamiltonian
considering only these two bands developed near the X-point
describes the band dispersion and subband wave functions
very well [11]. This Hamiltonian is shown below.

H =
[
H1 H3

H3 H2

]
, (1)

Hj=1,2 =
⎡
⎣ h̄2k2z

2ml
+

h̄2
(
k2x + k2y

)
2mt

+ (−1) jδ +U (z)

⎤
⎦ I (2)

H3 =
[

h̄2k0kz
ml

0

0 h̄2k0kz
ml

]
, (3)

with

δ =
√√√√

(
Dεxy − h̄2kxky

M

)2

+ �2
SO · (k2x + k2y) + �2

� . (4)

The energy dispersion equation is given by

E = h̄2k2z
2ml

+ h̄2(k2x + k2y)

2mt
±

√(
h̄2kzk0
ml

)2

+ δ2. (5)

Here (kx , ky , kz) represents the k vector, and U (z) is the
confinement potential. For other parameters, refer to Table 1.
U (z) is approximated by an infinite square-well potential of
width t . The wave functions fulfill the Schrödinger equation
with Eq. 1 and satisfy the zero boundary conditions at the
interfaces. �� pertains to the unprimed subband splitting at

unstrained silicon (001) films �� = �� ·k30
k30�

[14]. Therefore,
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Table 1 Simulation parameter list

Parameter Value

Silicon lattice constant a = 0.5431 nm

Intrinsic spin–orbit field �SO = 1.27meVnm

Shear deformation potential D = 14 eV

Acoustic deformation potential � = 12 eV

Electron rest mass in silicon me

Transversal effective mass mt = 0.19me

Longitudinal effective mass ml = 0.91me

M (m−1
t − m−1

e )−1 Kg

Valley minimum position from X -point k0 = 0.15 · 2π
a

Deformation potential due to intrinsic SOI DSO = 15 eV/k0
Splitting at �-point �� = 5.5 eV

k0� k0� = 0.85 · 2π
a

Autocorrelation length L = 15 · 10−10 m

Mean square value of the surface
roughness fluctuations

� = 3 · 10−10 m

�� defines the strength of the valley-orbit interactionwith its
reported value to be 5.5eVusing a sp3d5s∗ spin–orbit coupled
tight-binding model [15]. Once subband wave functions and
subband dispersions are known, the spin relaxation matrix
elements can be calculated [11,16,17]. Then, we calculate
the SR and phonon-mediated spin relaxation time. Based on
that, one can calculate the spin relaxation time by thermal
averaging method:

1

τ
=

∑
i

∫ 1
τi (K1)

· f (E)(1 − f (E))dK1∑
i

∫
f (E)dK1

(6)

where

f (E) = 1

1 + exp
( E−EF

KBT

) , (7)

∫
dK1 =

∫ 2π

0
dφ̃ ·

∫ ∞

0

|K1(φ̃, E)|
| ∂E(K1)

∂K1
|K1

dE . (8)

K1 is the in-plane subband wave vector, KB is the Boltz-
mann constant, T is the temperature, φ̃ denotes the wave
vector direction, and EF is the Fermi level. The term
| ∂E(K1)

∂K1
|K1 is the derivative of the subband dispersion along

K1 at the angle φ̃. E can be expressed as E = E (0)
i +Ei (K1),

where E (0)
i = Ei (K1 = 0). E (0)

i is the energy of the bottom
of the subband i . Equation 7 represents the Fermi–Dirac dis-
tribution function.

The expression of the SR-limited spin relaxation rate is
shown below. The SR scattering matrix elements are consid-
ered to be proportional to the product of the subband function
derivatives at the interface [13,18]. The surface roughness at

the two interfaces is assumed to be equal and statistically
independent.

1

τi,SR(K1)
= 4π

h̄(2π)2

∑
j=1,2

∫ 2π

0
π�2L2 · 1

ε2i j (K2 − K1)
·

h̄4

4m2
l

· |K2|
| ∂E(K2)

∂K2
| ·

[(
dψiK1σ

dz

)∗(dψ jK2−σ

dz

)]2
z=± t

2

· exp
(−(K2 − K1)

2L2

4

)
dφ (9)

here K1 (K2) is the in-plane wave vector before (after)-
scattering, φ is the angle between K1 and K2, ε is the
dielectric permittivity, ψiK1σ and ψ jK2σ are the wave func-
tions, andσ = ± 1 is the spin projection to the [001] axis. The
rest of the notations can be found in Table 1. The detailed
phonon-mediated spin relaxation time calculation methods
are briefly mentioned below [11,13,14,19].

