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Abstract. The Wigner equation describing stationary quantum trans-
port has a singularity at the point k = 0. Deterministic solution meth-
ods usually deal with the singularity by just avoiding that point in the
mesh (e.g., Frensley’s method). Results from such methods are known to
depend strongly on the discretization and meshing parameters.

We propose a revised approach which explicitly includes the point
k = 0 in the mesh. For this we give two equations for k = 0. The first
condition is an algebraic constraint which ensures that the solution of
the Wigner equation has no singularity for k = 0. If this condition is ful-
filled we then can derive a transport equation for k = 0 as a secondary
equation.

The resulting system with two equations for k = 0 is overdetermined
and we call it the constrained Wigner equation. We give a theoretical
analysis of the overdeterminacy by relating the two equations for k = 0 to
boundary conditions for the sigma equation, which is the inverse Fourier
transform of the Wigner equation.

We show results from a prototype implementation of the constrained
equation which gives good agreement with results from the quan-
tum transmitting boundary method. No numerical parameter fitting is
needed.

Keywords: Wigner function · Sigma function · Finite difference
method · Constrained equation · Quantum transport · Device
simulation · Resonant tunneling diode

1 Wigner Function Formalism

An attractive approach to quantum transport simulation is based on the Wigner
function formulation of quantum mechanics [8] because it is formally close to a
classical phase space description and allows one to use a mixed quantum-classical
description of the system. This work deals with the stationary Wigner equation
in a single spatial dimension.
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1.1 Wigner Function

The Wigner function f(r, k) is derived from the von Neumann density function
ρ(x, y) as the result of two consecutive transformations.

1. Introduce new coordinates for the quantum density

r =
x + y

2
, s = x − y.

Using these coordinates the density matrix transforms into an intermediate
form, which we call the sigma function

σ(r, s) = ρ(r +
s

2
, r − s

2
). (1)

2. The Wigner function f(r, k) is derived from the sigma function σ(r, s) via a
Fourier transform in coordinate s

f(r, k) =
1
2π

∫
σ(r, s) e−i k s ds. (2)

With these conventions a Schrödinger plane wave ψ = eik0x has a corresponding
sigma function eik0s and a Wigner function δ(k − k0).

1.2 Wigner Equation

Stationary quantum transport is described by the Liouville-von Neumann equa-
tion for the density matrix ρ(x, y)

− �
2

2m

(
∂2

∂x2
− ∂2

∂y2

)
ρ +

(
V (x) − V (y)

)
ρ = 0 (3)

where V (x) is the potential energy. Using coordinates (r, s) the stationary von
Neumann equation transforms into the stationary sigma equation

�
2

m

∂2σ

∂rs
= U(r, s)σ(r, s) (4)

where the potential term U(r, s) is defined by

U(r, s) = V
(
r +

s

2

)
− V

(
r − s

2

)
. (5)

In a single spatial dimension equation (4) is the characteristic hyperbolic form
of the stationary von Neumann equation (3).

Applying the Fourier transform (2) to the sigma equation (4) gives the sta-
tionary Wigner equation

�k

m

∂f(r, k)
∂r

=
∫

f(r, k − k′)Vw(r, k′)dk′. (6)
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Here the Wigner potential Vw(r, k) is defined as the Fourier transform of U(r, s)
divided by i�

Vw(r, k) =
1
i�

1
2π

∫
U(r, s) e−i k s ds. (7)

For non-zero bias the Wigner potential has a 1/k-singularity at k = 0.
For open systems classical inflow boundary conditions (BCs) are imposed on

the stationary Wigner equation (two-point boundary value problem)

f(rmin, k) = fL(k) (for k > 0) f(rmax, k) = fR(k) (for k < 0). (8)

Here fL and fR are prescribed distributions depending on temperature and the
doping concentration in the electrodes.

2 Critique of Frensley’s Method

In a single space the Wigner equation (6) can be rewritten for k �= 0 as

∂f(r, k)
∂r

=
1
k

m

�

∫
f(r, k − k′)Vw(r, k′)dk′. (9)

The form (9) emphasizes that the equation becomes singular at k = 0.
In [3] William Frensley proposed a discrete method for the Wigner equa-

tion (9). A special feature of the method is that it uses an equi-spaced grid
shifted by �k/2 excluding the point k = 0. Frensley’s original discretization
solves the Wigner equation (9) using upwinding on a coarse r-grid.

However, the method has been criticized for the results depending strongly
on the type of discretization used and its parameters. The upwinding introduces
a lot of artificial diffusion and the method breaks down when the grid is refined.

