l‘)

Check for
updates

Parallel Correction for Hierarchical
Re-Distancing Using the Fast Marching
Method

Michael Quell'!®™) | Georgios Diamantopoulos!, Andreas Hossinger?,
Siegfried Selberherr®, and Josef Weinbub!

! Christian Doppler Laboratory for High Performance TCAD,
Institute for Microelectronics, TU Wien, Vienna, Austria
{quell,diamantopoulos,weinbub}@iue.tuwien.ac.at
2 Silvaco Europe Ltd., Saint Ives, UK
andreas.hoessinger@silvaco.com
3 Institute for Microelectronics, TU Wien, Vienna, Austria
selberherr@iue.tuwien.ac.at

Abstract. Topography simulation is typically implemented with the
level-set method which uses the level-set function to represent the inter-
face. The signed-distance property, capturing the distances from the
entire simulation domain towards the interface, has to be regularly
restored during a simulation in order to update the distances rela-
tive to the evolution of the interface. The restoring process is called
‘re-distancing’ and the most established algorithm is the Fast March-
ing Method. For Cartesian grids, which are commonly used, high-
performance applications require an adaptive resolution for geometric
features, such as narrow trenches or sharp corners. Among the most
important challenges is the need to utilize the solution in higher resolved
regions to correct the solution in the embedding coarser regions. We
present a parallelized bottom-up (i.e. from finest to coarsest resolution
levels) correction technique for hierarchical re-distancing using the Fast
Marching Method, which increases the accuracy of the discretized level-
set function on the coarser grids. The coarser grids are corrected by inter-
polation on grid points covered by finer regions and a partial restart of the
Fast Marching Method for the remaining grid points, thus minimizing the
computational effort. This parallel correction step has been integrated
into a recently developed parallel re-distancing algorithm, is implemented
in C4++ using OpenMP, and is evaluated for different geometries. The
correction step significantly reduces the error in the signed-distance func-
tion, introducing a performance penalty of less than 10%.

1 Introduction

The level-set method [1] is used in topography simulations to track deforming
volumes 2 C R¢. This can be achieved by implicitly representing the boundary of

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021

I. Dimov and S. Fidanova (Eds.): HPC 2019, SCI 902, pp. 438-451, 2021.
https://doi.org/10.1007/978-3-030-55347-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55347-0_37&domain=pdf
https://doi.org/10.1007/978-3-030-55347-0_37

Parallel Correction for Hierarchical Re-Distancing 439

the volume as the zero level-set of a level-set function ¢(x,t). The time evolution
of (2 is given by
9¢

5~ V1) Ve=0, (1)

with V' being the deforming velocity of 2. A recent review on the level-set
method and its applications, such as computational fluid dynamics, minimal
surfaces, and epitaxial growth, is given in [2].

The signed-distance property (|V¢(x)| = 1) of the level-set function has to be
regularly restored, since solving the level-set Eq. (1) does not generally preserve
it [3]. This restoration procedure, called re-distancing, modifies a given level-
set function ¢ so that the signed-distance property is fulfilled without changing
the position of the zero level-set [4,5]. This is equivalent to solving the Eikonal
equation

[Vo(x)|
6(x)

fx) xeR"

9(x) x € 012, @)

for f(x) =1 and g(x) = 0.

The Fast Marching Method (FMM) [1] is a widely used method to solve (2).
The FMM is a one-pass algorithm using upwind differences. However, the use
of a priority queue in the algorithm prohibits straightforward, efficient paral-
lelization. This gave rise to other algorithms, most importantly the Fast Sweep-
ing Method (FSM) [6] and the Fast Iterative Method (FIM) [7]. Both methods
have been shown to be not competitive regarding accuracy due to their itera-
tive nature [8]. Additionally, applications of the level-set method often employ
narrow-band re-distancing’ to reduce computational costs, which is not possible
for the FSM [9]. Recently, a new approach using the Hopf-Lax formula, which
is also iterative, has been developed showing a good parallel speed-up. However,
comparisons to the FMM have yet to be made [9].

In another approach, a parallel version of the FMM via a distributed-memory
domain decomposition approach has been developed, offering excellent accuracy
[10]. Based on this approach a shared-memory parallelized FMM for multiple
meshes within a hierarchical grid was developed [11], which was later extended
to handle multiple meshes within a hierarchical grid [12,13].