The T A-phonon-induced intravalley spin relaxation rate
can be written as:

1

τi,T A(K1)
= πKBT

h̄ρν2T A

∑
j

∫ 2π

0
dφ · |K2|

| ∂E(K2)
∂K2

|
[
1 − | ∂E(K2)

∂K2
| f (E(K2))

| ∂E(K1)
∂K1

| f (E(K1))

]∫ t

0

∫ t

0
exp(−

√
q2x + q2y |z − z′|)

[
ψ

†
K2σ

(z)M̃ψK1−σ (z)
]∗ [

ψ
†
K2σ

(z′)M̃ψK1−σ (z′)
]

·
[√

q2x + q2y − 8q2x q
2
y − (q2x + q2y )

2

q2x + q2y
|z − z′|

]
dzdz′ (10)

νT A = 5300m/s is the transversal phonon velocity, ρ =
2329 kg/m3 is the silicon density, t is the film thickness, (qx ,
qy)=K1 −K2, and M̃ written in the two valley plus two spin

projection basis is

⎡
⎢⎢⎣

0 0 D
2 0

0 0 0 D
2

D
2 0 0 0
0 D

2 0 0

⎤
⎥⎥⎦.

The intravalley spin relaxation rate due to L A-phonons is
given by:

1

τi,L A(K1)
= πKBT

h̄ρν2L A

∑
j

∫ 2π

0
dφ · |K2|

| ∂E(K2)
∂K2

|⎡
⎣1 −

| ∂E(K2)
∂K2

| f (E(K2))

| ∂E(K1)
∂K1

| f (E(K1))

⎤
⎦

∫ t

0

∫ t

0
exp

(
−

√
q2x + q2y |z − z′|

)
[
ψ
†
K2σ

(z)M̃ψK1−σ
(z)

]∗ [
ψ
†
K2σ

(z′)M̃ψK1−σ
(z′)

]
·

4q2x q
2
y

(q2x + q2y )3/2

[√
q2x + q2y |z − z′| + 1

]
dzdz′ (11)

νL A = 8700m/s is the longitudinal phonon velocity.
The intervalley spin relaxation rate due to acoustic

phonons (containing Elliot and Yafet contributions) is to be
included as well:
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1

τi,Y ,L A(K1)
= πKBT

h̄ρν2L A

∑
j

∫ 2π

0
dφ · |K2|

| ∂E(K2)
∂K2

|
(12)

⎡
⎣1 −

| ∂E(K2)
∂K2

| f (E(K2))

| ∂E(K1)
∂K1

| f (E(K1))

⎤
⎦

∫ t

0

[
ψ
†
K2σ

(z)M ′ψK1−σ
(z)

]∗ [
ψ
†
K2σ

(z)M ′ψK1−σ
(z)

]
dz.

M ′ =
[
MZZ MSO

M†
SO MZZ

]
with MZZ =

[
� 0
0 �

]
. We also

have MSO =
[
0 DSO(ry − irx )
DSO(−ry − irx ) 0

]
, (ry ,

rx )=K1 + K2 (ref: Table 1).
The major contribution to spin relaxation in bulk silicon is

due to optical phonon scattering between the valleys residing
at different crystallographic axes which also includes primed
subbands, known as f -process. However, their contribution
can be safely neglected for a film thickness of less than 3nm,
which is the case under scrutiny. This is because due to the
rather high energies of the primed subbands in relation to
the unprimed subbands, in such a case, the optical phonon
transitions become rare [16,17].

As the spin relaxationmatrix elements strongly depend on
the wave vectors (c.f. Eq. 9 to 12), the only way to calculate
the spin lifetime is to perform multi-dimensional integrals
over the energy E and φ without using any approximations.
A suitable discretization scheme in order to evaluate the inte-
grals is now discussed [20]. The intersubband spin relaxation
matrix elements are characterized by very narrow and sharp
peaks, known as spin hot spots [11,13,14]. At this condi-

