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Abstract—We evaluate the subband structure in a narrow 
nanoribbon of 1T’ molybdenum disulfide by employing an 
effective k∙p Hamiltonian. Highly conductive topologically 
protected edge states whose energies lie within the bulk band gap 
are investigated. Due to the interaction of the edge modes located 
at the opposite edges, a small gap in their linear spectrum opens in 
a narrow nanoribbon. This gap is shown to sharply increase with 
the perpendicular out-of-plane electric field, in contrast to the 
behavior in a wide nanoribbon. The gaps between the electron and 
hole bulk subbands also increase with the electric field. The 
increase of the gaps between the subbands leads to a rapid 
decrease of the ballistic nanoribbon conductance and current with 
the gate voltage, which can be used for designing molybdenum 
disulfide nanoribbon-based current switches.  

Keywords—topological insulators, topologically protected edge 
states, nanoribbons, subbands, k.p Hamiltonian, ballistic 
conductance   

I. INTRODUCTION  

Edge states in two-dimensional (2D) topological insulators 
(TI) propagate without backscattering, making them attractive 
for designing highly conductive channels [1]. Recently it was 
discovered that the 1T’ phase of MoS2, a well-known 2D material 
with a high promise for future microelectronic devices [2], is a TI 
[3]. The inverted band structure is well approximated by 
parabolas, with the conduction and valence bands having masses 
of 𝑚  [3]. The spin-orbit interaction opens a gap at the 
intersection of the valence and conduction bands, which appears 
at a finite value of the momentum ky along the OY axis. A 
topologically protected highly conductive edge state with a linear 
Dirac-like energy dispersion on the momentum kx parallel to the 
OX axis must exist within this spin-orbit gap [3].  

However, possessing robust conductive channels is only one 
requirement. To make a good switch it is necessary to suppress 
the current through the channel as a function of a perpendicular 
electric field induced by a gate. A standard approach is to close 
the gap in the bulk host material. In this case scattering between 
the protected edge and the non-protected electron-hole bulk states 
results in strong scattering, which effectively reduces the current 
through the edge states [4].  

By applying an electric field Ez along the OZ axis 
perpendicular to a MoS2 sheet in the 1T’ phase,  the bulk spin-
orbit gap can be reduced, closed, and opened again as a 
“negative” gap at large electric fields [3]. The traditional band 

order is restored from the inverted band structure, the gap 
becomes a direct gap, and no edge states are allowed in the gap.  

This transition between the topological and conventional 
insulator phases in a wide1T’-MoS2 controlled by the electric 
field orthogonal to the sheet eliminates the edge states completely 
and can be used to further suppress the current [5]. In order to 
enhance the current through the channel it is beneficiary to have 
many edges by stacking several narrow nanoribbons. Here, we 
evaluate the subband structure in a narrow nanoribbon of 1T’-
MoS2 by using an effective k∙p Hamiltonian [3]. In contrast to a 
wide channel, we find that a small gap in the spectrum of edge 
states in a nanoribbon [6] increases with the electric field. It 
results in a rapid decrease in the nanoribbon conductance with the 
field, which is potentially suitable for switching. 

II. METHOD AND RESULTS 
In order to investigate transport through a nanoribbon, the 

subband structure and the wave functions must be evaluated 
first. We parametrize the energy in units of the band inversion 

gap 2δ at ky=0, while ky(x) in units of 𝑘
ℏ

/

. By 

applying a unitary transformation [7] , the 4×4 Hamiltonian [3] 
is cast in a block-diagonal form similar to the one in [6]. 

𝐻 𝐤 0
0 𝐻∗ 𝐤                                                             (1) 

The 2×2 Hamiltonian H(k),k=(kx, ky) in dimensionless units has 
the form 

𝐻 𝐤
𝑘 𝑘            𝜈 𝑘 𝛼𝐸 𝑖 𝜈 𝑘

 𝜈 𝑘 𝛼𝐸 𝑖 𝜈 𝑘 𝑘 𝑘
, (2) 

where 𝑚  and ν1(2) are the dimensionless velocities. 

The parameters used in (2) are from [3] and listed in Table I. 

The bulk energy dispersion obtained with the Hamiltonian 

(2) with an offset of 𝛥𝐸  is shown in Fig. 1 for several 

kx and Ez=0. The spin-orbit gap opened at ky =± k0 is increasing 
with kx. Indeed, the gap is determined by the off-diagonal terms 
in (2). Since the off-diagonal terms in (2) can be written as σyν1kx 
and σxν2ky, where σx(y) are the Pauli matrices, the gap Δ is defined 
by Δ= 𝑣 𝑘 𝑣 𝑘 / .  
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Fig. 1. Bulk energy dispersion in 1T’-MoS2 two-dimensional material, Ez=0, for  
kx=0 (solid line), kx=0.1 k0 (dashed line), and kx=0.2 k0 (dot-dashed line).  

