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Abstract. The level-set method is widely used to track the motion of
interfaces driven by a velocity field. In many applications, the underly-
ing physical model defines the velocity field only at the interface itself.
For these applications, an extension of the velocity field to the simulation
domain is required. This extension has to be performed in each time step
of a simulation to account for the time-dependent velocity values at the
interface. Therefore, the velocity extension is critical to the overall com-
putational performance. We introduce an accelerated and parallelized
approach to overcome the computational bottlenecks of the prevailing
and serial-in-nature fast marching method, in which the level-set function
is used to predetermine the computational order for the velocity exten-
sion. This allows to employ alternative data structures, which results in
a straightforward parallelizable approach with reduced complexity for
insertion and removal as well as improved cache efficiency. Compared
to the prevailing fast marching method, our approach delivers a serial
speedup of at least 1.6 and a shared-memory parallel efficiency of 66%
for 8 threads and 37% for 16 threads.

Keywords: Velocity extension · Level-set method · Parallel
computing · Fast marching method

1 Introduction

The level-set method [9] is widely used to track moving interfaces in different
fields of science, such as in computer graphics [8], fluid dynamics [7], and micro-
electronics [14]. The level-set method represents an interface Γ implicitly as the
zero-level-set of a higher-dimensional function, i.e., the level-set function φ(x, t).
The motion of the interface is given by the level-set equation

∂φ

∂t
= Fext|∇φ|, (1)
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where Fext(x, t) is the extended velocity field from the underlying model. The
extended velocity field Fext is not unique [1], as the only formal mathematical
requirement is

lim
x→x0

Fext(x) = F (x0), (2)

with F (x, t) being the given continuous velocity on the interface and x0 any
point on the interface, i.e., φ(x0) = 0. The extension should not introduce new
artificial zero values. An extended velocity field Fext fulfilling

∇Fext · ∇φ = 0 and Fext

∣
∣
φ−1(0)

= F (3)

meets the requirement (2), does not introduce artificial zero values, and preserves
the signed-distance property of the level-set function during the advection step,
which is desirable as it leads to maximal numerical stability of the method [2].
The velocity has to be extended every time a new interface velocity is calculated
(i.e., for a finite difference discretization in every time step).

A widely used approach to solve (3) is the fast marching method (FMM) [1].
Other methods such as the fast iterative method [6] and the fast sweeping method
[11] are not considered here, because of their iterative nature, the computational
costs to obtain an accuracy level comparable to FMM are too high. The FMM
was originally developed to efficiently solve the Eikonal equation

‖∇φ‖ = 1 and φ
∣
∣
Γ

= g(x). (4)

Within the level-set method, (4) and g(x) = 0 is solved to give the initial level-
set function the signed-distance property [13]. Due to the utilization of a global
heap (a single priority queue for the full domain) to track the order of the
computations, the solution of (3) using the FMM has complexity O(n log n),
where n is the number of grid points (discrete points on the computational
grid) and is inherently serial. Another approach achieves complexity O(n) by
quantization of the keys of the heap at the cost of a different error bound [17].

There have been successful attempts to parallelize the FMM through domain
decomposition for distributed-memory systems [16] and for shared-memory sys-
tems [15]. Therein FMM is executed on each sub-domain with its own heap,
thus enabling parallelism. An explicit synchronized data exchange via a ghost
layer is used to resolve inter-domain dependencies. The decomposition approach
requires knowledge about the interface position to balance the load equally [4],
on the other hand the proposed algorithm employs dynamic load balancing inde-
pendent of the interface position, therefore, a fair comparison is not possible. In
[10], a serial approach based on fast scanning is presented, but no information
is given on how the computations are ordered, which is, however, essential for
cache efficiency.

In Sect. 2, we provide the original FMM algorithm (Algorithm1) for refer-
ence and details of our approach for an accelerated velocity extension algorithm,
avoiding the aforementioned difficulties when utilizing the FMM. In Sect. 3, a
new serial algorithm (Algorithm 2) and a parallel algorithm (Algorithm 3) are
presented. In Sect. 4, the serial and parallel run-times of our approach are pre-
sented for an application example from the field of microelectronics.
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2 Theory

The FMM and the two proposed algorithms assign each grid point an exclusive
state: Known means the grid point has the final velocity assigned and no further
updates are required, Unknown means the grid point does not yet have a velocity
assigned, and Band means that the grid point has a velocity assigned, but it is
not final. The FMM, orders the grid points in the Band by the distance to the
interface, to determine which is processed next. The ordering is achieved using
a minimum heap data structure, i.e., the top element (grid point) is always
the closest to the interface. This ensures that a grid point’s value is final (i.e., it
conforms to (3)), when it is removed from the Band. A standard implementation
for the FMM is given by Algorithm 1 [12].