Hierarchical grids enable covering geometrically challenging regions (e.g., cor-
ners, narrow trenches) with higher resolution (or finer) meshes on a separate,
higher resolution grid level [14]. This method, therefore, supports higher accu-
racy in particular regions of interest without the need to globally increase the
mesh resolution, thereby balancing the number of mesh elements with the accu-
racy. This is also known as adaptive mesh refinement.

As another consequence and the main context of this work, the accuracy of
the solution in coarser grid levels can be increased by incorporating the more
accurate solutions from the relevant finer levels, thereby correcting the local solu-
tion. In this work, such a correction algorithm tailored to the level-set method,

! The distance is only computed up to a given threshold value around the zero level-
set [1].

440 M. Quell et al.

is introduced and directly integrated into a FMM based re-distancing step with
manageable computational overhead.

This work is structured as follows. Section 2 provides necessary background
on the FMM. Section 3 introduces details of the employed hierarchy of grids
and the scheme for re-distancing this hierarchy. Section4 provides the details
of the correction step. Sectiond evaluates the presented correction step with
respect to improved accuracy using two-dimensional test cases. Additionally,
computational benchmarks are presented to assess the parallel performance using
a three-dimensional test case inspired by simulating a typical fabrication process
step of a microelectronic structure.

2 Fast Marching Method

The FMM is based on the idea behind Dijkstra’s algorithm [15] for finding the
shortest path in a graph. The FMM hast two stages: initialization and marching.
The initialization sets for all grid points the flag Far and their distance to infinity.
Next, the flag KnownFix is assigned to the set of given grid points (i.e., points for
which the distances are known in advance) and their pre-defined distances are
assigned accordingly. Their neighboring grid points with flag Far are assigned
the flag Band and the distance is calculated based on the upwind finite difference
discretization

2
max (D;j;qs,) 0) n

2

max (Dyt6,~Df6,0) +| =1 (3)
2

max (DZ.;;@ -D}zo, 0)

with D2, and D;;k as the first order backward and forward difference opera-
tors [1].

For the marching stage, the grid point with the smallest distance to the inter-
face and marked Band is set to Known. Subsequently, all its neighbors’ distances
are recalculated. If the newly calculated distance for a neighbor is smaller than
the current distance, the new distance is assigned and the neighbor is marked
Band. This is repeated until all grid points are flagged Known or KnownFix. In
case of narrow-band re-distancing, the marching procedure is stopped, if the grid
point with the smallest distance to the interface and marked Band is beyond the
narrow-band threshold value.

3 Hierarchical Re-Distancing

Critical geometrical features of the interface, such as narrow trenches and sharp
corners, require high spatial resolution to be appropriately represented [2]. As
previously indicated, a hierarchical grid enables capturing of regions of interest
by introducing additional hierarchy levels, offering locally defined meshes with

Parallel Correction for Hierarchical Re-Distancing 441

increased resolution and thus avoiding a globally increased mesh resolution. In
the following an overview of hierarchical grids and hierarchical re-distancing is
given.

The here considered hierarchical grid consists of several levels. Level 1 is the
coarsest grid. A subsequential Level N is refined by a factor ny_1 compared to
Level N — 1. Different resolutions for each spatial dimensions are possible. Every
level holds a set of meshes, to represent the regions of interest which require a
higher mesh resolution. Data is stored in a cell-centered manner.

We consider the following hierarchical grid properties: On Level 1 there is
always only one mesh covering the whole domain. The meshes on the finer levels
must conform to the following: (1) Meshes must not overlap, (2) a mesh must
have exactly one parent mesh in the next coarser grid, (3) the meshes are aligned
to the parent grid points, and (4) all the grid points in the parent mesh have
neighboring grid points on the same refinement level. Figurel shows a two-
dimensional example.

(4)

(3)@
N

Fig. 1. Two-dimensional hierarchical grid with depth 3 and refinement factor 4 for
all spatial directions and levels. Invalid configurations are highlighted in red with the
number corresponding to the violated rules (1)—(4).