tion, we have Dεxy − h̄2kx ky
M = 0, and thus, the value of δ

in Eq. 4 attains its minimum. The equivalent subband split-
ting is at its minimum at the spin hot spots, which signifies
a maximum mixing between up- and down-spin eigenstates.
At spin hot spot condition, this subband splitting is deter-
mined by the terms �SO and �� , resulting in a strong spin
relaxation. Indeed, the spin hot spots need to be resolved
by using a very fine mesh. Therefore, we have estimated
that the energy step value �E should be upper-bounded by
0.5meV. The lower limit of the integral over E is zero, and
we also identify that it is sufficient to set the corresponding
upper limit to be 0.7eV. Since the Fermi energy EF has a
value of an order of 0.1eV, the upper limiting value 0.7eV
(c.f. Eq. 7) will be sufficient to diminish the influence of the
energy integral on the relaxation time. Thus, this particular
simulation setup requires around 1400 points. The step value
for φ, or �φ, needs to be set smaller than 0.5◦, where the
lower and upper limits of the inner integral over φ are 0◦ and
360◦, respectively. Thus, this integral on before- and after-
scattering directions at fixed energies requires almost 1000
points each. This means, the scattering matrix elements and
the derivative of the dispersion energy over the wave vector

must be calculated numerically for almost 1,400,000 times.
Additionally, to compute the matrix elements, the eigen-
function problems for the 4×4 Hamiltonian matrix must be
solved for the two wave vectors before and after scattering
for a broad range of parameters. This necessitates the devel-
opment of a highly parallelized computational framework.

Themajor computational difficulties to perform themulti-
dimensional integrals and the need for the development of our
two-level algorithm are now elaborated. A straightforward
way for obtaining wave function and energies in a certain
subband and valley for a known wave vector is described
in [21]. Here, in contrast, we have to address the inverse
problem: for a fixed energy E and angle of the wave vector
φ we search the wave function. We employ a Nelder–Mead
method to solve this problem using nlopt [22]. The proce-
dure for obtaining wave functions starts at an initial value of
the K vector: |K|=1nm−1. The optimization routine returns
the derivative of the calculated energy for a given parameter
values of the target energy. At each step, the length of the K
vector is adjusted by the library. Now, because of the integral
over E in Eq. 8, the search of the wave functions has to be
performed for several times at a fixed wave vector direction
(i.e., having constant φ). Moreover, the integration over φ

is present in Eqs. 8 to 12. Considering the above-mentioned
discretization scheme that we must have, the numerical spin
relaxation time calculation becomes prohibitively expensive.

By using a standard adaptive integration technique, we
found that a month of calculations on 20 cores, or 15000
core hours total, is required to evaluate a single data point
of the spin relaxation time at a certain value of εxy . One
can successfully resolve this difficulty by introducing a file-
based cache techniquewith logarithmic size complexity. This
means, we calculate and archive all static wave functions and
energy data to a binary file (file-based cache) at the first level,
and perform the spin lifetime calculations by loading those
data in memory at the second level.

Indeed, a standard adaptive integration technique which
includes irregular steps of the integration domain can be used
to evaluate the integrals. However, in this technique, it is
very hard to reuse any previously calculated data in the cur-
rent calculations. In our approach, a regular but fine grid for
integration is used instead; thus, the cache that consists of
recently calculated points can be more efficiently used for
successive calculations.

3 Simulation results

Our two-level parallelization algorithm is shown below. At
the first level, all static wave functions and energy data are
calculated and archived in a binary file as a file-based cache
technique in parallel. This is known as serialization process.
At the second level, the spin lifetime is calculated by dese-
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rializing the cache and calculating the spin relaxation rates.
Since the values in the cache depend only on film thickness t
and εxy , the dependence of spin lifetime on the Fermi energy
and temperature (c.f. Eq. 6) can easily be computed with-
out recalculating the cache. Therefore, this technique helps
to save a significant number of core hours. Serialization and
deserialization processes are performed by using the Boost
Serialization library [23]. The performance is measured on
the Vienna Scientific Cluster (VSC-2) [24]. VSC-2 consists
of 1314 nodes having high-performance InfiniBand (IB) for
network communications. Each node of the cluster has 2 pro-
cessors (AMD Opteron 6132 HE, 2.2GHz and 8 cores), and
32GB main memory.

3.1 Algorithm of spin relaxation time calculation

Algorithm for spin lifetime calculations:

First level:

– (1)Divide the range of angle φ into sub-domains for each
MPI process.

– (1.1) Divide the range of energy E into sub-domains for
each OpenMP thread.

– (1.1.1)Calculate thederivatives at the interface (
dψ
dz )z=± t

2
,

and |K|
| ∂E(K)

∂K | in parallel (MPI, OpenMP).

