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Abstract
We compare adaptive time integrators for the numerical solution of linear Schrödinger
equations where the Hamiltonian explicitly depends on time. The approximation methods
considered are splitting methods, where the time variable is split off and advanced separately,
and commutator-free Magnus-type methods. The time-steps are chosen adaptively based on
asymptotically correct estimators of the local error in both cases. It is found that splitting
methods are more efficient when the Hamiltonian naturally suggests a separation into kinetic
and potential part, whereas Magnus-type integrators excel when the structure of the problem
only allows to advance the time variable separately.
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Introduction

We study systems of linear ordinary differential equations of Schrödinger type

{
ψ ′(t) = − i H(t) ψ(t) , t ∈ [t0, tend] ,
ψ(t0) = ψ0 given ,

(1)

with a time-dependent Hermitian matrix H : R → C
d×d . The exact flow of (1) is denoted

by E(t, u0) in the following. High-dimensional systems of this form arise for instance in
the design of oxide solar cells [31], describing the movement and interaction of electrons
within Hubbard-type models of solid state physics, where the explicit time-dependence here
originates from an external electric field associated with the impact of a photon, or as typical
semiclassical models arising in quantum control [40]. In the former application, the computa-
tional challenge results from the high dimension of the resulting system. Indeed, for a model
with n discrete locations, the state space has dimension 4n . Thus, for amodel with the claim of
physical relevance, the problem quickly reaches the limitations of modern supercomputers.
In the latter application, the semiclassical parameter is chosen as very small, which mandates
a fine spacial discretization, again resulting in very large systems of ODEs. Thus the main
motivation for the present study is to identify the computationally most efficient numerical
time integrators for the considered problem class in order to make large-scale simulations of
high accuracy feasible on current computer hardware.

The aim of this paper is to compare two approaches to the numerical time integration
of problems of the form (1). Popular integrators for time-dependent linear homogeneous
differential equations are based on the Magnus expansion [23,35], or on commutator-free
exponential-based integrators [1]. These have been found to excel over classical Magnus
integrators (introduced as numerical methods in [21]) for example in [3] and will therefore
be used in the present study. In contrast, non-autonomous problems can also be solved by
interpreting the independent variable t as a separate component, which in splitting meth-
ods can be frozen over a time-step and propagated separately. This approach is discussed
extensively in [16–18,20,39] and references therein. The success of the splitting approach
critically depends on the structure of the underlying problem. If the operator H(t) naturally
suggests a splitting, where the time-dependent part is cheap to compute for fixed t , this may
offer computational advantages when t is propagated along with one sub-operator. However,
if only t is split off, the required number of compositions in a splitting approach may be
prohibitive from a computational point of view. Also, if H has a special structure which
can be exploited to increase the efficiency, the introduction of the additional variable t may
destroy this structure [16]. We will corroborate these general observations on a number of
practical examples, see also [19] for an abstract discussion of the computational effort.

The present comparisons involve methods that have been used in previous studies, but
not in comprehensive assessment of the efficiency when applied to a number of application-
motivated examples. The efficiency of adaptive splitting methods has been studied by the
authors for instance in [2,9], and adaptive Magnus-type methods are discussed in [3,7].
This work adds the aspect of understanding adaptive splitting and Magnus-type methods
as to their applicability and respective merits. By providing a meticulous comparison on
several significant examples from applications, we give a balanced account of advantages
and disadvantages of the two numerical approaches. The Hubbard model is of high interest
in solid state physics, and therefore a search for the best numerical approach among several
contenders is of relevance.
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In Sect. 2 of this manuscript, we specify the model model problems that we will sub-
sequently resort to in our comparisons, in Sect. 3 we briefly recapitulate the numerical
approaches that are used, and in Sect. 4 we give the results of our numerical comparisons.
The main criterion to assess the computational efficiency is the required CPU time to reach
a prescribed accuracy, as the considered numerical approaches are fundamentally different
in their structure and do not readily admit other metrics.