Hierarchical Re-Distancing
The re-distancing begins on Level 1, as this is the only mesh for which all the
boundary conditions, i.e. the domain boundaries, are set. The FMM is initialized
with the grid points set by the domain boundaries and the grid points which
have a neighboring grid point with the opposite sign, since they are next to the
interface and must not be modified. After the FMM finished processing a level,
the boundaries of the meshes on the next finer level are set by interpolation and
re-distancing is performed on it. This procedure is repeated for every level until
the finest level is calculated.

The processing of a grid level has been parallelized by a coarse grained app-
roach treating the individual meshes in parallel and enforcing an explicit data

442 M. Quell et al.

exchange on shared mesh boundaries via ghost layers [13]. This is implemented
using OpenMP? task directives, where each mesh is processed by a separate task.

4 Correction Step

The developed correction step is based on the previously described hierarchi-
cal re-distancing step (i.e., the flags and distances are set according to the re-
distancing algorithm [13]). The bottom-up correction begins on the finest level.
For notational coherence as the correction spans over two levels, meshes on the
finer level will be called child meshes and the meshes on the next coarser level
are called parent meshes. Algorithm 1 shows the pseudocode of the correction
step algorithm.

Algorithm 1: Correction Step

// From finest to coarsest level
1 ChildLevel < FinestLevel
ParentLevel < FinestLevel.parentLevel()

(M)

3 while ChildLevel != CoarsestLevel do
// Initialization step
4 for every Parent mesh in parallel do
5 for every Child mesh in parallel do
6 L ChildList < interpolateParentGridPoints()
7 mergeChildLists()
8 initializeFMMCorrection(ChildList)
9 Barrier
// Marching step (identical to the original FMM)
10 for every Parent mesh in parallel do
11 L parallelFastMarchingMethod ()
12 Barrier
// Move one level up
13 ChildLevel < ParentLevel
14 ParentLevel «— ParentLevel.parentLevel()
15

Parent grid points covered by child grid points are corrected by evaluating
the level-set function ¢ at the position of the parent grid point on the child level.
¢ is evaluated by linear interpolation.

Figure2 provides a schematic representation of the different interpolation
cases: There, the extracted position of the interface on the parent and child level
is shown by the green lines, thick for the parent mesh and thin for the child
mesh. Red dots are used for grid points located on one side of the interface and

2 https://www.openmp.org/.

https://www.openmp.org/

Parallel Correction for Hierarchical Re-Distancing 443

blue dots for the other side of the interface. All parent grid points are labeled
with a letter from A to I. Not all child grid points are marked by a dot, because
some are not computed by the FMM on the child level, due to narrow-band
re-distancing.

Fig. 2. Schematic representation of different cases for the interpolation of the parent
level grid points.

The parent grid points G, H, J, K, and L have a neighbor with an opposite
sign. They are marked KnownFix by the FMM and, therefore, must not be mod-
ified. The parent grid points A, E, and I are not covered by a fine mesh and
thus cannot be interpolated. The parent grid point B is also not interpolated,
because the narrow-band re-distancing on the child level did not compute all the
necessary points for the interpolation. Finally, parent grid points C, D, and F
are interpolated. For each of those grid points the linear interpolation is based
on the four closest child grid points (marked by a red background).

The interpolated grid points are stored in separate lists for each child mesh.
Subsequently, the lists are used for initializing the FMM. The mesh based paral-
lelization approach presented in Sect. 3 is employed. An OpenMP task is created
for all child meshes, since a parent grid point is refined by at most one child
mesh (cf. Algorithm 1, Line 6).

The previously created lists for every child mesh with a common parent mesh
are merged together. The lists are then used to initialize the FMM on the parent
grid level. The actual initialization step, however, is modified compared to the
original FMM. The grid points keep their distance and their flag from the previ-
ous re-distancing step. If a parent grid point is marked KnownFix, the correction
is not applied, in order to avoid modifying the zero level-set (cf. Algorithm 1,
Line 8). This is performed in parallel for all parent meshes with OpenMP tasks.

Then, the unmodified marching of the FMM is performed, correcting the
solution in regions not covered by child meshes (cf. Algorithm 1, Line 10). The

444 M. Quell et al.

parallelization of the marching step is the same as for the regular re-distancing
discussed in Sect.3. After the FMM has finished processing, it continues by
moving up in the hierarchy until Level 1 has been corrected.