Figure 1 displays numerical results from the simulation of Tsuchiya’s reso-
nant tunneling diode [7]. All results were calculated using shooting methods and
massive parallelization. The coherence length is kept fixed in this example (fixed
k-grid). With refinement of �r the artificial diffusion is reduced and simulation
results using upwinding slowly converge to the numerically exact solution (semi-
discrete solution). The upper solid red line was calculated without upwinding
using Nr = 800 points. It does not change noticeably if the r-grid is refined.

3 Constrained Wigner Equation

Unfortunately, the numerically exact solution appears to be unphysical, showing
no negative differential resistance and too high current. Furthermore, on close
inspection, numerical solutions f(r, k) show a sharp discontinuity and strong
negative values around k = 0.

Theoretical analysis motivated by these observations lead to the insight that
the breakdown is due to the inadequate treatment of the equation near the
singular point k = 0.

If we want to avoid a singularity we actually get two equations for k = 0 and
thus an overdetermined system:
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Fig. 1. The dashed lines are I–V curves from Frensley’s discretization using upwinding
with Nr = 800 (orange), Nr = 1600 (blue), all the way up to Nr = 102400 (cyan). With
refinement the dashed lines slowly converge towards the upper solid red line which is
the solution without upwinding. (Color figure online)

1. Putting k = 0 in (6) gives the following regularity constraint
∫

f(r, k′)Vw(r, k′)dk′ = 0. (10)

In this degenerate case the left hand side in Eq. (6) vanishes and we do not
get a differential equation. This special case is called an algebraic constraint
in [1,5]. It is needed to avoid poles on the right hand side of (9). The regularity
constraint has also a physical interpretation: The total inscattering rate at
k = 0 must vanish in the steady state.

2. If constraint (10) is fulfilled then (using L’Hospital’s rule for a quotient and
Leibniz’s rule for differentiation under the integral sign) we can take the limit
k → 0 in (9). This gives the “transport” equation at k = 0

∂f(r, 0)
∂r

=
m

�

∫
fk(r,−k′)Vw(r, k′)dk′ = −m

�

∫
fk(r, k′)Vw(r, k′)dk′. (11)

Here fk(r, k) = ∂f(r,k)
∂k denotes the first order k-derivative of f(r, k).

We call the overdetermined system with two equations for k = 0 the constrained
Wigner equation.

It has to be pointed out, that the zero bias case is special. In this case the
Wigner potential is not singular at k = 0 and the ansatz f̃(r, k) = h(r,k)

k gives a
well-defined equation for h. The solution f̃ has a pole at k = 0 and the regularity
constraint (10) is not necessarily fulfilled. In addition, for zero bias the solution
may contain contributions g(r)δ(k).



A Revised Wigner Function Approach for Stationary Quantum Transport 407

4 Constrained Sigma Equation

The significance of a parallel investigation of the sigma equation and the Wigner
equation is explained by noting that the two equations for k = 0 are related to
two types of boundary conditions for the sigma function. A constrained sigma
equation corresponding to the constrained Wigner equation is derived in this
section.

4.1 Goursat Problem

The sigma function has the symmetry property σ(r,−s) = σ(r, s). Its real part
is even, the imaginary part b is an odd function in s. This allows one to define
a purely real sigma function σ̃

σ̃(r, s) = a(r, s) + b(r, s) (12)

which is useful to avoid complex numbers in the numerical implementation and
for visualization. The function σ̃ is a real solution to the sigma equation (4).

Integrating both sides of (4) over a rectangular domain gives

σ(r, s) = σ0(r, s) +
∫ r

0

∫ s

0

m

�2
U(r′, s′)σ(r′, s′) dr′ ds′ (13)

where σ0(r, s) is a solution to the homogeneous sigma equation. A homogeneous
solution σ0 is of the form

σ0(r, s) = φ(r) + ψ(s) − φ(0), φ(0) = ψ(0). (14)

The solution σ of (13) fulfills σ(0, s) = ψ(s) and σ(r, 0) = φ(r), which are bound-
ary conditions of Goursat type. In general, these consist in boundary conditions
on an angle formed by two characteristics. Equation (13) is a two-dimensional
integral equation of Volterra type. Existence and uniqueness of the solution to
the Goursat problem can be proved [2,6].

Note that inflow boundary conditions as defined in Eq. (8) for the Wigner
equation can also be imposed in the sigma equation by calculating the Fourier
transform of the sigma function on the boundary s-lines at rmin, rmax.

In contrast to the Wigner equation, the sigma equation has an additional
freedom in the choice of boundary conditions, because boundary conditions φ(r)
on a characteristic r-line have no immediate analogue in the Wigner equation.

