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Abstract In etching and deposition simulations of a semiconductor fabrication
process the calculation of the surface rates of particles is an essential but also
the computationally most demanding step. A promising approach is to preprocess
the simulation domain by simplifying the surface. We thus propose a new surface
mesh simplification method that takes advantage of geometric domain-specific
surface properties that are prevalent in topography simulations. We compare our
method to a suitable reference algorithm and show that our method maintains
higher geometric accuracy and accordingly maintains the original geometry in great
detail. Furthermore, the evaluation of the simplified meshes show an enhanced
performance of the particle surface rate calculation.

1 Introduction

Process technology computer-aided design (TCAD) tools are used to simulate
fabrication processes of semiconductor devices. One important branch of process
TCAD is the evolution of the topography during etching and deposition processes.
In each time step the three essential computational tasks are: (a) the calculation
of the particle flux on the surface, which is used to (b) calculate the surface
velocity according to a surface model and (c) the calculation of the new position
of the surface using the surface velocities [1]. In Process TCAD the surface can be
represented implicitly using the level-set method where the domain is discretized on
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aregular grid. This approach is attractive due to the robust handling of topographical
changes in a level set framework [2]. The particle flux on the semiconductor surface
denotes the number of particles interacting on the surface. One possible numerical
method for calculating the surface flux is Monte Carlo ray tracing [3]. At practically
relevant surface resolutions the flux calculation dominates the overall execution
time of an etching or deposition simulation [1]. It is thus useful to investigate
approaches that speed up the flux calculation. One promising approach is to use
temporary explicit surface meshes as there exists a large body of knowledge about
ray tracing on explicit surfaces. The marching cubes algorithm [4] is commonly
used to extract an explicit surface from the level set. However, the resulting surface
meshes typically contain very narrow and long triangles (needles) or small triangles
in flat regions that contain no geometric variation. Therefore eliminating those
surface elements reduces the total surface element count which speeds up the ray
tracing tasks, further underlining the attractiveness of an explicit surface mesh
approach.

There exist several algorithms that reduce the resolution of surface meshes with
respect to a given metric; several metrics have been proposed in literature [5-8].
However, some of these algorithms try to simplify the geometry homogeneously
[5, 6] or use computationally expensive metrics [7, 8]. The latter is particularly
relevant when considering the entire etching or deposition workflow where the mesh
simplification has to be conducted at every single time step. Mesh simplification, or
more general domain simplification, is a commonly used approach in process TCAD
simulations [9, 10]. In particular, in [11] the authors evaluate the flux on a mesh by
sampling only a sparse set of surface elements to accelerate the simulation.

In this paper we introduce a flexible and computationally lightweight simplifi-
cation method based on the local surface curvature. We evaluate the impact of our
mesh simplification method on typical process TCAD topography simulations by
using the high performance ray tracing library Embree [12] by conducting a ray
tracing performance analysis. Specifically we compare the flux calculation time for
surfaces obtained with the presented method, with the flux calculation time obtained
for surfaces generated by the reference Lindstrom-Turk algorithm [5], by comparing
the execution time of the simplification process and the performance of the flux
calculation using Monte Carlo ray tracing.

2 Surface Mesh Simplification

The simplification method presented in this work is based on the Lindstrom-Turk
algorithm [5]. This algorithm uses an Edge Collapse procedure to simplify the
surface mesh. It offers a relatively low computational complexity and takes the
quality of triangles into account: The latter is particularly important for process
TCAD simulations, as the mesh quality directly influences subsequent procedures.
Our method uses the mean curvature of each vertex to partition the mesh into
regions. This allows us to adjust the amount of simplification according to the local
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geometric properties in each region. This simplification method has been designed
to simplify regions of the mesh offering negligible geometric variation (e.g. flat
areas) to a higher degree, thus allowing to maintain a higher resolution in regions of
the mesh with high geometric variation. Furthermore, our method is not limited to
the Lindstrom-Turk simplification algorithm, hence other simplification algorithms
[6] can be used in combination with our method.