The proposed initialization of the FMM avoids the re-computation of all
grid points. The original FMM initializations (cf. Sect.2) would trigger a re-
computation of all grid points and therefore double the runtime on each level.

The disadvantage of the proposed initialization is, that during the marching
step (cf. Algorithm 1, Line 11) grid points, for which the distance to the interface
was under-estimated are not corrected. This is inherent to the FMM, as grid
points are only processed if the newly computed distance is smaller than the
previously assigned one. This is a reasonable choice as the FMM tends to over-
estimate the distance [16].

5 Computational Results and Analyses

5.1 Test Cases

The correction step is first evaluated on two-dimensional examples: Corner,
Sharp Corner, and Narrow Trench (Fig.3a, Fig.3b, and Fig. 4, respectively).
The error norms for the different levels are compared in Table 1, Table 2, and
Table 3. Additionally, a Three-Dimensional Trench example inspired by a fabri-
cation simulation in the field of microelectronics is given (cf. Fig.5). The error
norms, as the simulations compare to the exact solution, are shown in Table 4.
Due to the computationally significant load induced by the three spatial dimen-
sions, the parallel speed up is investigated.

The domain for all test cases is [—1,1]¢, with d € {2,3} and symmetric
boundary conditions. The two-dimensional test cases are discretized by 40 grid
points in each direction on the coarsest level. The three-dimensional test case is
discretized using 50 grid points in each direction. In all test cases, two levels of
refinement with a constant factor 4 in all spatial directions are used. In total,
there are three levels. The initialization and the exact solution are geometrically
computed from the triangle (d = 3) and line (d = 2) representations of the inves-

tigated geometries based on the Computational Geometry Algorithms Library
(CGAL)®.

Benchmarking Platform

The benchmarking results have been obtained by using a single node of the
Vienna Scientific Cluster 3 (VSC3)%. The node is equipped with two 8-core Intel
Xeon E5-2650v2 processors, running at 2.6 GHz and 64 GB of DDR3 mem-
ory. The benchmark implementation is written in C++11 and compiled in a
GNU/Linux environment using GCC-7.3 with optimization flag -03.

3 https://www.cgal.org/.
4 http://vsc.ac.at/.

https://www.cgal.org/
http://vsc.ac.at/

Parallel Correction for Hierarchical Re-Distancing 445

5.1.1 Corner Examples

=\

Bl

(a) Corner example (b) Sharp Corner example

Fig. 3. Isolines on Level 1 (coarsest grid): Black lines denote the solutions based on
re-distancing without the correction step, red lines with the correction step, and white
lines for the exact solution. The green and blue background colors give the distance to
the interface. The yellow boxes show the outline of the meshes, there is only one mesh
on each level.

The corner test cases have the refined levels around the corner near the center of
the domain, as shown by the yellow boxes. The symmetric boundary condition
causes additional corners at the domain boundary. For these corners no refine-
ment is employed, so that a correction is not possible (cf. Fig. 3a, lower right and
Fig. 3b, lower left). Figure 3 shows the isolines extracted from Level 1. Notably,
the corner is not represented by a single point as the corner is purposely not
grid aligned, as is the usual case in practical level-set simulations. The FMM
over-estimates the distance for rarefaction waves (reflex angle side) and under-
estimates the distance at shock waves. This can be seen on the obtuse angle side
in Fig. 3a and on the, acute angel side in Fig. 3b.

The proposed correction step reduces the error (cf. Table1 and Table2) in
regions covered by a finer mesh and for the rarefaction wave. In the Corner
example the errors in L1-norm and L2-norm are reduced by a factor of 2.1 on
Level 1 and by a factor of 1.9 on Level 2. For the Sharp Corner example the
reduction is even higher, 2.7 on Level 1 and 2.1 on Level 2, as sharper corners
benefit more from the correction. On Level 3 the correction is not possible, as it
is the finest level.

446 M. Quell et al.

Table 1. Error norms for the Corner example, with and without the correction step
applied, and the corresponding factor by which the error norm is reduced.

