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A B S T R A C T   

We demonstrate by means of numerical simulations the switching of a perpendicularly magnetized free layer by 
spin–orbit torques based on a two-pulse switching scheme with improved writing power efficiency. In this 
scheme, the first pulse selects the cell, while the second pulse completes the switching deterministically. It is 
shown that the magnitude of the second current pulse can be reduced to about 50% of the critical current and the 
switching remains reliable with a switching time of 300 ps. With such a significant current reduction the writing 
power required for switching decreases by 40%, which results in a very energy efficient scheme. In addition, we 
develop a reinforcement learning approach to optimize the pulse configuration with the goal of achieving the 
shortest switching time. With this approach a switching time of 146 ps has been obtained, a reduction of 50% in 
relation to the non-optimized configuration. These research findings confirm that reinforcement learning is a 
promising tool to simplify and automate the search for a faster, energy efficient scheme in the two-pulse 
switching approach.   

1. Introduction 

The classical charge-based solid-state memory cells, the static 
random access memory (SRAM) cell and the dynamic random access 
memory (DRAM) cell, are intrinsically volatile, which has resulted in 
increasing standby power consumption as the cells have been down
scaled. A solution to this issue can be obtained only with the introduc
tion of nonvolatile memory cells, which must exhibit operation 
characteristics comparable to those of SRAM or DRAM cells [1]. 

Spin-transfer torque magnetoresistive random access memory (STT- 
MRAM) is currently the state of the art MRAM technology, with 
embedded STT-MRAM having densities in the order of gigabytes already 
demonstrated [2]. It is suitable for embedded nonvolatile memory ap
plications as well as for a replacement of flash memories [3] and L4 
caches [4]. The core element of the STT-MRAM cell is a magnetic tunnel 
junction (MTJ), which is formed by two ferromagnetic layers separated 
by a tunnel barrier [5]. However, fast operation with timings in the 
order of nanoseconds demands large switching currents flowing through 
the MTJ and leading to oxide reliability issues, reducing the MRAM 
endurance. 

Spin–orbit torque magnetoresistive random access memory (SOT- 

MRAM) is a promising future nonvolatile memory solution beyond the 
STT-MRAM [6]. In particular, it is a viable option for a nonvolatile 
replacement of high-level caches, as it delivers high operation speed and 
large endurance. However, for deterministic SOT switching of a 
perpendicularly magnetized free layer (FL) an external magnetic field is 
required [7], which is cumbersome for large scale integration. In order 
to circumvent this issue, several field-free schemes which break the cell 
mirror symmetry at the physical level have been proposed [8–12]. 
Among the most recent works, Honjo et al. [13] showed the integration 
of a canted SOT cell, controlling the shape of the cell and its orientation 
with respect to the applied current direction. In turn, Garello et al. [14] 
demonstrated a successful integration of a cobalt nanomagnet into the 
SOT cell, which provides the required magnetic field for deterministic 
switching. Furthermore, the approach is suitable for full 300 mm wafer 
fabrication [15]. These schemes typically require precise geometrical 
shaping or the introduction of specific materials or layers into the cell 
stack, which poses several challenges for the processing steps and 
fabrication of the cells. 

In the search for more energy-efficient SOT-MRAM, for which the 
write current and power are reduced, various schemes based on purely 
electrical field-free control of magnetization switching have been 
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suggested. The main idea of these schemes is to combine SOT with STT 
switching [16–18] and/or to combine SOT with voltage-controlled 
magnetic anisotropy (VCMA) [16,19,20]. In the first case, two current 
pulses are applied to the cell. One pulse is applied through the heavy 
metal layer under the magnetic FL, while another current pulse is 
applied through the MTJ. These currents generate SOT and STT, 
respectively, which act together to switch the magnetization. The 
amplitude and duration of both currents can be tuned to achieve low- 
power switching with sub-nanosecond timing and enhance the write 
endurance of the MTJ. In the second case, SOT is combined with VCMA. 
Here, a voltage is applied across the MTJ and the effect of VCMA lowers 
the energy barrier for switching, leading to a reduction of the write 
current and acceleration of the switching. In this way, a more efficient 
switching scheme is obtained. In fact, the interplay of these three 
mechanisms, SOT, STT, and VCMA leads to a high speed energy-efficient 
switching scheme [16]. 