Model Problems

We consider a Rosen–Zener model related to quantum optics, a Hubbard model of the impact
of light on a solid, and a semiclassical problem typical for quantum control.

Rosen–Zener problem As the first example, we consider a Rosen–Zener model from [19],
which appears in quantum optics, see also [33]. The associated Schrödinger equation in the
interaction picture is given by (1) with

H(t) = f1(t)σ1 ⊗ Ik×k + f2(t)σ2 ⊗ R ∈ C
2k×2k, k = 50 , (2a)

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, (2b)

R = tridiag(1, 0, 1) ∈ R
k×k, (2c)

f1(t) = V0 cos(ωt) (cosh(t/T0))
−1 , f2(t) = V0 sin(ωt) (cosh(t/T0))

−1 , (2d)

ω = 1
2 , T0 = 1, V0 = 1, (2e)

where the initial condition is chosen as ψ(0) = (1, . . . , 1)T . The integration interval is
t ∈ [−5, 5].
Hubbard model for solar cells Next, we consider a Hubbard model describing the movement
and interaction of electrons within an oxide solar cell [25,31] built from LaVO3, with1

H(t) ∈ C
4900×4900. The explicit time-dependence here originates from an external electric

field associated with the impact of a photon.
This model is given by a finite-dimensional Hamiltonian in second quantization of the

form

H = 1

2

∑
i jσ

vi j c
†
jσ ciσ +

∑
i jσσ ′

Ui j n̂iσ n̂ jσ ′ . (3)

Here, the annihilation and creation operators ciσ and c†jσ take an electron away from site i
with spin σ ∈ {↑,↓} and add it on site j .

The impact of a photon exciting the system out of equilibrium can be described by a
classical electric field pulse, which introduces time-dependence to the Hamiltonian (3), see
[25]. We choose eiω(t) with ω(t) = 1

10 exp
(− 1

6 (t − 6)2 cos
( 7π

4 (t − 6)
))
, which appears

in off-diagonal entries of H(t) depending on the geometry underlying the model of the
investigated solid. The model is described in detail in [27].

The oscillating and quickly attenuating electric field generated by the external potential
in this model makes adaptive time-stepping a relevant issue. Time integration proceeds on
the interval t ∈ [0, 30].
1 The dimension of the matrix in this model grows exponentially with the number of considered sites in the
Hubbard model of the solid, making the issue of an efficient time integrator crucial. For our illustrations in
this paper, we choose a model of manageable size.
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Quantum control Amodel typical for quantum control of atomic systems which is discussed
in [28], see also [40], introduces a potential which explicitly depends on time,

i ∂tψ(x, t) = εΔψ(x, t) + ε−1V (x, t) ψ(x, t) = Hψ(x, t) , t > 0 , (4a)

ψ(x, 0) = ψ0(x) , (4b)

with V (x, t) and the initial condition chosen as

ψ0(x) = (δπ)−
1
4 e

i k0(x−x0)

δ
− (x−x0)2

2δ ,

V (x, t) = V0(x) + ρ(3t − 1)ρ(sin(2π(x − t))) + 10−3t sin(20πx),

V0(x) = ρ(4x) sin(20πx),

ρ(x) =
{

e
−1

1−x2 , |x | < 1

0, otherwise,

where x0 = −0.3, k0 = 0.1, δ = 10−3 and ε in (4a) assumes thevalues 2−6, 2−8, 2−10, 2−12.
The spatial interval [−1, 1] is discretized using a Fourier pseudospectral method at 2048
points for periodic boundary conditions. The computation terminates at tend = 0.75.

Adaptive Time Integration

SplittingMethods

Splitting methods constitute a popular divide-and-conquer approach for numerical time inte-
gration of (1) when the Hamiltonian is partitioned, i.e., −iH(t) = A(t) + B(t) and the
operators A and B have different properties which promise computational advantages when
propagated independently. This is for instance typical for the splitting of a Schrödinger oper-
ator into kinetic and potential part.