Level Ll-norm |Ll-reduc | L2-norm | L2-reduc | inf-norm |inf-reduc
1 5.437e—3 3.260e—4 4.785e—2

1 corrected | 2.491e—3 | 2.2 1.550e—4 | 2.1 3.079e—2 1.6

2 1.122e¢—-3 5.101le—b 1.393e—2

2 corrected | 6.035e—4 | 1.9 2.792e—5|1.8 8.541e—3 | 1.6

3 5.126e—4 1.819e—5 3.757e—3

Table 2. Error norms for the Sharp Corner example, with and without the correction
step applied, and the corresponding factor by which the error norm is reduced.

Level Ll-norm |Ll-reduc | L2-norm |L2-reduc |inf-norm |inf-reduc
1 9.110e—3 4.823e—4 6.212e—2

1 corrected | 3.388e—3 | 2.7 1.812e—4|2.7 2.707e—2 2.3

2 1.894e—3 7.264e—5 1.753e—2

2 corrected | 8.957e—4 | 2.1 3.484e—5 2.1 9.546e—3 | 1.8

3 8.866e—4 2.569e—5 4.661e—3

5.1.2 Narrow Trench

This test case consists of a narrow trench on a flat surface. The trench has a
width of 0.01 (i.e., 0.5% of the domain dimension) whereas the grid spacing on
Level 1 is only 0.05, thus too coarse to resolve the trench, as no grid points
with opposite signs exist along the trench. The re-distancing algorithm without
the correction step does not result in a trench, yielding only a small dent in the
surface (cf. Fig. 4a). The resolution on the finer levels allows to resolve the trench
(cf. Fig. 4b), thus the correction step enables its representation also on Level 1.
The errors in Ll-norm and L2-norm are reduced by a factor of 15.3 and 14.4,
respectively for Level 1 but only by a factor of 1.6 for Level 2 (cf. Table 3). The
substantial difference in the improvement between Level 1 and Level 2 is due to
the fact that the trench is already representable on Level 2. This can be seen by
comparing the black isolines in Fig. 4 for Level 1 and Level 2.

5.1.3 Three-Dimensional Trench

The three-dimensional example combines corners and a trench. There is a step
and a trench with a width smaller than the grid resolution of Level 1 (cf. Fig. 5).
The trench has a slight dent, so that it is not aligned with the grid. Geometrical
configurations like this often appear in microelectronic devices [17], in particular,
high aspect ratios are common [18].

Parallel Correction for Hierarchical Re-Distancing 447

(a) Level 1 (b) Level 2

Fig. 4. Isolines for Level 1 and Level 2 for the Narrow Trench example. Black lines
show the results based on re-distancing without the correction step, red lines with the
correction step, and white lines for the exact solution. The green and blue background
colors give the distance to the interface. The yellow boxes show the mesh configuration
on Level 1 and Level 2 in (a) and Level 2 and Level 3 in (b).

Table 3. Error norms for the Narrow Trench example, with and without the correction
step applied, and the corresponding factor by which the error norm is reduced.

Level Ll-norm | Ll-reduc | L2-norm | L2-reduc | inf-norm |inf-reduc
1 9.101e—2 4.539¢—3 4.839e—1

1 corrected | 5.941e—3 | 15.3 3.148e—4 | 14.4 4.005e—2|12.1

2 6.732e—4 5.222e—b 1.262e—2

2 corrected | 4.129¢e—4 | 1.6 3.339e—5 1.6 8.398e—3 | 1.5

3 6.709e—5 4.236e—6 3.400e—3

The given mesh placement is visualized in Fig. 6 for the different levels. There
are 107 meshes on Level 2 containing 674 496 grid points in total and on Level 3
there are 591 meshes with a total of 6 146 688 grid points.

In this test case the errors in the L1-norm and L2-norm for the corrected
levels are smaller by a factor of at least 4.2 on Level 1 and 1.5 on Level 2.
The reasons are similar to the ones presented in the Narrow Trench example.
The inf-norm for the error on Level 2 has not decreased, since the grid point
causing it is not covered by a refined mesh and is also located on a shock wave.
The FMM cannot correct such errors, though a skeleton® aware modification

5 A skeleton is the union of all points with more than one interface point closest to
them [19].

448 M. Quell et al.

(a) Full view (b) Closeup of the dent

Fig. 5. Rendering of the Three-Dimensional Trench example (view from the bottom).
The dent is only visible from a particular angle.