The compute() sub-routine is used to update the value of a grid point, e.g.,
solving the Eikonal equation, or to compute the velocity, which is described in
detail in [1]. The interface and its adjacent grid points (for which the velocity is
known) divide the domain in two zones (inside and outside) and the algorithm
has to be applied for each zone separately as both zones are independent of each
other, (see Fig. 1).

Fig. 1. The interface Γ (zero-level-set) is given in blue. For the red grid points next
to the interface, the velocity values are calculated. From those points the velocity is
extended to the remaining domain (black grid points). (Color figure online)

The run-time contributions of the computational sub-tasks of the velocity
extension are show in Fig. 2, if the FMM is used to extend the velocity. Most of

Fig. 2. Computational sub-tasks and their run-time contribution for the construction
of the extended velocity field Fext, utilizing the FMM. (Color figure online)
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Algorithm 1: FMM
1 Known ← ∅
2 Band ← initialized grid points
3 Unknown ← all other grid points
4 while Band not empty do
5 q = first element of Band
6 add q to Known
7 forall p neighbors of q do
8 if p ∈ Unknown then
9 compute(p)

10 add p to Band

Algorithm 2: ExtendVelocity
1 Known ← ∅
2 Band ← initialized grid points
3 Unknown ← all other grid points
4 while Band not empty do

5 q = first element of Band
6 add q to Known

7 forall p neighbors of q do
8 if p ∈ Unknown and upwind

neighbors /∈ Unknown then

9 compute(p)

10 add p to Band

the time is spent extending the velocity (last sub-task marked in blue), whilst
the other steps require considerably less time.

For the heap data structure, the insertion or removal of a grid point triggers a
sorting which results in O(log n) operations. The overall complexity to populate
the heap with n grid points is therefore O(n log n). Formulating the problem in
the context of graph theory, O(n) is achieved.

Assume an ordered graph G(N,E), the nodes N are given by all the grid
points and the edges E are given by the direct upwind neighbors of a grid point
(i.e., neighboring grid points with a smaller distance to the interface). The order
in which the nodes can be computed is a topological sort problem, which is
solved in linear O(|N | + |E|) time [5]. This is also linear in n = |N |, which is
the number of grid points in the domain, as the number of edges |E| is limited
by 6|N | in case of a 7-point three-dimensional stencil to compute the gradient.

The topological sort problem is solved by a depth-first or breadth-first traver-
sal over the graph [3]. These traversals can be realized by adapting the ordering
of the grid points which have the status Band in Algorithm 1. Using a queue or
a stack as data structure corresponds to a breadth-first and depth-first traversal,
respectively. Adding an element to the Band can be done for both data struc-
tures in O(1); this is an advantage compared to the heap. The parallelization of
these algorithms is straight forward, by processing all nodes which do not have
an unresolved dependence in parallel.

3 Parallel Velocity Extension

Based on the findings in the previous section, we investigate – as a first step –
an adapted serial algorithm (Algorithm 2) which uses different data structures
to implement the Band. This requires a check in the neighbors loop, whether the
upwind neighbors are not in the Unknown state (Line 8), only then the velocity
is computed. In Algorithm 1, this check is not necessary, as the heap guarantees
no unknown dependencies of the top element.
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Algorithm 3 is the parallel version of Algorithm2. The parallelization is real-
ized by treating every grid point next to the interface as an independent starting
grid point for the traversal through the graph. The grid points in the Band (cf.
Algorithm 3 Line 6), are exclusive (i.e., OpenMP private) to each thread, but
the status of a grid point is shared with all threads. In principal, explicit syn-
chronization would be necessary in the neighbors loop which calls the compute()
sub-routine – not for correctness of the algorithm, but to ensure that no grid
point will be treated by two different threads (avoiding redundant computa-
tions). However, our approach (Algorithm 3) deliberately recomputes the values
by different threads as the computational overhead is negligible compared to
explicit synchronization costs. Conflicting access of two threads to the data of a
grid point is resolved by enforcing atomic read and write operations (cf. Sect. 4).

In order to keep the number of redundant computations small, the threads
start on grid points evenly distributed over the full set of interface grid points. If
the Band of a thread is empty, the thread is dynamically assigned a new starting
grid point from the initialized grid points. In case two threads operate at the
same location, the check for the state Unknown (Line 11) reduces the redundant
computations. To further reduce the redundant computations, it is checked again
if a different thread has already processed the grid point before adding the grid
point to its exclusive Band (Line 13). In case of a serial execution the second
check is redundant to the first one (Line 11). As we present in Sect. 4, the ratio of
redundant computations to necessary computations is below 1%, which plainly
favors redundancy over the explicit synchronization which would limit parallel
scalability.