In our context, we will use splitting methods bymaking the problem formally autonomous
by considering t as an additional solution component and adding the equation t ′ = 1. In this
setting, time can be advanced separately, or simultaneously with one suboperator if this is
autonomous. More precisely, in the definition of the splitting, the operators become

ψ ←−
(

ψ

t

)
, A ←−

(
A
1

)
, B ←−

(
B
0

)
.

The same holds mutatis mutandis when t is propagated together with B.
For autonomous problems, splitting methods have the following form: At the (time-)semi-

discrete level, s-stage exponential splitting methods use multiplicative combinations of the
partial flows EA(t, u0) : u0 	→ u(t) with u′(t) = A(u(t)), u(t0) = u0, and EB(t, u0) : u0 	→
u(t)with u′(t) = Bu(t), u(t0) = u0. For a single step (t0, u0) 	→ (t0+h, u1)with time-step
t = h, this reads

u1 := S(h, u0) = EB(bsh, ·) ◦ EA(ash, ·) ◦ . . . ◦ EB(b1h, ·) ◦ EA(a1h, u0), (5)

where the coefficients a j , b j , j = 1 . . . s are determined from order conditions to achieve a
desired order of consistency [23].
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Local Error Estimators for SplittingMethods

As the basis for adaptation of the time-steps, three classes of local error estimators are used
in this study. These have different advantages depending on the context in which they are
applied [5].

(i) Embedded pairs of splitting formulae have first been considered in [32] and are based
on reusing a number of evaluations from the basic integrator. In this paper, we will
focus on the pairs [6, Emb 4/3 AK p] of orders four and three and [6, Emb 5/4
AK (ii)] of orders five and four, whichwere found to be themost successful in earlier
work [2].

(ii) A defect-based error estimator has been proposed and analyzed in [8,10–12]. In order
to construct an error estimator associated with a splitting method of order p ≥ 1,
an integral representation of the local error involving the defect D of the numerical
approximation is evaluated by means of an Hermite quadrature formula. Due to the fact
that the validity of the p-th order conditions ensures that the first p − 1 derivatives of
D vanish at t = t0, this leads to a local error estimator involving a single evaluation of
the defect,

P(t, u0) = 1
p+1 t D(t, u0) ≈ L(t, u0) = S(t, u0) − E(t, u0) . (6)

This device works generally for splittings of any order into an arbitrary number of
operators if Fréchet derivatives of the subflows are available, see [4]. We use the defect-
based error estimator in conjunction with the integrators in [6, Emb 4/3 AK p] and
[6, Emb 5/4 AK (ii)], since these are close to optimal.

(iii) For adjoint pairs of formulae of odd order p, an asymptotically correct error estimator
can be computed at the same cost as for the basic method, see [5]. Since the error esti-
mator is easy to construct and evaluate in this case, we employ the pair [6, PP 5/6 A]
of orders 5/6, since this was found to be efficient for high accuracy demands for instance
in [2]. We will also employ this optimized method in conjunction with the defect-based
error estimator for reasons of comparison.

All the error estimates we use in our comparisons are asymptotically correct, i.e., the
deviation of the error estimator from the true error tends to zero faster than does the error.

Commutator-free Magnus-type Integrators

A successful and much used class of integration methods is given by higher-order
commutator-free Magnus-type integrators (CFM) [1,22]. These approximate the exact flow
in terms of products of exponentials of linear combinations of the system matrix evaluated
at different times, avoiding evaluation and storage of commutators. These have been found
to excel over classical Magnus integrators in applications in our interest in [3].

One step of a CFM scheme for (1) starting at (t0, u0) is defined by 2

u1 = S(τ ; t0) u0 ,

2 Note the slight difference in notation as compared to splitting methods, which is motivated by the fact that
for time-dependent linear problems, the evolution depends on the initial time and represents a linear operator
applied to the initial value.