Table 4. Error norms for the Three-Dimensional Trench example, with and without
the correction step applied, and the corresponding factor by which the error norm is
reduced.

Level Ll-norm |Ll-reduc | L2-norm | L2-reduc | inf-norm |inf-reduc
1 1.853e—2 1.356e—4 4.593e—1

1 corrected | 4.422e—3 | 4.2 2.644e—5 5.1 3.478e—2]13.2

2 2.426e—4 1.259e—6 1.418e—2

2 corrected | 1.588e—4 | 1.5 8.429e—7| 1.5 1.418e—2 1.0

3 3.165e—5 7.340e—8 3.017e—-3

(a) Level 1 (b) Level 2 (c) Level 3

Fig. 6. Interface representation on the different mesh levels (view from the bottom).
On Level 1 (red) the trench is too thin to be resolved by the spatial discretization.
Level 2 (blue) and Level 3 (green) show the placement of the different meshes (small
gaps in between).

of the FMM could potentially improve those grid points, by considering only

grid points, which are not separated by the skeleton, for the calculation of the
distance.

Parallel Correction for Hierarchical Re-Distancing 449

In Fig.7a the runtime for re-distancing and the correction steps, together
with the total runtime are shown. The correction step extends the re-distancing
runtime by 4% for one thread and up to 10% for 16 threads. The increased
runtime contribution for higher thread counts is caused by the limited parallel
speed-up (cf. Fig. 7b) of the correction step.

A speed-up for the re-distancing step with correction of 9.3 has been achieved
for 16 threads (cf. Fig.7b), which corresponds to a parallel efficiency of 58%.
The parallel speed-up for the correction step alone is inferior, because the non-
parallelized Level 1 contributes more than half of the runtime for higher thread
counts (cf. Fig. 8a). For a fair comparison (cf. Fig. 8b) the speed-up of the correc-
tion step is compared to the re-distancing on a per-level-basis for all levels. The
speed-up strongly depends on the level, because the number and computational
load of the meshes varies considerably among the levels.

10! 16
re-distancing 14 re-distancing
A correction [| A=A correction
total 12} total
10 £
= < 10¢
o 8
£ = 8
] A o)
g s T 6
107"} S £
Y SN al =
2t "
107 2 4 6 8 10 12 14 16 o 2 4 6 8 10 12 14 16
of threads # of threads
(a) Runtime (b) Parallel speed-up

Fig. 7. Runtime and speed-up (all levels combined) for re-distancing and the correction
step for up to 16 threads.

On Level 2 the correction step shows a speed-up of 7.5, which is nearly the
same as for the re-distancing step (speed-up of 7.8). The speed-up is reduced
because there is less computational load and, therefore, synchronization tasks
take up proportionally more time. The second reason is that the initialization
does not show any speed-up for more than 8 threads, due to non-uniform memory
access (NUMA) effects.

On Level 1 there is practically no speed-up, because the mesh based paral-
lelism cannot be applied for a single mesh. The shortest runtime for the initializa-
tion on Level 1 is achieved with 8 threads. With more threads the initialization
step is limited by NUMA effects.

450 M. Quell et al.

10° 16
Correction B Level | 14 = Correction B Level]
@ Initialization | | HEEM Level 2 [|==== Re-distancing | | I Level 2
B Marching B level 1 &2 12+ ’ Initialization Bl ecvel 3
10! = B Marching
= < 10f N
o 8 e
E X 2
E =
x Y S £ 6f
o S
1077 TS * &
®e 4l
00000000 1
26
. SO -
10 0 2 4 6 8 10 12 14 16 00 2 4 6 8 10 12 14 16
of threads # of threads
(a) Runtime (b) Parallel speed-up

Fig. 8. Runtime and speed-up per level up to 16 threads. The speed-up on the same
level is similar between the re-distancing and correction steps. The initialization and
marching times are given for the correction step. The marching time dominates.

6 Conclusion

A bottom-up correction step for hierarchical re-distancing using the fast march-
ing method has been presented. The correction step allows to represent trenches
with a width smaller than the grid resolution on coarse grids and higher accu-
racy on rarefaction waves. Several test examples in two and three dimensions
have shown a significant reduction of the error. The performance penalty of the
correction step ranges from 4 to 10% of the original runtime. The total parallel
speed-up of re-distancing with the correction step is 9.3 for 16 threads. Finally,
we show that the level-by-level speed-up is similar to re-distancing without cor-
rection.

