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Emerging magnetoresistive random access memories (MRAM) are nonvolatile and offer high speed and 
endurance. They are promising for stand-alone and embedded applications in the automotive industry, 
microcontrollers, internet of things, frame buffer memory, and slow SRAM. The MRAM cell usually includes 
a CoFeB reference layer (RL) and a free magnetic layer (FL), separated by an MgO tunnel barrier (TB). To 
increase the interface-induced perpendicular magnetic anisotropy, the FL is capped with a second MgO layer. 
Making the FL composed of several pieces separated by MgO layers further increases the perpendicular 
anisotropy. To benefit from the shape anisotropy and to increase the perpendicular anisotropy even further, the 
FL is elongated along the easy axis [1]. This allows to reduce the cell diameter to just 2.3 nm, which makes 
shape-anisotropy MRAM cells promising for ultra-dense memory applications.  

To design ultra-scaled MRAM cells it is necessary to accurately model the torques acting on the textured 
magnetization in elongated composite magnetic layers with several MgO inclusions between the parts. The 
magnetization dynamics are then governed by the Landau-Lifshitz-Gilbert (LLG) equation supplemented with 
the corresponding torques. The torques are determined by the electric current generated nonequilibrium spin 
accumulation which depends on the magnetization. Therefore, the LLG and the spin-charge transport 
equations are coupled and must be solved self-consistently. To solve numerically this coupled system of 
partial differential equations, we use the finite element method (FEM). We implemented the solver with open-
source C++ FEM libraries. 

The computationally most expensive part is the demagnetizing field calculation which is performed by a 
hybrid finite element-boundary element method. This restricts the computational domain to ferromagnets 
only. Advanced compression algorithms for large, dense matrices are used to optimize the performance of the 
demagnetizing field calculations in complex structures [2]. To evaluate the torques acting on the 
magnetization, we employ the drift-diffusion approach for coupled spin and charge transport commonly 
applied in nanoscale metallic spin valves. For the computations of the torques acting in a magnetic tunnel 
junction (MTJ), an essential part of the cell of modern spin-transfer torque memories, we introduced a 
magnetization-dependent resistivity of the TB [3]. We investigated the dependence of the resulting torques on 
system parameters and show that this approach produces the torque magnitude expected in MTJs. We showed 
that a full three-dimensional solution of the equations is necessary to accurately model the torques acting on 
the magnetization. The use of a unique set of equations for the whole memory cell, including the FL, RL, 
contacts, and the TB, constitutes the advantage of our approach to rigorously describe the switching process of 
nonvolatile spin-transfer torque memories [4]. We also investigated the temperature at the free layer (FL) 
during switching. To incorporate the temperature increase due to the electric current, we solve the heat 
transport equation coupled to the electron, spin, and magnetization dynamics, and we demonstrated that the 
FL temperature is highly inhomogeneous due to a non-uniform magnetization of the FL during switching [5].  

Spin-orbit torque (SOT) MRAM is fast-switching and thus well suitable for caches. By means of 
micromagnetic simulations we demonstrated the purely electrical switching of a perpendicular FL by the 
SOTs created by two orthogonal short current pulses. The second, reduced current pulse can be applied to 
many cells in an array, while maintaining deterministic switching [6]. To further optimize the pulse 
sequence, we used a machine learning approach based on reinforcement learning [7]. We demonstrated that a 
neural network trained on a fixed material parameter set optimally applies pulses and achieves switching for 
a wide range of material parameter variations as well as for sub-critical current values of the first pulse and 
second pulse. 
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