123



    6 Page 6 of 14 Int. J. Appl. Comput. Math              (2021) 7:6 

with the ansatz [1,22]

S(τ ; t0) = SJ (τ ) · · ·S1(τ ) = eΩJ (τ ) · · · eΩ1(τ ) ,

Ω j (τ ) = τ B j (τ ), j = 1, . . . , J ,

B j (τ ) =
K∑

k=1

a jk Hk(τ ), Hk(τ ) = −iH(t0 + ckτ) ,

(7)

where the coefficients a jk , ck are determined from the order conditions (a system of polyno-
mial equations in the coefficients) such that the method attains convergence order p, see for
example [19] and references therein. Algorithms to efficiently generate the order conditions
are described for instance in [26]. Since such a system of equations generally does not define
a unique solution, numerical optimization techniques are employed, for example minimizing
the leading local error term of the resulting integrator.

In this study, we will use the methods referred to as CF4oH and CF6n in [3].
The choice of the methods above for our comparisons is motivated by the fact that these

two methods were found to be the most efficient CFM methods in the study [3].

Local Error Estimation for Magnus-typeMethods

As a basis for adaptive time-stepping, defect-based error estimators for CFM methods and
for classical Magnus integrators have been introduced in [7]. For the defect

D(τ ) = S ′(τ ; t0) − A(t0 + τ)S(τ ; t0) (8)

it holds that

D(0) = D′(0) = · · · = D(p−1)(0) = 0,

for an order p method.
The local error L(τ )ψ0 := (S(τ ; t0) − E(τ ; t0))ψ0 can be expressed via the variation-of-

constant formula as

L(τ ) =
∫ τ

0
Π(τ, σ )D(σ ) dσ = O(τ p+1), Π(τ, σ ) = E(τ − σ ; t0 + σ).

For the practical evaluation of the defect, the derivative of matrix exponentials of the form

d
dτ e

τ B(τ ) = Γ (τ) eτ B(τ )

is required. The function Γ can be expressed as an infinite series or alternatively as an
integral. These are approximated by truncation or numericalHermite quadrature, respectively,
to yield a computable quantity Γ̃ and an approximate defect D̃. The resulting computable
error estimator is denoted by P̃ . The asymptotical correctness of the error estimators was
established in [7].

In the numerical experiments reported in Sect. 4 below, truncation of the Taylor expansion
has been used throughout.
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Adaptive Lanczos Method

The crucial computational step in any of the Magnus-type methods described above, is the
evaluation of the action of a matrix exponential

E(t)v = e−itΩv, Ω Hermitian, t fixed. (9)

Note that this subproblem is also solved in the splitting approximation of the problems (2)
and (3), whereas in (4), the pseudospectral space discretization renders this substep the trivial
exponentiation of a diagonal matrix. The standard Krylov approximation to e−itΩv reads

Sm(t)v = Vm e−itTm V ∗
m v = Vm e−itTm e1, (10)

with Tm = (τi, j ) tridiagonal and Vm an orthonormal basis of the Krylov space Km(Ω, v) =
span{v,Ωv, . . . , Ωm−1v} ⊆ Cn . For Hermitian or skew-Hermitian matricesΩ , the Lanczos
method [36] constitutes a computationally efficient realization.

In [30], a time-stepping strategy was introduced which is based on the defect of the
approximation. Due to the success of this strategy documented ibidem, we use it invariantly
in the Magnus-type integrators. The asymptotically correct error estimator is based on the
defect operator

Dm(t) = −iΩ Sm(t) − S′
m(t) ∈ Cn×n .