Acknowledgments. The financial support by the Austrian Federal Ministry for Dig-
ital and Economic Affairs and the National Foundation for Research, Technology and
Development is gratefully acknowledged. The computational results presented have
been achieved using the Vienna Scientific Cluster (VSC).

References

1. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proc. Natl. Acad. Sci. 93, 1591-1595 (1996)

2. Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent
applications. J. Comput. Phys. 353, 82-109 (2018)

3. Cheng, L.-T., Tsai, Y.-H.: Redistancing by flow of time dependent Eikonal equa-
tion. J. Comput. Phys. 227, 4002-4017 (2008)

4. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces.
J. Comput. Phys. 118, 269277 (1995)

5. Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput.
Phys. 163, 51-67 (2000)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Parallel Correction for Hierarchical Re-Distancing 451

Detrixhe, M., Gibou, F., Min, C.: A parallel fast sweeping method for the Eikonal
equation. J. Comput. Phys. 237, 46-55 (2013)

Jeong, W.-K., Whitaker, R.T.: A fast iterative method for Eikonal equations. STAM
J. Sci. Comput. 30, 2512-2534 (2008)

Weinbub, J., Hossinger, A.: Comparison of the parallel fast marching method, the
fast iterative method, and the parallel semi-ordered fast iterative method. Procedia
Comput. Sci. 80, 2271-2275 (2016)

Royston, M., Pradhana, A., Lee, B., Chow, Y.T., Yin, W., Teran, J., Osher, S.:
Parallel redistancing using the Hopf-Lax formula. J. Comput. Phys. 365, 7-17
(2018)

Yang, J., Stern, F.: A highly scalable massively parallel fast marching method for
the Eikonal equation. J. Comput. Phys. 332, 333-362 (2017)

Weinbub, J., Hossinger, A.: Shared-memory parallelization of the fast marching
method using an overlapping domain-decomposition approach. In: Proceedings of
the 24th High Performance Computing Symposium, pp. 1-8 (2016)
Diamantopoulos, G., Weinbub, J., Selberherr, S., Hossinger, A.: Evaluation of the
shared-memory parallel fast marching method for re-distancing problems. In: Pro-
ceedings of the 17th International Conference on Computational Science and Its
Applications, pp. 1-8 (2017)

Diamantopoulos, G., Hossinger, A., Selberherr, S., Weinbub, J.: A shared mem-
ory parallel multi-mesh fast marching method for re-distancing. In: Advances in
Computational Mathematics, pp. 1-17 (2019). https://doi.org/10.1007/s10444-
019-09683-2z

Joppich, W., Mijalkovié¢, S.: Multigrid Methods for Process Simulation. Computa-
tional Microelectronics. Springer, Vienna (1993)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269271 (1959)

Popovici, A.M., Sethian, J.A.: 3-D imaging using higher order fast marching trav-
eltimes. Geophysics 67, 604-609 (2002)

Radjenovié, B., Lee, J.K., Radmilovié¢-Radjenovié, M.: Sparse field level set method
for non-convex hamiltonians in 3D plasma etching profile simulations. Comput.
Phys. Commun. 174, 127-132 (2006)

Liu, P., Zhang, D., Guo, J., Wang, W., Yang, F.: Optimization of photoresist
development and DRIE processes to fabricate high aspect ratio Si structure in 5
nm scale. J. Micromech. Microeng. 29, 035006 (2019)

Cornea, N., Silver, D., Min, P.: Curve-skeleton applications. In: Proceedings of
IEEE Visualization, pp. 95-102 (2005)

https://doi.org/10.1007/s10444-019-09683-z
https://doi.org/10.1007/s10444-019-09683-z

	Parallel Correction for Hierarchical Re-Distancing Using the Fast Marching Method
	1 Introduction
	2 Fast Marching Method
	3 Hierarchical Re-Distancing
	4 Correction Step
	5 Computational Results and Analyses
	5.1 Test Cases

	6 Conclusion
	References