2.1 Feature Detection

The first step in our simplification method is the detection of geometric features in
the mesh: We use the absolute mean curvature of each vertex and calculate it via a
discrete approximation of the Laplace-Beltrami operator [13] in the vertex x;
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where H (x;) denotes the mean curvature in the vertex x; and N (i) is the set of
all vertices adjacent to x;. The angles o;;, B;; are the angles of the triangles that
share the edge between x; and x;, which are opposite to this edge and Aayg is
the average area of the triangles surrounding the vertex x;. The mean curvature
is used to categorize each vertex to be either a flat or a feature vertex. In particular,
an empirical threshold is used to identify vertices with small curvature (numerical
artifacts), which are considered to be flat.

2.2 Mesh Partitioning and Movement of Regions

The Mesh is partitioned into the feature regions and the transition regions according
to the metrics above. The feature region encompasses the triangles of the mesh
with significant geometric variation. The transition region contains the triangles
that do not hold information about the geometric variation. This partition of the
mesh allows to simplify the transition region to a greater extent, which reduces the
overall number of mesh elements without loosing information about the geometric
variation. Furthermore, this approach allows to keep a high resolution in regions of
the mesh with high geometric variation by simultaneously limiting the overall mesh
size in terms of number of triangles. However, simplifying the flat region to a higher
degree than the feature region leads to low quality triangles (e.g. needles).

To prevent the formation of low quality elements the transition region is
simplified with linearly increasing parameters, thus creating a reasonable mesh
grading. Figure 1 schematically depicts two steps of the discussed process. At first
the whole mesh, including the feature region, is simplified until the smallest edge
has an edge length of [y. If the feature region should not be simplified /y is set
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Fig. 1 Example of the simplification process: (1) shows the mesh after it has been divided into
regions. (2) shows the simplification of the feature region. (3) shows the extension of the feature
region. (4) shows again the simplification of the transition region with an increased edge length

to 0. After this initial simplification step the transition region is simplified until
the smallest edge has an edge length of /1 = Iy + sl, where s/ denotes the step
length. Next, the feature region is expanded into the transition region. Afterwards
the now smaller transition region is simplified until the smallest edge has an edge
length of [;41 = I; + sl withi € {0, 1,...,n € N}. These last two steps continue
until the feature region cannot move any further into the transition region, and
thus terminates the simplification process. To avoid unwanted side effects of the
potentially large edge lengths produced by our iterative scheme, another parameter
Imax 1s used to terminate the refinement once the edge length /; in the transition
region has reached /n,x.

The parameter for the simplification of the feature region /y, when using the level
set method, can be connected to the level-set and is chosen in concordance with
the minimal grid size A;. When using meshes not originating from a level-set, this
parameter can be chosen by averaging the edge length of all feature vertices. We
have empirically determined that the step length s/ should be approximately the
edge length of the feature region after the simplification with the parameter /o stops.
A bigger step size increases the amount of edges that are removed. However, the
bigger the difference between the edge length of the feature region and the step
length, the worse the triangle quality of the mesh.

3 Results

The simplification method has been evaluated in the context of process TCAD
in three ways: geometric distance to the original geometry, execution time of
the simplification method, and the execution time of a subsequent surface flux
calculation by ray tracing. In this study two example geometries have been analyzed
and each example geometry has been simplified applying eight different degrees of
simplification, resulting in a reduction of vertices from 20-90%. Figure 2 shows the
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Fig. 2 Process TCAD surface meshes simplified with our method. (a) Surface 1 with 78% of the
vertices of the original mesh removed by our simplification method. (b) Surface 2 with 52% of the
vertices of the original mesh removed by our simplification method

two surface meshes after they have been simplified with our method. The original
surface meshes of Surface 1 and Surface 2 have 70,831 and 175,550 vertices,
respectively. The performance benchmarks presented in the following are based on a
serial C++ implementation of our method executed on a 64bit GNU/Linux platform
equipped with an Intel Devil’s Canyon CPU.