The local error operator Lm(t) = E(t) − Sm(t) can be represented as

Lm(t)v =
∫ t

0
E(t − s) Dm(s)v ds.

Numerical quadrature applied to this defect-based integral representation yields a com-
putable, asymptotically correct local error bound satisfying (see [30]),

‖Lm(t)v‖2 ≤ τm+1,mγm
tm

m! ,

‖Lm(t)v‖2 = τm+1,mγm
tm

m! + O(tm+1),

with γm = ∏m−1
j=1 (Tm) j+1, j .

As an error tolerance for the Lanczos matrix exponentiation, we prescribe 10−12. This
allows to realize highly accurate time-stepping on the basis of this approximation with tol-
erance requirements as strict as 10−12.

Step-size Selection

Based on a local error estimator, the time step-size is adapted such that the tolerance is
expected to be satisfied in the following step. If hold denotes the present step-size, the next
step-size hnew in an order p method is predicted as (see [24,37])

hnew = hold · min
{
αmax,max

{
αmin, α

( tol

P(hold)

) 1
p+1

}}
, (11)

where we choose the parameters as α = 0.9, αmin = 0.25, αmax = 4.0, and P(hold) is an
asymptotically correct estimator for the local error arising in the previous time-step. This
established and widely used strategy incorporates safety factors to avoid an oscillating and
unstable behavior.
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Table 1 Runtime for the
Rosen–Zener model (2)

Scheme / tol=1.0e-5 #Steps Time (s)

Emb 4/3 AK p 47 0.0216

Emb 4/3 AK p (defect 3) 47 0.0362

PP 5/6 A 23 0.0272

PP 5/6 A (defect) 23 0.0494

Emb 5/4 AK (ii) 23 0.0227

CF4oH 21 0.0144

CF6n 18 0.0270

Scheme / tol=1.0e-9 #Steps Time (s)

Emb 4/3 AK p 451 0.1588

Emb 4/3 AK p (defect 3) 451 0.2707

PP 5/6 A 94 0.0715

PP 5/6 A (defect) 94 0.1501

Emb 5/4 AK (ii) 120 0.0719

CF4oH 106 0.0447

CF6n 55 0.0534

Table 2 Runtime for Hubbard
model (3)

Scheme / tol=1.0e-5 #Steps Time (s)

Emb 4/3 AK p 93 3.179

Emb 4/3 AK p (defect 3) 103 5.842

PP 5/6 A 61 4.125

PP 5/6 A (defect) 69 9.943

Emb 5/4 AK (ii) 63 4.527

CF4oH 57 2.600

CF6n 53 4.538

Scheme / tol=1.0e-9 #Steps Time (s)

Emb 4/3 AK p 862 14.263

Emb 4/3 AK p (defect 3) 869 29.753

PP 5/6 A 273 11.725

PP 5/6 A (defect) 279 30.226

Emb 5/4 AK (ii) 372 12.424

CF4oH 237 7.831

CF6n 187 13.332

Numerical Results

Here,we give the results of our experimental comparisons of the numericalmethods described
in Sect. 3. The numerical results have been obtained based on implementations which can
be found at
https://github.com/HaraldHofstaetter/TimeDependentLinearODESystems.jl andhttps://github.
com/HaraldHofstaetter/TSSM.jl.
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Table 3 Runtime for the quantum
control problem (4) with ε = 2−6 Scheme / tol=1.0e-5 #Steps Time (s)

Emb 4/3 AK p 427 3.690

Emb 4/3 AK p (defect 3) 452 10.061

PP 5/6 A 257 4.553

PP 5/6 A (defect) 268 9.875

Emb 5/4 AK (ii) 89 1.074

CF4oH 97 38.048

CF6n 203 61.476

Scheme / tol=1.0e-9 #Steps Time (s)

Emb 4/3 AK p 4282 36.712

Emb 4/3 AK p (defect 3) 4295 99.127

PP 5/6 A 1669 28.928

PP 5/6 A (defect) 1688 62.618

Emb 5/4 AK (ii) 561 6.709

CF4oH 450 38.890

CF6n 941 89.797

Scheme / tol=1.0e-12 #Steps Time (s)

