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Abstract— Double-well potential structures provide rich
capabilities for single electron control via different physical
characteristics of the potentials and the electron state. Here,
we investigate the effect of a uniform magnetic field on the
electron state interference pattern manifesting in a focusing
double-well potential structure by conducting Wigner quan-
tum transport experiments. We analyze the electron density
and the negativity of the Wigner function and show how the
magnetic field controls the electron state but also destroys the
coherence of the evolution dynamics. Our work contributes to
the fundamental understanding of magnetic field based single
electron control mechanisms and sheds light on the critical
decoherence processes.

I. INTRODUCTION

To this day, the Young double-slit experiments play
a fundamental role to provide insights into the quantum
properties of photons [1], electrons [2], and molecules [3].

From a probabilistic point of view the double-slit exper-
iment comprises a number of independent identical trials
of the interaction of an object, e.g., an electron, with a
detector, e.g., a screen, placed behind a potential wall with
two slits. The potential wall is sufficiently high and wide
to block other paths of the electron except through the two
slits. Identical trials refer to equivalent physical conditions
of all trials, in particular the initial position and momentum
of all launched electrons are the same. The independence
of the trials requires that the experiments are uncorrelated:
The electrons from the consecutive trials cannot interact.
This means that in a conventional laboratory experiment the
time intervals between the trials must be large enough to
avoid Coulomb interaction [4]. However, there are no other
limitations of the consecutive trials, e.g., no requirement for
a constant time period between trials. On the contrary, in
a simulation experiment the time can be arbitrarily small,
provided that the electrons are treated as non-interacting; it
is convenient (but technically not necessary) to initialize the
consecutively injected electrons periodically in time. After
each interaction with the screen a single electron leaves a
well-localized mark. After many trials the distribution of
the marks shows a well-pronounced pattern of alternating
minima and maxima, demonstrating the quantum (i.e.,
wave) character of the electron.

Young-type experiments establish the foundations for
advanced interference based applications, e.g., electron
control for information processing [5][6] and entangletron-
ics [7]. Alternatively, electron control can be established
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by specifically shaped electric potentials, called lenses [8]:
Electron state splitting [7] or focusing has been inves-
tigated [9]. These splitting or focusing mechanisms are
quantum phenomena based on interference effects, used
to, e.g., improve the device performance. Based on in-
vestigations of single potential structures [10], it has been
recently observed that the operation of such lenses can be
realized by two potential wells, for example, provided by a
double-dopant setup [11]. A well-pronounced interference
pattern was observed, similar to the double-slit experi-
ment but without the need for a conventional double-slit
potential [12]. The process has been further investigated
regarding the effect of different physical settings, such
as the distance between the dopants, their potential, and
various initial electron states.

In this work, we report the interplay of the manifesting
interference pattern with an applied uniform magnetic field
in a focusing double-well potential structure placed in a
quantum wire. We utilize the Wigner quantum transport
simulator VIENNAWD [13] to investigate the electron
density and Wigner function negativity. The latter provides
insights into the quantum character of the evolution, in par-
ticular, into interference effects and is a unique feature of
the Wigner transport picture not provided by other quantum
transport models (e.g. based on wave mechanics) [14][15].
Single electron magnetic control is attractive for quantum
information processing and advanced sensors [5].

II. WIGNER TRANSPORT MODEL

We consider the evolution of an initial electron state
described by the Wigner function fw in a two-dimensional
phase space r = x,y ; p = kx,ky in presence of a magnetic
field B [16]. The evolution equation for the Wigner function
is

[
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]
fw(p,r, t) =∫

dp′Vw(p−p′,r) fw(p′,r, t) . (1)

The equation is not an approximation obtained by intro-
ducing the magnetic component of the Lorentz force in
analogy with the classical (Boltzmann) equation. Indeed,
it is an exact quantum-coherent model obtained from the
general magnetic Wigner theory [16] for the case of a
spatially-dependent but near stationary electric field E(r)
and a constant magnetic field B. The gauge invariance of
the problem is demonstrated by the fact that the integral on
the right-hand side can be equivalently expressed by means
of E(r) [16].
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In particular the electric component E of the Lorentz
force, embodied in the Wigner potential Vw, is obtained in
the limit of homogeneous electric conditions. Equation (1)
becomes independent from the electromagnetic potentials
and thus from the choice of a particular gauge, enabling
gauge-independent numerical approaches. The equation has
been associated with a stochastic computational model
based on the fact that a maximum coherence length L may
be specified in nanostructures, which limits the range of the
standard Weyl transform [17]. As a result, the momentum
space becomes quantized.

The numerical Monte Carlo theory for solving integral
equations [18] has been applied to the integral form of (1).
A set of stochastic concepts and notions has been derived
and unified into the Wigner signed particle model [19]. In
particular, a given Wigner state (representing an electron)
is represented by numerical particles which carry a sign
during the evolution, thus constituting signed particles. The
signed particles contribute to the statistics of the physical
averages in the same way as classical Boltzmann particles,
however, their contribution is multiplied by the carried sign
in the quantum Wigner counterpart. The signed particles
are accelerated by the magnetic force over Newtonian
trajectories in the classical way, while the action of the
Wigner potential Vw gives rise to generation of new signed
particles. Both the generation rate and the distribution
of momentum are determined by the Wigner potential.
An important property is that two signed particles with
opposite sign that meet in a cell of the phase space at
the same time annihilate each other. This aspect gives rise
to the concept of indistinguishable particles, which are
stored on a phase space grid at consecutive time steps,
so that a number per phase space grid cell replaces the
ensemble of particle states within that cell. Applying this
concept greatly reduces the memory requirements in the
implementation of the model: Wigner simulations of multi-
dimensional structures became only possible because of
this and is also applied in VIENNAWD.