By applying an electric field Ez along the OZ axis the gap at 
one of the minima (Fig.2, solid line) can be reduced, completely 
closed (Fig.2, dashed line), or even be opened again (Fig.1, dot-
dashed line) at large electric fields. The gap at large electric 
fields becomes direct.  

Let us consider a nanoribbon with a width in the OY 
direction of d=40/k0. Only quantized values of the momentum ky 
along the quantization axis OY are allowed. In addition, it is 
expected that at Ez =0 two topologically protected highly 
conductive edge states localized at opposite interfaces of a 
nanoribbon exist at any particular energy E within the gap 
opened by the spin-orbit interaction at ky =± k0.  

A general form of the subband wave function 𝜓 𝑦  in the 
quantization OY direction is written as  

𝜓 𝑦 ∑ 𝐴
1

𝑎 𝑘 , 𝐸 exp 𝑖𝑘 y ,            (3) 

where 𝑘 , j=1,…,4 are the roots of E(kx, kj)= E, Aj are constants, 
and 

TABLE I.   
PARAMETERS [3,5] USED IN THE MODEL. 𝑚  IS THE ELECTRON MASS,  
𝑒 IS THE ELECTRON CHARGE, AND 𝑑 IS THE WIDTH IN OY DIRECTION. 

Variable Value 

2δ 0.66 eV 

𝑣  3.87 105 m/s 

𝑣  0.46 105 m/s 

𝑚  0.5 𝑚  

𝑚  0.16 𝑚  

𝑚  2.48 𝑚  

𝑚  0.37 𝑚  

𝛼 0.03 e nm 

𝑘  1.485 nm-1 

d 40𝑘 26.94 nm 

 
Fig. 2. Bulk energy dispersion in 1T’-MoS2 two-dimensional material, kx=0, for 
Ez=0 (solid line), αEz=v2 (dashed line) and αEz=2v2 (dot-dashed line). 

𝑎 𝑘 , 𝐸

1
2 𝑘

𝑚
𝑚

𝑘
𝑚

𝑚
𝐸

𝜈 𝑘 𝛼𝐸 𝑖 𝜈 𝑘
  .         4  

The subband energies are obtained by setting the wave function 
to zero at both edges. The characteristic equation 

det 𝐌 0,                                      5  

where the matrix  𝐌 𝑀 𝑀 𝑀 𝑀  is composed of 
the columns 𝑀 , j=1,..,4. 

𝑀

⎝

⎜
⎛

1
𝑎 𝑘 , 𝐸

exp 𝑖𝑘 𝑑

𝑎 𝑘 , 𝐸  exp 𝑖𝑘 𝑑 ⎠

⎟
⎞

 ,             6  

is solved numerically, in complete analogy to the problem of 
finding the eigenenergies and eigenfunctions of a 2-band k∙p 
Hamiltonian in silicon films [8]. Fig.3 displays the behaviour of 
the real part (the imaginary part is zero for Ez=0) of the 
determinant as a function of energy, for kx,=0. We are interested 
 

 
Fig. 3. Real (stars) and imaginary (line) parts of det(M) computed at kx =0,  
Ez = 0, d=40𝑘 . The bulk gap is seen at at E ≈ ±0.065, where the real part 
touches the OX axis from below. The subband energies are obtained from 
det(M)=0. Topological edge states are seen in the bulk gap (E ≈ ±0.005). 
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Fig. 4. The wave function square (blue) and its two spinor components (green 
and red) of the topological edge state evaluated at 𝛼𝐸 0.1𝜈 , kx =0.1k0, and 
E≈ 0.005. The subband wave function shows both oscillation and an exponential 
decay. 

in the crossings of the curve with the axis OX. The bulk gap due 
to the spin-orbit interaction occurs at E ≈ ±0.065. The value of 
the determinant approaches zero from negative values and 
touches it at a single point, when the energy E touches the 
minimum (maximum) of the dispersion curve. Therefore, k1= k2 
and k3= k4 and the determinant (5) is zero. 

All other intersections with the OX axis correspond to 
subband energies. We clearly observe two roots in the gap at  
E ≈ ±0.005 A close inspection shows that the wave vectors kj 
corresponding to these solutions are complex numbers. The 
wave functions corresponding to these solutions in the gap are 
located at an edge of the nanoribbon as shown in Fig.4 and Fig.5 
for kx =0.1k0 and E ≈ ±0.005, respectively. In contrast to [6], 
where only an exponential decay was predicted, the wave 
functions display both oscillations and decay. Although the 
structure of the Hamiltonians considered here and in [6] are 
similar, the actual parameters differ. In particular, here the spin-
orbit gaps are open at the finite values of ky =± k0. This 
displacement of the bulk band’s minima from the Gamma-point 
at ky=0 is reflected in the oscillations of subband wave functions 
superimposed on the exponential decay.  