Emb 4/3 AK p 24082 200.399

Emb 4/3 AK p (defect 3) 24081 541.502

PP 5/6 A 5823 100.421

PP 5/6 A (defect) 5836 213.054

Emb 5/4 AK (ii) 2232 26.040

CF4oH 1495 66.152

CF6n 2973 180.930

As a measure of computational efficiency, we resort to CPU time on the Vienna Scientific
Cluster. Its third generation cluster VSC-3 has 2020 nodes, each equipped with 2 processors
(Intel Xeon E5-2650v2, 2.6 GHz, 8 cores). The runtimes we give below are averages over
100 identical runs on a single compute node, respectively. Runtime seems to be the most
reasonable measure of computational efficiency due to the very different nature of the two
numerical approaches. Two different local error tolerances 10−5 and 10−9 are prescribed for
all examples, for (4) the tolerance 10−12 could also be reached.

Rosen–Zener model. In Table 1 we show the results for the Rosen–Zener model (2). For the
splitting methods, only the time variable is split off and the Hamiltonian is exponentiated as a
whole. In modern computer arithmetics, a conceivable splitting into real and imaginary part
does not promise a computational advantage. We observe that the most efficient exponential-
based method is CF4oH, while Emb 4/3 AK p is the best splitting method for the larger
tolerance 10−5, and PP 5/6 A excels for tolerance 10−9. Note that the number of time-
steps does not immediately correspond with the computational effort, the commutator-free
Magnus-type method of order six requires the fewest steps, but is more expensive in each
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Table 4 Runtime for the quantum
control problem (4) with ε = 2−8 Scheme / tol=1.0e-5 #Steps Time (s)

Emb 4/3 AK p 282 2.443

Emb 4/3 AK p (defect 3) 287 6.508

PP 5/6 A 154 2.648

PP 5/6 A (defect) 155 5.642

Emb 5/4 AK (ii) 94 1.145

CF4oH 58 9.407

CF6n 62 15.277

Scheme / tol=1.0e-9 #Steps Time (s)

Emb 4/3 AK p 2822 24.760

Emb 4/3 AK p (defect 3) 2822 65.917

PP 5/6 A 805 14.494

PP 5/6 A (defect) 807 30.469

Emb 5/4 AK (ii) 589 7.143

CF4oH 247 13.992

CF6n 254 23.956

Scheme / tol=1.0e-12 #Steps Time (s)

Emb 4/3 AK p 15870 133.730

Emb 4/3 AK p (defect 3) 15867 359.906

PP 5/6 A 2636 44.502

PP 5/6 A (defect) 2637 96.960

Emb 5/4 AK (ii) 2347 27.547

CF4oH 780 28.341

CF6n 786 48.341

step and thus not the fastest integrator. The fastest exponential-based integrator is almost
twice as fast as the best splitting method.

Hubbard model. For the Hubbard model of solar cells (3) we obtain a similar picture. Again,
only the time variable is split off. Table 2 shows the runtimes for tolerances 10−5 and 10−9.
The fourth order commutator-free Magnus-type integrator CF4oH is the most efficient for
both tolerances, and again, Emb 4/3 AK p is the best splitting method for the larger
tolerance, and PP 5/6 A for the stricter tolerance. The best exponential-based method
again excels over the best splitting method.
Quantum control. The results for the semiclassical problem (4) show a different picture
than the previous investigations. The reason is obvious: The problem (4) suggests a natural
splitting into kinetic and potential part, and hence t can be propagated efficiently alongside
with the autonomous kinetic operator. We vary ε from ε = 2−6 to ε = 2−12 in Tables 3, 4, 5
and 6. For this example, a tolerance of 10−12 could additionally be achieved and is added to
the numerical results. Throughout, the best splitting method is EMB 5/4 AK (ii), and
the best Magnus-type method is CF4oH. For larger ε, splitting methods are clearly to be
preferred, but this advantage is significantly diminished for the more oscillatory problems
for smaller ε. Indeed, Magnus-type integrators are known to excel for oscillatory problems.
For larger ε and particularly larger tolerances, Emb 5/4 AK (ii) is by far more efficient
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Table 5 Runtime for the
quantum control problem (4)
with ε = 2−10