In this work, an alternative magnetic field-free scheme based on 
purely SOT switching controlled by two orthogonal current pulses is 
considered. The scheme was initially proposed to switch an in-plane 
magnetized FL [21,22]. For an in-plane cell, switching can be ach
ieved by the application of a single current pulse. However, it was shown 
that, by applying current pulses to two orthogonal heavy metal wires in 
contact with the FL (c.f. Fig. 1), the switching could be speeded up. This 
two-pulse scheme was later applied to switch a perpendicularly 
magnetized FL, where the influence of the overlap of the second heavy 
metal wire with the FL and the influence of the duration of the second 
current pulse on the switching time and robustness were investigated 
[22,23]. The large currents required to realize the switching are still an 
issue. They not only demand higher writing power and energy, but also 
make the integration of the cell in memory arrays more difficult, because 
they can disturb the magnetization of half-selected cells of the array. 

The memory cell for the two-pulse scheme is depicted in Fig. 1. The 
writing SOT-cell is formed by a perpendicularly magnetized FL on top of 
a heavy metal wire (NM1) and a second orthogonal heavy metal wire 
(NM2) is placed on top of the FL, partially overlapping it. An MTJ is 
placed next to the SOT-cell for the reading operation. In this cell, the 
integration of the additional NM2 wire does not require a direct modi
fication of the MTJ stack and it can be deposited and patterned using 
conventional processes. However, a specific challenge for its realization 
is to properly stop the etching on the FL, so that the thin ferromagnet is 
not damaged during the process. 

Machine learning (ML) has been increasingly applied in the realm of 
physics [24]. While the predominant number of ML applications uses 
supervised learning approaches, which require large amounts of data 
beforehand to train neural networks, the subbranch of reinforcement 
learning (RL) [25] has gained interest in recent years. The general 
reinforcement learning setup consists of an agent and an environment. 
The agent interacts with the environment by performing certain actions, 
making the environment transition from one state to another one. After 
every transition, the environment returns the new state, as well as a 
reward to the agent. Here, the agent tries to maximize the cumulative 
reward it receives over time, learning how to achieve a certain objective. 
First RL breakthroughs were achieved using games like chess or Go [26], 

and these types of algorithms have also successfully been applied in 
physics, e.g. [27], where strategies for quantum error correction are 
found through RL. 

This work focuses on the reduction of the applied current for 
switching of a perpendicularly magnetized cell based on the two-pulse 
scheme. After a pre-selection of the cell by the first current pulse, the 
switching current of the second pulse can be significantly reduced, and 
deterministic and fast switching of a perpendicularly magnetized FL is 
still guaranteed. This current reduction is accompanied by a large 
decrease of the writing power, improving the energy efficiency of the 
switching scheme. The importance of decreasing the second current 
below the critical value is discussed, so that the magnetization of non- 
selected cells is not disturbed, even if the NM2 wire is routed through 
several cells in an array. A particular innovation is the implementation 
of a reinforcement learning approach to support and automate the 
search for the fastest switching in the two-pulse scheme, which was 
confirmed by our research findings. 

2. Spin–orbit torque switching scheme 

2.1. Micromagnetic modeling 

The writing operation of the cell is carried out by applying two 
current pulses to two orthogonal heavy metal wires, NM1 and NM2 (c.f. 
Fig. 1). It is initiated with the selection of the cell by applying the first 
pulse to the NM1 wire. This pulse generates the SOT which puts the 
magnetization in the plane of the FL orthogonal to the current. Then, the 
second pulse is applied to the NM2 wire. The second pulse rotates the 
magnetization of the FL under the NM2 wire, which dynamically creates 
an in-plane magnetic field to complete the magnetization switching, and 
thus the cell writing, deterministically [28]. 

The reading operation is carried out by applying a low current pulse 
through the MTJ and sensing the corresponding tunneling magnetore
sistance ratio. Since the current through the tunnel barrier of the MTJ is 
small, oxide reliability is not an issue. 