3.1 Distance to Original Geometry

Surface mesh simplification introduces geometric distortions into the simplified
mesh. To measure the error introduced by the simplification process we use
the Hausdorff distance [14] between the original and the simplified mesh. The
Hausdorff distance is measured from each vertex of the original mesh to the
simplified mesh. Figure 3 shows the results for one test case of our analysis. The
distance to the original mesh is smaller when using our simplification method.
On average our simplification method has 20-40% lower Hausdorff distance to
the original geometry than using the Lindstrom-Turk algorithm. The reason for
the significantly improved Hausdorff distance is our method which allows to use
more vertices in areas of high geometric variation, allowing to represent the overall
geometry better.
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Fig. 3 Hausdorff distance from each vertex of the original mesh to a mesh simplified with our
method and a mesh simplified using the Lindstrom-Turk algorithm. (a) Surface 1 with 78% of the
vertices of the original mesh removed by our simplification method. (b) Surface 2 with 52% of the
vertices of the original mesh removed by our simplification method

3.2 Time Spent on Simplification

The simplification method presented in this work introduces an overhead to the
simplification process. This overhead consists primarily of the feature detection, at
the start of the simplification process, and the movement of the feature regions. As
can be seen in Fig. 4 our simplification method takes on average 17% longer than
the Lindstrom-Turk algorithm.

3.3 Flux Calculation and Monte Carlo Ray Tracing

A common approach to compute the surface flux in a Process TCAD application is
to use a Monte Carlo simulation [15]. This is a randomized procedure and the results
of the Monte Carlo method are of stochastic nature. To compute the trajectories
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Fig. 4 Average simplification time of our method and the Lindstrom-Turk algorithm. The amount
of simplification denotes the number of vertices which have been removed from the original mesh.
(a) Surface 1. (b) Surface 2
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Fig. 5 Execution time of Monte Carlo ray tracing using 108 rays. The amount of simplification
denotes the number of vertices which have been removed from the original mesh. (a) Surface 1.
(b) Surface 2

on which particles move through the simulation domain (modeling the surface
flux) we use the Embree ray tracing library [12]. In Embree a bounding volume
hierarchy data structure [3, 12] is used to efficiently compute the paths on which
the particles move through space. The internal structure of the bounding volume
hierarchy depends eminently on the structure and the coarseness of the surface mesh.

Figure 5 shows the execution times measured to perform the Monte Carlo ray
tracing on the meshes with different degrees of simplification. As the simplified
meshes contain less triangles the bounding volume hierarchy data structure used for
ray tracing will have less elements than the data structure for the original mesh. As
the size of the data structure is decreased the memory footprint is reduced and this
leads to faster flux calculations because less data has to be processed and the caches
of the processor are used more effectively. Figure 5a and b show that the empirical
speedup in flux calculation depends on the shape of the surface mesh. When tracing
Surface 1, the meshes of both simplification methods perform approximately the
same and are faster than the original mesh. When tracing Surface 2, the meshes
generated by our simplification method clearly outperform the meshes simplified
with the Lindstrom-Turk algorithm and the original geometry. Surface 2 contains
deep trenches and the rays of the tracing algorithm need to travel towards the
bottom of these trenches. As the walls of the trenches do not have high curvature
the bounding volume hierarchy data structure created from the mesh simplified
with our method will be less complex within the deep trenches and hence, the
traces of the rays down the trench can be computed by performing less operations.
Also, the rays which travel towards the bottom of the trench usually reflect off the
surface many times, which makes the difference in computational effort for using
a bounding volume hierarchy from a mesh simplified with our method even more
evident. Figure 5b for Surface 2 shows a speedup of about 12% compared to the
Lindstrom-Turk algorithm for simplification levels of 52 and 67%.
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4 Summary

We introduce a new surface mesh simplification method that uses the curvature of
the surface mesh to identify regions which can be simplified with different sets of
parameters depending on the local surface properties. Our approach is well suited for
meshes that are common in flux-dependent process TCAD simulations since such
meshes often contain large flat regions with high resolutions from the originating
regular grid. We have evaluated our method with respect to geometric distances and
execution times for simplification and subsequent computations of flux estimates.
The geometric distances in the experiments have improved in comparison to the
reference algorithm. In particular, the average Hausdorff distance of the investigated
geometries has improved by 20-40%. The ray tracing time in all our experiments has
been improved on average by 15%, furthermore, demanding real world geometries
from process TCAD have shown a compelling improvement of 12% of time spent
on ray tracing. The execution time of our simplification method is on average
17% slower than the reference algorithm. When considering entire topography
simulations, the accelerated ray tracing significantly exceeds the additional time
spent on our simplification method.
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