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Abstract—Employing novel 2D materials with topologically 

protected current-carrying edge states is promising to boost the 

on-current in electronic devices. Using nanoribbons is essential 

to reduce the contribution of the 2D bulk states to the current. 

Making the nanoribbon widths narrower allows one to put more 

current-carrying edge states under the gate of a fixed width thus 

boosting the current. However, the edge states start to interact 

in narrow nanoribbons. Based on an effective k∙p model, we 

analyze the topologically protected edge states and their 

conductance for several 2D materials as a function of the normal 

electric field. We compare the 2D materials MoS2, MoSe2, WS2, 

and WSe2 in the topological 1T′ phase and find the largest 

electric field-induced conductance modulation is in MoS2 

nanoribbons.  

Keywords—Topologically Protected Edge States; Topological 

Insulators; Nanoribbons; k∙p Method; Conductance.  

I. INTRODUCTION  

The use of novel materials with advanced properties is 
mandatory to continue with the device scaling for high 
performance applications at reduced power. Topological 
insulators (TIs) belong to a new class of materials possessing 
highly conductive edge states with a nearly linear dispersion 
lying in the band gap. These states are topologically protected 
and therefore immune to backscattering. If the Fermi level lies 
in the gap, the large on-current is carried by the highly 
conductive edge states. Applying a gate voltage allows one to 
move the Fermi level in the conduction or the valence bands. 
It prompts strong scattering between the edge and the bulk 
electron or hole states [1]. This leads to a substantial reduction 
of the current, resulting in an on/off current ratio suitable for 
device applications [1].  

Recently, it was predicted that well-known monolayer-
thin two-dimensional (2D) materials with high promise for 
future microelectronic devices [2] can also be found in a 1T′ 
TI phase [3]. The band gap within which the edge states exist 
is opened by the spin-orbit interaction at the intersections 
(degeneracy points) between the inverted electron and hole 
bands. The value of the gap can be modulated by an external 
electric field �� normal to the 2D sheet. The band gap in the 
inverted band structure is reduced and can be completely 
closed upon increasing values of ��. By further increasing �� 
the band gap reopens again; however, the traditional electron 
and hole band order is restored indicating a topological phase 
transition from a non-trivial topological to a trivial insulator. 
In contrast to the TI phase where the highly conductive edge 

states carry a large current if the in-plane field is applied, no 
current-carrying edge states are allowed in the trivial 
insulating phase. Therefore, there is no current due to the edge 
states. The electric field induced topological phase transition 
between the TI and the trivial insulating phases peculiarities 
of the band structure in topological phases offers an alternative 
way to modulate the current by the gate voltage and to design 
the current switches. 

To enhance the on-current density due to the edge states it 
is mandatory to have many edges. One can achieve this by 
placing several nanoribbons under the gate. The narrower the 
nanoribbon is, the more nanoribbons one can assemble within 
a given gate width. At the same time, the contribution due to 
the 2D bulk states decreases with shrinking width [4].  

However, the behaviour of the edge states in a narrow 
nanoribbon is different from that at the edge of an infinite 2D 
sheet. Indeed, a small gap in the gapless spectrum of the edge 
states opens due to an interaction of the topologically 
protected states from the opposite edges [5,6]. Because of this 
gap in the dispersion of the edge modes, their conductance is 
found to be slightly less than the ideal conductance �� =2��/ℎ.  

This gap between the edge states initially increases with 
increasing normal field ��  until the edge modes’ dispersion 
meets the 2D bulk conduction and valence bands. Their 
conductance decreases accordingly. It was argued [6] that 
after the edge modes dispersions as a function of the normal 
electric field meet the 2D bulk conduction and the valence 
band, they become indistinguishable from bulk bands. As the 
fundamental gap in TI decreases with ��, the gap in the edge 
states spectrum shrinks and becomes zero, following the bulk 
dispersion [6]. Therefore, according to [6], the ballistic 
conductance due to the edge states increases and reaches the 
ideal value �� = 2��/ℎ at the critical electric field �� when 
the gap between the electron and hole bands closes. At even 
larger �� > ��  the bulk gap opens again signifying a 
transition to a trivial dielectric. However, the topological edge 
states are not allowed, and the conductance abruptly drops to 
zero [6] due to the phase transition from the TI to the trivial 
insulator state. This discontinuous behaviour of the ballistic 
conductance is unphysical. Considering a 1T′ MoS2 
nanoribbon as an example, we demonstrated in [7] that the 
erroneous results [6] were due to the spurious solutions of the 
dispersion equation. If the spurious solutions are disregarded, 
a qualitatively different behavior of the ballistic conductance 
in a 1T′ MoS2 nanoribbon is obtained [7]. Namely, it was 
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demonstrated that the gap between the edge modes always 
increases with the field �� and, in contrast to [6], never closes. 
The increase in the separations between the electron and hole 
subbands results in a continuous and substantial decrease in 
the edge channels ballistic conductance.  