 
Fig. 5. The wave function square (blue) and its two spinor components (green 
and red) of the topological edge state evaluated at 𝛼𝐸 0.1𝜈 ,  kx =0.1k0, but 
E≈-0.005.  The wave function is localized at the oppoite edge.  

 
Fig.6 Real (blue stars) and imaginary (red circles) parts of det(M) computed at 
kx =0, αEz=0.7 v2, d=40𝑘 . At E≈ ±0.02 the imaginary part of the two kj ensuring 
the localization at the edges is approaching zero. New type of roots with 
imaginary part equals to zero at E≈ ±0.075 appear. 

The roots of the determinant for |E| > 0.065 correspond to the 
subbands with all 𝑘  real. The wave functions are delocalised 
through the width of the nanoribbon. Due to the strong non-
parabolicity of the bulk dispersion, the positions of the subband 
minima and the subband dispersions can only be found by 
solving (5) numerically.  

Fig. 6 shows the behavior of the determinant at 
αEz=0.7v2ℏ𝑘 . In this case the gap at  k=𝑘  is reduced but not 
completely closed. However, due to the finite width of the 
nanoribbon, the edge modes seen at E ≈ ±0.02 are already 
delocalized as the imaginary parts of two kj responsible for the 

localization at the edges are becoming zero. At the same time, 
the two solutions at E ≈ ±0.075 split off from the traditional 
subbands set as two of their kj acquire an imaginary part. This 
happens due to the fact that, while the gap at ky = k0 shrinks with 
increasing Ez, the gap at ky =- k0 displays an opposite trend and 
becomes wider. Therefore, the lowest traditional subband 
initially outside of the gap enters the gap at ky =- k0 thus forcing 
the two roots to become complex. 

The behaviour of the determinant at even higher electric field 
αEz=1.4v2ℏ𝑘  is shown in Fig.7. As the field is larger than the 
 

 
Fig.7. Real (blue stars) and imaginary (red crosses) parts of det(M) computed at 
kx =0, αEz=1.7v2, d=40𝑘 . No solution within the direct gap at |E|<0.03 is 
allowed. Two solutions of with imaginary part equal to zero at E≈ ±0.05 and  
E≈ ±0.08 are now observed. 
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Fig. 8. Dependence of electron (hole) subband minima (maxima) on the electric 
field Ez for the first three subbands. In contrast to the bulk case, the gap never 
closes and keeps increasing with Ez  

critical value field αEz=v2ℏ𝑘  at which there is no gap at ky = k0, 
the gap seen att |E|<0.03 is a direct gap. Therefore, as confirmed 
by the absence of zeroes of the determinant, no edge states are 
allowed in the gap. At the same time, there are already four 
subbands lying outside the direct gap at ky = k0 but still within 
the gap at ky =- k0. While the solutions at E ≈ ±0.09 split off from 
the traditional subbands set in complete analogy to the situation 
in Fig. 6, the subbands at E ≈ ±0.05 originate in the edge states, 
which were continuously pushed outside of the gap at ky =- k0. 

Fig.8 shows the dependence of the electron (hole) subband 
minima (maxima) 𝐸 on the electric field Ez. First, we note 
that the “bulk” gap in the nanoribbon defined as the difference 
between the extrema of the first traditional subbands (Fig.8, 
squares) shows signs of reduction, when the field is increased till 
Ez≈0.7v2ℏ𝑘 /𝛼, after which the trend is inverted. This behavior 
is in sharp contrast to that in wide ribbons in which the bulk gap 
closes at Ez=v2ℏ𝑘 /𝛼 (Fig.1, dashed line).  

Second, with increasing Ez the gap between the lowest 
electron and the highest edge-like subbands grows (Fig. 8, 
circles). As indicated in Fig.5 and Fig.6, all four kj contain an 
imaginary part for Ez<0.7v2ℏ𝑘 /𝛼. This value is lower than the 
value Ez<v2ℏ𝑘 /𝛼 corresponding to the bands’ inversion in the 
bulk. The increasing gap between the edge-like subbands is 
reflected in the decrease of the corresponding nanoribbon 
ballistic conductance shown in Fig.9 (circles). Although the 
edge-like subbands give the leading contribution in the 
conductance G (Fig.9, diamonds) computed as 

𝐺 ∑ 1  ,            (7  

where T is the temperature and EF is the Fermi energy, the role 
of the other subbands shown in Fig.9 by squares is non-
negligible. The first two electron (hole) bulk-like subbands give 
similar contributions to the ballistic conductance totaling to 
30%. However, all contributions to the total conductance G  
 

 

Fig. 9. Ballistic conductance (diamonds) of a 1T’-MoS2 nanoribbon, with the 
contributions from the edge-like states (circles), and the remaining bulk-like 
subbands (squares). Dashed line from subbands shown in Fig.8 by squares; dot-
dashed line from Fig.8, diamonds. Temperature T=300K, 𝐸 =0 

rapidly decrease as a function of Ez (Fig.9). This makes 1T’-
MoS2 potentially suitable for switching applications. 
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