4.2 BCs for the Constrained Sigma Equation

The two equations for k = 0 in the constrained Wigner equation can be related
to boundary conditions for the sigma equation.
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Regularity Constraint: Periodic BCs. The regularity constraint is the
Wigner equation for k = 0. In s-space the regularity constraint (10) becomes

∫ a

−a

U(r, s)σ(r, s)ds = 0 (15)

assuming a symmetric finite s-interval (−a, a). Integrating both sides of the
sigma equation (4) over the interval (−a, a) we derive

σr(a) − σr(−a) =
m

�2

∫ a

−a

U(r, s)σ(r, s)ds = 0 (16)

and hence constraint (15) is related to periodic BCs for σr on a symmetric, finite
domain.

Transport Equation at k = 0: Anti-periodic BCs. To study the trans-
port equation at k = 0 in the sigma representation we take the inverse Fourier
transform of Eq. (11) which gives

∫
∂σ(r, s)

∂r
ds = − m

�2

∫
sU(r, s)σ(r, s)ds. (17)

Multiplying the stationary sigma equation (4) with −s and integrating over s
gives

−
∫

s
∂

∂r

∂

∂s
σ(r, s)ds = − m

�2

∫
sU(r, s)σ(r, s)ds. (18)

Subtracting the two Eqs. (17) and (18) we get a condition on σr which is inde-
pendent of U ∫

∂

∂s
[s

∂

∂r
σ(r, s)]ds = 0. (19)

On a finite symmetric domain this gives anti-periodic boundary conditions for
σr, i.e., σr(r,−a) = −σr(r, a). The sigma equation with anti-periodic BCs for σ
in s-space is related to Frensley’s method which uses a shifted k-grid.

Overdetermined Boundary Value Problem. Summarizing we have both
periodic and anti-periodic boundary conditions for σr. It follows that σr = 0 and
σ is constant on the s-boundaries. The only reasonable choice for the integration
constant is to set

σ(r, smax) = σ(r, smin) = 0 (20)

on a s-domain symmetric around s = 0.
The constrained sigma equation consists of double homogeneous boundary

conditions (20) plus inflow boundary conditions imposed on the Fourier trans-
form of σ. This system is also overdetermined and corresponds to the constrained
Wigner equation.
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5 Proof of Concept

Results from a prototype implementation are included down below. This should
serve as a proof of concept and back up our claims about the root cause of numer-
ical problems and inconsistencies, which are observed in stationary simulations
based on Frensley’s method.

The version easiest to implement has been chosen for prototyping. It uses
double homogeneous boundary conditions in the sigma equation. We use an
orthogrid and a stencil

σ(0, 0) + σ(1, 1) − σ(0, 1) − σ(1, 0) =
1
4

1∑
i=0

1∑
j=0

Ũ(i, j)σ(i, j) (21)

for the unit square.
Using Lagrange multipliers, inflow boundary conditions are fulfilled exactly

and conservation of mass is also exact. The remaining equations of the overde-
termined system are only fulfilled approximately. A sparse direct solver is used
for the least squares solution of the system.

For a test we simulated a GaAs-AlGaAs double barrier resonant tunneling
diode (barrier width 2.8 nm, well width 4.5 nm) as specified in [7]. The coherence
length used in the simulation is 36 nm. The simulation is done for two grid sizes.
The dotted line is the result for (Nr = 500, Ns = 400). The grid is then refined
once in each dimension. The dashed line is the result for (Nr = 1000, Ns =
800). As seen in Fig. 2 the solution from the constrained sigma equation changes

Fig. 2. The solid line is the solution from the QTBM, which is compared with the
two solutions from the constrained sigma equation for Nr = 500 (dotted) and Nr =
1000 (dashed). The resonance from the QTBM is reproduced. No parameter fitting is
employed. The method is stable under mesh refinement.
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with the refinement but it is quite stable. This should be compared with grid
refinement for Frensley’s method in Fig. 1. As we cannot use a shooting method
for the constrained equation, the use of very fine meshes like in Fig. 1 (up to
Nr = 102400) is not computationally feasible.

In the same figure the two constrained solutions are compared with the result
from the quantum transmitting boundary method (QTBM) [4]. The fit with the
QTBM (solid line) is reasonably good for the resonance peak. At higher bias we
get a discrepancy, which needs further research.

For non-zero bias, the Wigner transforms of the scattering modes assumed
in the QTBM are solutions to the constrained Wigner equation. However, the
Wigner function model assumes classical boundary conditions and a finite coher-
ence length, hence a perfect fit with QTBM is not to be expected.

In contrast to the results from Frensley’s method (see Fig. 1), the results from
the constrained Wigner equation are physically reasonable and consistent when
the grid is refined. We believe that initial results for the constrained equation
as demonstrated in Fig. 2 are encouraging and that the revised method deserves
further in-depth study.
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