In this work we evaluate the edge states and their 
corresponding Landauer conductance in a nanoribbon in the 
1T′ TI phase. In addition to MoS2 we consider potentially 
relevant 2D materials MoSe2, WS2, and WSe2. 

II. METHOD 
The subbands in a nanoribbon of a topological 2D material 

are found by solving the Schrödinger equation with the 

effective Hamiltonian � [7]:  


 = ����� 00 ���−���,                                 �1� 

 ���� = 

⎝
⎜⎛

12 − ��� �
�� − �!� �

�! + #�y� %��� − &�� + '%(�!
%��� − &�� − '%(�! −12 + ��� �

��) + �!� �
�!) + #�y�⎠

⎟⎞ �2� 

Variable MoS2 MoSe2 WS2 WSe2 

δ [eV] 0.55 0.76 0.17  0.69  

-.[m/s] 3.38 105  3.42 105  2.93 105 3.54 105 

-/ 0.23 105  0.23 105  0.85 105  0.38 105  

012/03 0.48  0.28  0.53  0.36  

042/03 0.29  0.17  0.28  0.16  

015/03 2.32  2.65  3.2  3.28  

045/03 0.92  3.14  8.2  8.4  

6/3 [nm] 0.016  0.027  0.017  0.024  

�7 [nm-1] 1.8  1.9  1.08  1.7  
 

Table I Parameters [6] used in the model. �8 is the electron mass, e is the 
electron charge. 

 

Here #�y� is the confinement potential. For convenience we 
introduced the dimensionless units by measuring all energies 

in units of the separation 9 between the electron and hole bulk 
bands at the Γ-point in the inverted band structure, while  the 

wave vectors � = :�! , ��;  are in units �� = �<
ℏ>

?@A?@B?@A�?@B
(/�

, 

where ���!�)� �
 are the effective masses, � = ?@A?@B?@A�?@B and %(��� 

are the velocities characterizing the strength of the spin-orbit 
interaction. The parameters used in simulations as well as the 

values of �� are given in Table I. 

The block-diagonal form of (1) simplifies the solution for 
the subbands as the solution of the lower block is the time-
reversal solution [5,7] of the upper block. It is therefore 
sufficient to solve the Schrödinger equation with (2). If the 
nanoribbon is cleaved along the OX axis and the confinement 
potential is approximated by an infinite square well of the 

 

Fig.1 Subband structure in a MoS2 nanoribbon of width d=20nm at �� = 0. 
The subbands with the linear dispersion and a small gap at �! = 0 
correspond to the edge modes. 

Fig.3 Energies of the electron and hole edge states in a MoS2 nanoribbon 
of the width d=30nm (blue), d=20nm (orange) and d=10nm (yellow) as 
a function of electric field strength. Dashed line: bulk bands extrema. 

 

Fig.2 Subband structure in a MoS2 nanoribbon of width d=20nm at the 
critical field  �� = &C(%� at which the spin-orbit gap in the 2D sheet 
closes. In contrast, the gap in the nanoribbon increases. 



width D, the eigenfunction of the upper block in (1) satisfies 
the boundary conditions 

 EFG�H = ± D 2⁄ � = 0.                                    �3�  

The wave functions and the edge modes dispersion relations 
are found numerically using the Newton method [7]. While 
solving the corresponding dispersion equation, special care 
must be taken to avoid spurious solutions [7] which lead to 
erroneous results and unphysical interpretations. 

III. RESULTS 

Fig.1 shows the subband structure obtained with the 
Hamiltonian (1,2) and the boundary condition (3) in a 20nm 

wide 1T′ MoS2 cleaved along the OX axis, at  �! = 0 and in 

the absence of the normal electric field (�� = 0). The energies 

are offset by Δ� = (
�

?@AC?@B?@A�?@B  for convenience. Fig.2 

demonstrates the subbands at the electric field �� = &C(%�.  
This value of the field is critical for the band structure in an 
infinite sheet of a 2D material. Indeed, at this electric field 
value the fundamental gap closes. With a further increase of 
the normal field the gap opens again; however, the material 
becomes a trivial dielectric, without topologically protected 
edge states. 

In a nanoribbon, however, the subband spectrum remains 

gapped at the critical electric �� = &C(%�.  Furthermore, the 
gap between the lowest electron-like and the top-most hole-
like subbands seems to increase with the field. To confirm this 
observation, the dependence of the minimum of the lowest 
electron-like and the maximum of the topmost hole-like 
subbands as a function of the normal electric field is shown in 
Fig.3, for three different nanoribbon widths of 10 nm, 20 nm, 
and 30 nm. We observe that the gap between the subbands is 
larger for narrower nanoribbons. At the same time, the gap 
increases as a function of the field, for all three widths as 
shown in Fig.4. This contrasts with the dependence of the 
fundamental band gap in an infinite 2D sheet shown by dashed 
lines in Fig.3. The 2D bulk band gap decreases with the 

normal field and becomes zero as expected at the critical value 

of �� = &C(%� at the electric field.  

