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Abstract We have developed a novel Monte Carlo (MC) algorithm to study carrier
transport in semiconductors in the presence of electron-electron scattering (EES).
It is well known that the Boltzmann scattering operator for EES is nonlinear in the
single-particle distribution function. Numerical solution methods of the resulting
nonlinear Boltzmann equation are usually based on more or less severe approxima-
tions. In terms of the pair distribution function, however, the scattering operator is
linear. We formulate a kinetic equation for the pair distribution function and related
MC algorithms for its numerical solution. Assuming a spatially homogeneous sys-
tem we derived a two-particle MC algorithm for the stationary problem and an en-
semble MC algorithm for the transient problem. Both algorithms were implemented
and tested for bulk silicon. As a transient problem we analyzed the mixing of a hot
and a cold carrier ensemble. The energy of the hot ensemble relaxes faster with EES
switched on. The cold ensemble is temporarily heated by the energy transferred
from the hot ensemble. Switching on the electric field rapidly is known to result in
an velocity overshoot [1]. We observe that EES enhances the overshoot. The sta-
tionary algorithm was used to calculate the energy distribution functions at different
field strengths.

1 Introduction

It is commonly accepted that EES alters the high-energy tail of the energy distri-
bution function in a semiconductor device [2]]. Since physical models of hot carrier
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degradation rely on accurate distribution functions as an input it is important to
model EES carefully [5]. In this work we present results of a novel treatment of
EES that avoids several of the commonly made approximations.

2 Theory

We study the position-independent case (V,f = 0). Setting F = ¢E /A, the Boltz-
mann equation takes the form

(i +F.Vk1> fki,t) = Opn[f1(k1,1) + Qe [f] (K1, 1) 0

Here, f is the single-particle distribution function, and Q,, denotes the electron-
phonon scattering operator. EES is described by the following, nonlinear integral
operator.

Ocelf](k1,1) = / dK, dK) i S(k1, ka: K| Kb)
X [f(k/lvt)f(k/%t)_f(klat)f(k%t)] 2

Integration is over all initial states (k) and final states (k) of the partner electron
and all final states (k) of the sample electron. We restrict our discussion to the non-
degenerate case where in the scattering operator Pauli blocking factors of the
form [1 — f(k,¢)] are not included.

The two-particle transition rate Se. is derived for a screened Coulomb potential
using Fermi’s Golden rule [6}/8]].

6411 S(k] +k2 _kll _kIZ)
h(2meoe, ) (|ky — k| |* + B2)>
x 8[e (k) +e(kh) — (ki) — e (ko))

See(kth; /l?k/2) =

The two O-functions state conservation of momentum and conservation of en-
ergy, respectively. In accordance with the principle of detailed balance for energy-
conserving transitions, the transition rate is symmetric:

See(klakZ;k/l »klz) = See( /1>k/2§k17k2)
The total scattering rate is obtained by integration over all final states:
Felli o) = [ k] disSee(kr Kosk K5)

One out of the two integrals can be readily evaluated by means of the momentum-
conserving §-function. Assuming a parabolic and isotropic dispersion relation €(k)
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which is characterized by the effective mass m*, the remaining integral can be eval-
uated analytically.

ne*m* |ko — K|

Azt (e0&s) B2 |k — Ki|” + B2

Le(ki, ko) =

Here, n denotes the electron concentration and f3; the Debye-Hueckel screening pa-
rameter. In the presence of EES the Boltzmann equation (T)) is nonlinear. Its numer-
ical solution typically requires some iterative method [2[] [7].

In this work we chose a different approach. When changing from a single-particle
description to a two-particle description the transport equation becomes linear. This
step is formally accomplished by replacing the product of two distribution functions
by the two-particle distribution function g.

f(ki,t)f(ka,t) — g(ky, ko, 1)

From one can derive a Boltzmann-like kinetic equation for the two-particle
distribution function g, which is posed in the six-dimensional momentum space
(ki, ko).

d
(8t +F'Vk1 +ka2> g(k13k27t) =
Opnlg](ki,Ka,1) + Qeeg] (k1,ka,t)  (3)

In the two-particle picture, the nonlinear operator (2) turns into a linear integral
operator.