Scheme / tol=1.0e-5 #Steps Time (s)

Emb 4/3 AK p 165 1.512

Emb 4/3 AK p (defect 3) 165 3.883

PP 5/6 A 79 1.408

PP 5/6 A (defect) 80 3.056

Emb 5/4 AK (ii) 60 0.773

CF4oH 43 3.425

CF6n 41 5.934

Scheme / tol=1.0e-9 #Steps Time (s)

Emb 4/3 AK p 1642 13.641

Emb 4/3 AK p (defect 3) 1642 36.779

PP 5/6 A 389 7.084

PP 5/6 A (defect) 390 14.238

Emb 5/4 AK (ii) 374 4.329

CF4oH 162 6.320

CF6n 150 10.239

Scheme / tol=1.0e-12 #Steps Time (s)

Emb 4/3 AK p 9238 76.601

Emb 4/3 AK p (defect 3) 9237 211.494

PP 5/6 A 1245 21.911

PP 5/6 A (defect) 1245 46.238

Emb 5/4 AK (ii) 1489 17.847

CF4oH 521 16.452

CF6n 403 22.347

than the best exponential-based method, but for smaller ε, this advantage is dimished, and for
ε = 2−10 and 2−12 and tolerance 10−12,CF4oH is even slightly faster. The reasonmay be the
additional splitting error which contributes to dimished efficiency due to reduced accuracy
for a given computational effort.

Conclusions

We have studied the differences between two fundamentally diverse approaches for the solu-
tion of linear non-autonomous systems of differential equations. Exponential-based methods
related to the Magnus expansion are contrasted with splitting methods, where the time vari-
able is split off and suitably propagated. Both approaches allow to construct asymptotically
correct estimators for the local time-stepping error and implement adaptive time-stepping on
this basis. Which method is more efficient depends on the problem structure. If only the time
variable is split off, the additional substeps induced in the splitting procedure seem not to be
justified from the point of view of computational efficiency. However, if the problem naturally
suggests a splitting into a time-dependent and a time-independent part, the approach may be
more efficient. However, for highly oscillatory problems, the splitting error is too large and
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Table 6 Runtime for the
quantum control problem (4)
with ε = 2−12

Scheme / tol=1.0e-5 #Steps Time (s)

Emb 4/3 AK p 181 1.565

Emb 4/3 AK p (defect 3) 181 4.173

PP 5/6 A 71 1.244

PP 5/6 A (defect) 72 2.694

Emb 5/4 AK (ii) 66 0.785

CF4oH 47 2.711

CF6n 53 4.678

Scheme / tol=1.0e-9 #Steps Time (s)

Emb 4/3 AK p 1799 16.093

Emb 4/3 AK p (defect 3) 1799 42.375

PP 5/6 A 462 8.195

PP 5/6 A (defect) 559 20.996

Emb 5/4 AK (ii) 510 6.181

CF4oH 187 6.573

CF6n 183 10.729

Scheme / tol=1.0e-12 #Steps Time (s)

Emb 4/3 AK p 10118 84.804

Emb 4/3 AK p (defect 3) 10116 227.637

PP 5/6 A 1485 24.911

PP 5/6 A (defect) 1607 58.523

Emb 5/4 AK (ii) 2116 24.399

CF4oH 653 20.688

CF6n 472 25.191

Magnus-type integrators are again to be preferred. Our findings may also have an impact
on the study of time-dependent differential equations of other classes such as differential-
algebraic equations [15], functional and stochastic differential equations [34], or fractional
differential equations [29,38], see also [13,14].
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