Algorithm 3: ExtendVelocityParallel
1 Known ← ∅
2 InitPoints ← initialized grid points
3 Unknown ← all other grid points
4 forall b in InitPoints in parallel do
5 Band ← ∅
6 Band add b
7 while Band not empty do
8 q = first element of Band
9 add q to Known

10 forall p neighbors of q do
11 if p ∈ Unknown and upwind neighbors /∈ Unknown then
12 compute(p)
13 if p ∈ Unknown then
14 add p to Band



Parallelized Construction of Extension Velocities for the Level-Set Method 353

4 Computational Results

We evaluate the performance by benchmarking our velocity extension approach
embedded in a simulation of a microelectronic fabrication process, specifically an
etching simulation of a pillar-like structure (cf. Fig. 3a)1. This geometry provides
a challenging and representative testbed as it includes flat, convex, and concave
interface areas, which lead to shocks and rarefaction fans in the extended veloc-
ity field. The domain is discretized using a dense equidistant grid and the gradi-
ents are computed using first order finite differences. Symmetric boundaries are
enforced by a ghost layer outside the domain.

Table 1. Properties of the discretization for different resolutions for the example geom-
etry (cf. Fig. 3a).

Resolution # grid points # initialized grid points

Low resolution case 40 × 40 × 700 1 235 200 26 168

High resolution case 160 × 160 × 2800 73 523 200 411 896

(a) Isometric view (b) Interface (c) t = 0 (d) t = 0.5 (e) t = 1.0

Fig. 3. (a) Initial interface in isometric view. (b)–(e) Cross-section of the simulation
domain through a plane with normal (1, 1, 0): (b) interface overlaid at different simu-
lation times, (c)-(e) extended velocity (low velocity in red and high in blue) for times
t = 0, t = 0.5, t = 1.0. (Color figure online)

1 However, the presented algorithm and implementation details are not tailored or
restricted to the field of microelectronics and can be applied to other fields as well.
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A low resolution case and a high resolution case have been investigated.
Table 1 summarizes the properties of the resulting discretization. In Fig. 3 a slice
of the extended velocity is shown for three different times of the simulation.

The benchmark results are obtained on a single compute node of the Vienna
Scientific Cluster2 equipped with two Intel Xeon E5-26504 8 core processors and
64 GB of main memory. The algorithms are implemented in a GNU/Linux envi-
ronment in C++11 (GCC-7.3 with optimization flag -O3). OpenMP is used for
parallelization. The read and write operations from and to the state (Unknown,
Band, and Known) of a grid point and the velocity of a grid point are imple-
mented using the atomic directives of OpenMP. C++’s standard template library
(STL) containers are used for the stack and the queue. The heap is based on
the STL priority queue using the distance of the grid points to the interface as
key. All following results report the run-time averaged over 10 executions for all
sub-tasks depicted in Fig. 2. Both of the proposed algorithms calculate the exact
same results as the reference FMM, also independent to the number of threads.

4.1 Serial Results

Table 2 compares the serial run-times of all three algorithms for both spatial
resolutions (Run-time). The ratio of how often an upwind neighbor is in the state
Unknown to the total number of updates (Un. up.) is used as metric for optimal
traversal. An optimal traversal would have a rate of 0, though this metric neglects
effects of different access times (and cache misses). This causes uncorrelated run-
times to the ratio of Unknown upwind neighbors, because the heap and queue
have similar ratios but drastically different run-times for Algorithm 2. The run-
times of Algorithm 1 (i.e., FMM, using a heap) are at least 1.3 times slower
compared to Algorithm 2, or Algorithm 3, when using a stack or a queue. The
shortest run-times are obtained using Algorithm 2 combined with a queue data
structure leading to a speedup of 1.6 and 2.0 for the low and the high resolution
case, respectively. The stack has the highest rate of skipped velocity updates
due to an Unknown upwind dependence (Un. up.), because the distance to the
interface is not used to select the subsequently processed grid point.

Switching the algorithms Algorithms 2 and 3 for the stack solely reverts the
initial order of the grid points in the Band. The heap profits from switching to
Algorithm 3, as this reduces the size of the heap, which decreases the insert and
removal time. The queue has an increased run-time with Algorithm 3, because
the access pattern yields 4 times higher rates of Unknown upwind neighbors. In
conclusion, for Algorithm 3 the data structure for the Band is less important,
because the size of the Band (cf. Algorithm 3, Line 6) is small (starts with a
single grid point) compared to the size of the Band in Algorithm 2 (starts with
about half the number of the initialized grid points (cf. Table 1))3.

2 http://vsc.ac.at/.
3 The other half of the initialized grid points resides in the second zone of the domain,

which is processed independently.

http://vsc.ac.at/
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4.2 Parallel Results

Figure 4a shows the run-time of Algorithm 3 and the achieved parallel speedup
for up to 16 threads. The usage of hyper-threads has been investigated, but no
further speedup was measured. Therefore, the analysis focuses on the available
16 physical cores on the compute node. Each thread is pinned to its own core,
e.g Thread 0 on Core 0, Thread 1 on Core 1, and so forth.