Qee[g](k17k27t):2/dk/1 dk/zsee(klkaak/17k/2) I:g(k/17k/27t) _g(klkaat)] (4)

Details about the derivation of (3) and (@) will be presented in a forthcoming publi-
cation.

The linear kinetic equation can be transformed into an integral equation of
the following form.

g(x) :/g(x/) K(x',x)dx' + go(x), x = (ki, ko, 1) (5)

In this derivation, the very same steps as in the case of the Boltzmann equation
are applied [4]. Using the formalism described in [4] we derive a stationary and a
transient Monte Carlo algorithm for the solution of the integral equation (3).

In the stationary algorithm, the trajectories of a pair of particles are calculated
over a long period of time. Electron-phonon scattering events of the two particles
are independent from each other and treated as in the case of the Boltzmann equa-
tion. An EES event, however, changes the states of the two particles simultaneously,
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whereby total momentum and energy are exactly conserved. Averages can be com-
puted using the before-scattering method [3|].

In the transient algorithm, an ensemble of trajectory pairs is simulated, starting
from a given two-particle initial distribution. Averages are computed as ensemble
averages at given points in time.

3 Results and Discussion

In the following simulations an electron concentration of 10! cm™ and a lattice
temperature of 300 K are assumed. First we apply the stationary MC algorithm to
calculate the momentum distribution functions at different field strengths. In accor-
dance with thermodynamics, in equilibrium a Maxwellian distribution is obtained.
EES has no effect on the equilibrium distribution, see Figuresﬂ]and@} At77 K, EES
causes a broadening of the non-equilibrium distribution (Fig. [I), whereas as 300 K
such a broadening is not observed (Fig. [2). The reason is that at 300 K phonon
scattering is much stronger and the relative importance of EES is small.
Fig.[3|shows how an ensemble of hot electrons gets cooled down when interacting
with the phonons of the crystal lattice and additionally with an electron ensemble at
lattice temperature. The mean energy of the hot electrons relaxes faster when EES
is present. The mean energy of the cold electrons is temporarily increased by the
energy transfer from the hot carriers. Averages are calculated by sampling the two
ensembles at equidistant time steps. The number of particle pairs simulated is 2- 10%.
Another application of the transient MC algorithm is the study of the response
of the carriers to an abrupt change in the electric field. At 1 ps a field step of 50
kV/cm is applied. During a short period after the field step the carriers experience
the high electric field and are accelerated accordingly, whereas the mean energy
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and thus momentum relaxation due the electron-phonon scattering is still low. In
this situation of a phenomenon known as the velocity overshoot occurs. Our results
indicate that the velocity overshoot even gets enhanced by EES as shown in Fig. ]
We believe that the enhancement in the overshoot can be explained as follows. Two
particles entering the high field region experience an EES event where momentum
is transferred from one particle to the other. If the momentum transfer is largely
oriented along the field direction, one electron gains velocity and the other one is
slowed down. The low energetic electron, however, experiences a small electron-
phonon scattering rate and has a higher probability to stay in the high field without
scattering, so that it will also have a large momentum gain from the field. Therefore,
both electrons involved in the EES event eventually reach a higher velocity than
they would without the EES event. Fig. [ also shows that EES gives a faster rise of
the mean energy towards the stationary value. Again, in the simulation we sampled
an ensemble of 2 - 10* particle pairs at equidistant time steps.
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Fig. 4 Velocity overshoot
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4 Conclusions

We have developed a two-particle Monte Carlo algorithm for the solution of a two-
particle kinetic equation that includes electron-electron scattering.

We demonstrate the impact of electron-electron scattering on the transient relaxation
of an ensemble of hot carriers, on the velocity overshoot in the presence of a field
step, and on the shape the momentum distribution function.
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