– (2) Collect all the cached values at the master MPI pro-
cess.

– (3) Archive the cache to a binary file.

Second level:

– (4) Load archived cache by the master MPI process.
– (5) Divide the range of φ into sub-domains for each MPI
process.

– (5.1) Divide the range of E into sub-domains for each
OpenMP thread.

– (5.1.1) Calculate Eq. 6 for a given range of values in
parallel (MPI, OpenMP).

– (6) Collect all calculated relaxation rates into the final
relaxation rate.

3.2 Load balancing of theMPI jobs

In ourmeasurements of computational time,wemeasurewall
clock central processing unit (CPU) time spent by the current
MPI process, rather than user CPU time (i.e., the time spent
to execute the user code). The wall clock time is the elapsed
time which additionally includes the time spent waiting for
the process′s turn on the CPU. The Boost Chrono library is
used to measure the runtime of the code [25].

For the first level, 96 cores have been taken to analyze
load on each MPI process (i.e., the load distribution). We
have tested several configurations with different numbers
of MPI processes and OpenMP threads. Since a node on
the VSC-2 has 2 processors each 8 cores, the maximum 16
threads have been tested. Figure 1a shows a configuration
which has 6 MPI jobs, where each job has 16 threads (6x16
MPIxOpenMP configuration). Since the first MPI process is
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Fig. 1 Load distribution for the cache calculation part on 96 cores for
different system configuration is shown for: a 6 MPI processes and
16 OpenMP threads b 24 MPI processes and 4 OpenMP threads, and
c 96 MPI processes. A good load balancing is demonstrated for all
configurations
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Fig. 2 Dependence of the maximummemory/node for different values
of �E and different MPIxOpenMP configurations is shown

responsible for the collection of all results and serializing
the cache, it executes longer than other processes. Next, we
reduce the number of threads, while the number of MPI pro-
cesses is increased (Fig. 1b). The configuration for Fig. 1b is
24 MPI jobs with 4 threads on each (24x4 MPIxOpenMP
configuration). Insignificant deviation is observed on 9th,
10th, and 12th processes, but the whole load figure looks
the same as in Fig. 1a. Then, we test a full MPI realization as
in Fig. 1c to find that the previous trends remain unchanged.
The throughput of the IB is much higher than the message
size and that is why the number of communication points
does not influence the collection and serialization time.

Now, we check the memory consumption of the first level
of the algorithm. Figure 2 shows the dependence of the max-
imum memory per node required for different values of �E
and configurations ofMPIxOpenMP.Total number of cores is
96 and kept fixed. We observe that the memory requirement
per node increases when the number of threads is reduced
for all considered values of �E . In the worst case, all energy
points in a fixed direction should be calculated by a sin-
gle thread (full MPI realization, 96x1 MPIxOpenMP). If
a single thread is used, the memory requirement becomes
5GB by considering�E=5meV, which is around three times
larger as compared to maximum threaded case (i.e., 6x16
MPIxOpenMP configuration). More realistic requirements
are shown in Fig. 2 when �E=0.5meV. In the full MPI con-
figuration scheme, it requires 6.3GB memory, whereas in
6x16 MPIxOpenMP configuration it demands 2.6GB. It is
further observed that even very accurate calculations (when
�E=0.2meV) require less than 10GB of memory. Thus,
memory limitations are not an issue considering any modern

OpenMP threads

500

1000

1500

2000

C
al

cu
la

tio
n 

tim
e 

[s
]

96 cores
192 cores
288 cores
384 cores

16

8
4

2 1

Fig. 3 Dependence of the total cache calculation time on different num-
ber of threads for fixed total core numbers is shown

supercomputer using this particular simulation setup. The
speed of computation is now investigated.

Figure 3 shows the dependence of the total cache calcula-
tion time on different number of parallel threads, where the
number of core used is kept as a parameter. We find that,
for 96 parallel cores the total calculation time reduces from
1800 to 1356s (around 30% reduction), while the number
of threads reduces from 16 to 1. The same trend is fol-
lowed when multiple number of cores are used (192, 288,
and 384). The performance decrease of a hybrid approach
can be attributed to the data locality issues arising in shared
memory techniques.