III. SIMULATION ANALYSIS

Fig. 1 shows the details of the geometry of the simulated
quantum wire defined by infinite potentials along the left
and right boundary as well as the averaged electron density
distribution for symmetrically-sized potential wells and no
magnetic field. The boundaries in the vertical transport
direction (from bottom to top) are open. Green isolines
at 0.175eV indicate the two Coulomb potential wells.
The initial state of the electron is the Wigner function
corresponding to a minimum uncertainty wave packet with
a standard deviation of σ = 8nm. The central wave vector
is (k0x,k0y)= (0,0.837nm−1) and corresponds to an energy
of 0.14eV. The initial state is centered at (x = 10nm,
y = 0nm) and is injected at the bottom boundary, directed
upwards towards the wells. Any injection of such a state
resembles an independent, identically distributed trial in
Young’s double-slit experiment. As hinted in Section I,
the simulation experiment offers the opportunity to inject

(each femtosecond) a novel state without biasing the result,
because the Coulomb interaction between the injected
electrons is suppressed.

The averaged statistics in Fig. 1 shows the induced
interference with a strongly pronounced compression of
the electron density in the middle upper part: The wells
act as a lense (i.e., focusing effect), which is presented
by a high density peak between y = 20nm and y = 25nm.
In the considered case of a disabled magnetic field, the
pattern reflects the symmetry of the experimental setup.
These considerations are confirmed in Fig. 2, obtained
by reducing the potential of the left well by 50%. This
shows how the interference pattern can be manipulated by
a well-induced electric field. Similar behavior is observed
if the magnetic field is enabled: Fig. 3 corresponds to
the symmetric double-well potential case with an applied
magnetic field of B = −6T. The magnetic field shifts
the density peak in a way which resembles the action
of the asymmetric lense shown in Fig. 2. Both effects,
the magnetic field and the asymmetric potentials, can be
combined to work in tandem to further shift the peak to
the right, see Fig. 4.

However, despite the similarity of the electric and mag-
netic effects on the quantum electron density distribution,
we observe that the electric and magnetic fields play a
very different role in the transport dynamics. Fig. 5 and
Fig. 6 present the Wigner function negativity maps for
B = 0 and B = −6T, respectively. Having in mind the
property of the Wigner function to develop negative values
in the regions of quantum interference [14], the maps
f−w (x,y) are created by integrating the negative values of
the corresponding Wigner functions over the momentum
coordinates. As Fig. 6 clearly shows, the magnetic field
destroys the coherence of the dynamics as the negativity is
drastically reduced. This can be linked to the role of the
two responsible electromagnetic terms in (1). In terms of
particle trajectories, the Lorentz force depends directly on
p. The effect of the electric counterpart is smoothed by
the integral on the momentum. A heuristic understanding
is given by the stochastic interpretation of the Wigner
evolution as an ensemble of signed particles, where the
sign carries the quantum information. However, the particle
dynamics follows the Boltzmann evolution: Particles follow
Newtonian trajectories, which are accelerated only by (i)
the magnetic field in the case of a general electric potential,
giving rise to the Wigner potential in (1), or by (ii) the
Lorentz force in the case of electric potentials with up
to quadratic spatial dependence (when the integral on the
right-hand side of (1) reduces to the electric force E). In
the latter case, the action of E is independent from the
particle momentum so that the particles in the ensemble
are accelerated synchronously. On the contrary, the action
of B explicitly depends on p, which distorts the evolution.
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IV. CONCLUSIONS

Interference effects offer rich opportunities for novel de-
vice operation principles based on the quantum character of
the electron evolution on the nanometer scale. Double-well
potential structures reveal a rich ability for controlling the
manifesting interference pattern via different physical char-
acteristics of the applied potentials and the electron state.
Here, we investigate the interplay between the manifesting
interference pattern and an applied uniform magnetic field
and the relevance of the latter for quantum manipulation.
Despite that the magnetic field works in tandem with the
electric force, the effects of the two physical factors is
very different: The magnetic field reduces the coherence,
as demonstrated by the significantly reduced negativity of
the Wigner function. A physical insight into the difference
of the electric and magnetic actions is provided by the
signed particle model, and is related to the dependence of
the magnetic force on the particle momenta.
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Fig. 1. Electron density distribution (arb. unit) obtained for a symmetric
double-well potential with no magnetic field applied (B = 0).

Fig. 2. Electron density distribution (arb. unit) obtained for an asym-
metric double-well potential with no magnetic field applied (B = 0).
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Fig. 3. Electron density distribution (arb. unit) obtained for a symmetric
double-well potential and B =−6T

Fig. 4. Electron density distribution (arb. unit) obtained for an asym-
metric double-well potential and B =−6T.

Fig. 5. Wigner function negativity map, symmetric double-well potential
(B = 0).

Fig. 6. Wigner function negativity map, symmetric double-well potential
(B =−6T).
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