Table 2. Serial run-time and the ratio how often Unknown upwind neighbors (Un. up.)
were encountered compared to the total updates. Bold numbers indicate the fastest
run-time for each resolution.

Data structure Algorithm 1 Algorithm 2 Algorithm 3

Run-time Un. up Run-time Un. up Run-time Un. up.

(a) Low resolution case

Heap 0.265 0.0 0.258 0.034 0.190 0.262

Stack 0.196 0.418 0.200 0.416

Queue 0.162 0.077 0.177 0.259

(b) High resolution case

Heap 19.99 0.0 19.14 0.076 13.27 0.241

Stack 13.27 0.414 12.83 0.412

Queue 10.27 0.052 11.67 0.221

The serial results have already shown that for Algorithm 3 the data structure
of the Band is less important (cf. Algorithm 3 in Table 2). The queue is also the
fastest for the parallel case, because the ordering by first-in first-out avoids the
sorting of the heap and reduces encountering of Unknown upwind neighbors
compared to the stack. The shortest run-times are obtained for 8 and 16 threads
for the low resolution case and high resolution case, respectively. The algorithm
with the heap produces the best parallel speedup (not lowest run-time), because
an increasing number of threads further reduces the size of the data structure of
the Band. Small Band sizes are important for the heap, because the insertion of
grid points scales with the number of grid points in the Band (stack and queue
do not have this drawback).

The parallel efficiency for the low resolution case using 8 threads is 58%
for the heap and the queue and 61% for the stack. For 8 threads, the high
resolution case has a parallel efficiency of 56% for the stack, 66% for the queue,
and 67% for the heap. For more than one thread, the parallel Algorithm 3 has
a shorter run-time than the serial Algorithm 2. Above 8 threads, the utilization
of cores on both processors induces non-uniform memory access leading to an
increased run-time for the low resolution case (parallel efficiency of 25%) and
only marginal speedup for the high resolution case (parallel efficiency of 37%)
for all data structures. The memory is allocated by Thread 0 which resides on
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Fig. 4. Parallel run-time results for Algorithm 3.

the socket of the first processor, therefore only the first 8 threads can directly
access the memory. Also threads running on different sockets do not share the
L3-cache, which forces communication via the main memory.

In Fig. 4b, the ratio of redundant computations and not performed computa-
tions due to an Unknown upwind neighbors are shown (cf. Sect. 3). The increase
of the redundant computations ratio saturates with the number of threads. For
16 threads, less than 1% of the compute() calls are wasted (i.e., redundant) in
the low resolution case and less than 0.1% in the high resolution case. The ratio
of the redundant computations in the high resolution case is lower, because the
threads process more grid points in relation to the grid points, at which threads
can interfere. A similar situation is found for the ratio between the volume and
the surface of a sphere. As already hinted in Sect. 3, enforcing explicit synchro-
nization in the neighbors loop would lead to a significant decrease of parallel
efficiency, because the explicit synchronization required to ensure that every
grid point is only computed once has a higher computational cost compared to
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the redundant computations introduced otherwise. The number of redundant
computations is only related to the synchronization paradigm (independent to
the shared-memory approach). The ratio how often the compute() sub-routine
is skipped, because upwind neighbors were in the Unknown state (cf. Sect. 3),
slightly decreases with the number of threads, as the possibility increases that
another thread has computed an Unknown upwind neighbor just in time.

In comparison with the original FMM (cf. Algorithm 1), Algorithm 3 using
the queue achieved a minimal run-time of 0.038 s which is due to a serial speedup
of 1.5 and a parallel speedup of 5.6 for 8 threads in the low resolution case. In
the high resolution case the minimal run-time of 1.975 s is also achieved with the
queue data structure when utilizing all 16 threads (Serial speed up of 1.7 and
parallel speedup of 10.1).

5 Conclusion

A new parallel approach to accelerate the velocity extension in the level-set
method has been presented and compared to the prevailing FMM. The asymp-
totic complexity is O(n) by utilizing the level-set function to determine the order
of computations. Furthermore, this approach opens an attractive path for par-
allelization. The serial speedup compared to the FMM is at least 1.6; a speedup
of 2 is observed for a high resolution test case. The proposed parallel algorithm
is tailored towards a shared-memory platform. The parallel efficiency is 58% for
8 threads; 66% are achieved for a high resolution test case. Overall, we provide a
straight forward parallelizable algorithm (sparing any explicit synchronization)
for velocity extension in the level-set method constituting an attractive drop-in
replacement for the prevailing FMM.

Acknowledgments. The financial support by the Austrian Federal Ministry for Dig-
ital and Economic Affairs and the National Foundation for Research, Technology and
Development is gratefully acknowledged. The computational results presented have
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