Figure 4, as can be obtained from Fig. 3, demonstrates
the dependence of the calculation time on the total num-
ber of cores for a fixed thread count. As the sub-domains
of each MPI process are not correlated, the calculations in
one domain do not influence on the other. An increment of
the number of cores leads to the lossless reduction of the
total calculation time. This explains a perfect scalability as
demonstrated in the figure. This scalability, however, is lim-
ited by the number of points in the angle integral (c.f. Eq. 8).
This is because the angle step �φ has been chosen based on
the number of cores (multiple of 96) to obtain an optimum
load distribution condition at the first step of the algorithm,
thereby utilize all the resources.

3.3 Spin relaxation time calculation

The spin relaxation calculations start from the deserialization
of the cache process (i.e., second level of the algorithm). As
the deserialized object is to be stored in the memory, the size
of the cache strictly determines the number of parallel MPI
jobs on a single node. Figure 5 shows the size of serialized
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Fig. 4 Dependence of the calculation time for a fixed threads count on
total number of cores is shown (ref. Fig. 3)
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cache for different values of energy and angle steps �E and
�φ. For �E=5meV and �φ=1.875◦, the size of the cache
is around 270MB. This size allows 16 parallel MPI pro-
cesses being executed on a computational node. However,
as pointed out earlier, the step value �E should be at least
0.5meV and�φ should be at least 0.5◦. For such parameters,
the size of the serialized cache grows up to 3GB. Such size
of the serialized cache imposes restrictions on the number
of parallel executed MPI jobs on a single node. The even
smaller energy step makes the cache as big as 7GB or even
7.5GB in the dependence on the input parameters. Theoreti-
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process loads 4GB cache
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Fig. 7 Dependence of the total spin relaxation calculation time (second
level) on total number of cores for 8 and 16 threads per MPI process is
shown

cally, only three processes canwork together on a single node
leading to a significant loss of the computational resources.
Hence, it becomes inevitable to use a hybrid MPI-OpenMP
configuration, albeit its execution performance limitations.

Figure 6 shows maximum memory per node for 8 and
16 threaded MPI applications. Each MPI process reads 4GB
cache file; thus, the number of parallel executed MPI jobs is
limited by 8. The memory requirements of the computations
in the second level of the algorithm are mainly determined
by the size of the serialized cache, and hence, the memory
footprint of the algorithm itself can be neglected. Doubling
of MPI jobs per node requires double memory space.

Figure 7 shows the dependence of the total calculation
time on the number of cores as well as the number of threads,
corresponding to the cases as in Fig. 6. This illustrates that
increasing the total number of cores at a fixed number of
threads decreases the demand on computing time, which is
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Fig. 8 Spin relaxation time with the respective inter- and intra-subband
components at two distinct temperatures is shown. The electron density
NS=1012cm−2, t=2.7nm, ��=5.5eV

further reduced when the number of threads is increased.
This is in contrast to Figs. 3 and 4, as an increment in the
thread numbers from 8 to 16 leads to decrement of the total
calculation time for all values of the cores numbers. This
approach is tested with 416 cores and requires only around
40min for a single relaxation time data point (around 280
core hours).

3.4 Spin lifetime

Finally, we calculate the spin lifetime τS as a function of
shear strain εxy , c.f. Fig. 8. The temperature T is shown as a
parameter. The valley splitting in relaxed silicon films char-
acterized by the parameter�� is also taken into account. We
show the spin-flip caused by the intra- and inter-unprimed
subband scattering. Themajor contribution to τS comes from
the intersubband processes due to the presence of the spin
hot spots [11,26,27]. Shear strain moves the spin hot spots to
high energy outside of the states occupied by carriers, lead-
ing to a sharp increase of spin lifetime. This trend remains
similar even at lower value of T , although the value of τS
goes significantly higher as the phonon scattering rate is
suppressed at lower temperatures. It is further noticed that
at higher stress, the intra-subband component also turns out
to be non-negligible.

4 Conclusion

We have described a two-level parallelization algorithm to
calculate the silicon spin lifetime. The computational trade-

off with respect to accuracy of our simulation set up, memory
consumption, and calculation time is analyzed. The sug-
gested algorithm precalculates wave functions and energies
in the first level, and computes the spin relaxation rate by
using the precalculated data in the second level. In each level,
the calculations are performed in parallel.We have explained
how the first level is best performed through a pure MPI
scheme.We also have elaborated how the second level should
be efficiently performed by a hybrid approach due tomemory
demands, although a full OpenMP realization could be more
convenient. Finally, we conclude that shear strain routinely
used to enhance mobility can also be used to hugely boost
spin lifetime.
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