In a 2D sheet the TI - trivial insulator phase transition 
happens exactly at the critical value of the normal field. If the 
behavior of the fundamental gap in the 2D bulk is opposite to 
that of the subbands in a nanoribbon, the question arises how 
the phase transition between the TI and a trivial insulator 
appears in a nanoribbon. It turns out that if the energies of the 

subbands are within the bulk band gap at small values of ��, 
the envelope wave functions are localized at opposite edges of 
the nanoribbon [7]. When the subbands’ dispersions approach 
the dashed line in Fig.3 corresponding to the 2D bulk bands, 
the localization becomes weaker and disappears completely at 
the points of crossing. The transition appears earlier in 
narrower nanoribbons. With the field further increased, the 
subbands, however, do not align themselves with the bulk 
bands, claimed in [6]. Instead, their energies evolve to the bulk 
conduction and valence bands. Therefore, the nature of the 

 

Fig.5 Ballistic conductance due to the lowest electron and topmost hole 
edge states for a MoS2 nanoribbon of the width d=30nm (blue), d=20nm 
(orange) and d=10nm (yellow). 

 

Fig.4 Energy gap in the edge states spectrum in a MoS2 nanoribbon of 
the width d=30nm (blue), d=20nm (orange) and d=10nm (yellow). 
Inset: energy separation including the bulk bands extrema shown by 
dashed line in Fig.3 

  
Fig.6 Ballistic conductance due to the lowest electron and topmost hole 
edge states for a MoSe2 nanoribbon of the width d=30nm (blue), 
d=20nm (orange) and d=10nm (yellow). 



envelope function in the direction normal to the nanoribbon 
changes from the one localized at the edges to a nonlocalized 
bulk-like behavior. We can therefore assign a TI to a trivial 
insulator phase transition in a confined geometry to the change 
of the wave function behavior appearing precisely at the points 
of the intersections of the bulk 2D bands with the subbands’ 
dispersions (Fig.3). This transition happens at larger normal 
fields in broader nanoribbons thus recovering the TI to trivial 
insulator phase transition in a 2D geometry.  

Fig.4 shows that the separation between the lowest 
electron-like and topmost hole-like subbands, according to 

Fig.3, increases with ��  and is largest for the 10 nm 
nanoribbon. If, however, the 2D bulk bands shown in Fig.3 
with dashed lines were also included, the separations shown 
in Fig.4 would look like those in the inset of Fig.4. This is 
precisely the behavior shown in Fig.5a of the reference [6]. 
That behavior is not correct, however, as it is caused by 
spurious solutions of the dispersion equation. As we 
demonstrated in [7], these spurious solutions coincide with the 
dispersion of the bulk 2D bands. As they do not depend on the 

nanoribbon width D , they must be neglected and do not 
contribute to the ballistic conductance.  

Finally, following [6], we evaluate the ballistic 
conductance due to the lowest electron-like and topmost hole-
like subbands as a function of the normal electric field for the 
nanoribbon made of MoS2, MoSe2, WS2, and WSe2 materials 
in 1T′ topological phase, with the corresponding parameters 
listed in Table I. To exploit the Landauer expression for the 
conductance we need the subbands’ dependence on the field 
shown in Fig.3 but evaluated for all materials. It is assumed 
that the chemical potential is at zero energy while the 
temperature is 300 K. Fig.5 shows the ballistic conductance 
due to the above described subbands. The conductance 
decreases with the electric field for all nanoribbons’ widths 
including the one of 10 nm. This is in contrast to the behavior 
predicted in [6] where the conductance of a 10 nm thin 
nanoribbon is predicted to increase with the normal electric 
field. As explained, this erroneous behavior of the 
conductance is due to the spurious solutions of the dispersion 
equation. The dependence of the corresponding ballistic 
conductance in MoSe2, WS2, and WSe2 nanoribbons is shown 

in Fig.6, Fig.7, and Fig.8, correspondingly. As the separation 
between the lowest electron-like and topmost hole-like 
subbands increases with the field, the ballistic conductance 
decreases. However, the largest conductance modulation is 
found in MoS2 nanoribbons. 

IV. CONCLUSION 

A k∙p method is applied to investigate the topologically 
protected states at the edges of nanoribbons of several 2D 
materials as a function of the normal electric field. It is 
demonstrated that the electric field-induced conductance 
modulation is largest in 1T′ MoS2 nanoribbons making them 
more suitable candidates for use in ultra-scaled devices.  
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Fig.7 Same as in Fig.6 for WS2 nanoribbons. 

  
Fig.8 Same as in Fig.6 for WSe2 nanoribbons. 
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