The magnetization dynamics is described by the Landau-Lifshitz- 
Gilbert equation 

∂m
∂t

= − γμ0m × Heff +αm ×
∂m
∂t

+
1

MS
TS, (1)  

where m is the normalized magnetization, γ is the gyromagnetic ratio, μ0 
is the vacuum permeability, α is the Gilbert damping factor, and MS is 
the saturation magnetization. Heff is an effective magnetic field which 
includes the exchange field, the uniaxial perpendicular anisotropy field, 
the demagnetization field, the current-induced field, and the random 
thermal field at 300 K. TS is the SOT generated by the current, given by 

TS = − γ
ℏ
2e

θSHj
MSd

[m × (m × (j × z) ) ], (2)  

where e is the elementary charge, ℏ is the reduced Plank constant, θSH is 
an effective Hall angle, j is the applied current density, d is the FL 
thickness, and z is the unit vector perpendicular to the FL plane. 

It should be pointed out that only the damping-like torque (DLT) is 
considered in (2). A large field-like torque (FLT) has been reported for 
Ta-based SOT structures [15,29], while for W-based structures a much 
smaller FLT is normally observed [15], up to one order of magnitude 
lower than the DLT [30]. In this work, we consider SOT cells based on 
β-tungsten heavy metal wires and neglect the FLT. 

To realize the SOT switching, the applied current density must be 
larger than the critical current density (in the absence of an external 
field) [7] 

JC =
e
ℏ

MSd
θSH

HK , (3)  

where HK is the effective anisotropy field. For the two-pulse switching Fig. 1. SOT-MRAM cell for switching based on two orthogonal current pulses.  
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scheme, the selection pulse, i.e. the first pulse applied to the NM1 wire, 
has a current I1 = 130 μA and a fixed duration T1 = 130 ps. This yields a 
current density j1 = 2.2× 1012 A/m2, which is just above the critical one 
(Ic = 120 μA, Jc = 2.0× 1012 A/m2), given the cell parameters in 
Table 1. In turn, the magnitude of the second current pulse (I2) is varied 
and its impact on the switching is investigated. 

The numerical simulations of the magnetization dynamics are car
ried out using an in–house tool [31] based on the finite differences 
method with a grid size of 1.2 nm. The parameters used in the simula
tions are listed in Table 1. A stability factor of 45 is computed for the cell. 
In order to account for the thermal distribution resulting from the 
random thermal field, a total of 50 realizations are considered for each 
simulation condition. 

2.2. Reinforcement learning 

The general setup of the two-pulse switching cell in an RL setting can 
be seen in Fig. 2. The environment contains a simulation of the two- 
pulse switching SOT-MRAM cell. For this purpose, our in–house 
micromagnetic simulation tool (as described above) was adapted in such 
way that it can be controlled from the outside to change the state of the 
pulses and that it returns the current state of the simulation together 
with a reward after every iteration. The agent consists of a neural 
network provided by a python library [32], which implements the deep 
Q-network (DQN) as learning algorithm [33]. The goal of the RL algo
rithm is to determine the pulse sequence yielding the fastest switching 
time, i.e. the objective of the experiments is to achieve the fastest 
possible transition of the average z-component of the magnetization 
from +1 to − 0.5. 

In order to direct the algorithm to take actions such that the 
switching time is reduced, an appropriate scheme for rewarding the 
agent must be chosen. The reward is an integer value returned by the 
environment indicating whether the actions performed by the agent 
were good or bad. As RL algorithms aim to maximize the cumulative 
reward, the rewarding scheme should be chosen such that a shorter 
switching time corresponds to a higher reward. For every simulation 
step in which the target was not yet reached, a reward of − 1 is given. An 
upper limit of the simulation time of tmax = 1 ns was defined. Once this 
time is reached without the z-component reaching − 0.5 the learning 
episode is terminated. If, however, the z-component reaches this 
threshold before 1 ns, a positive reward of (tmax − tfinal)/dt is given. 

The state vector returned from the environment after every iteration 
consists of 11 variables: the average of the three magnetization vector 
components (mx,my,mz), the difference of each component to the pre
vious iteration (Δmx,Δmy,Δmz), the average component of the effective 
magnetic field (Heff,x,Heff,y,Heff,z), and two variables indicating whether 
the first and the second pulse are settable. If for example the change of 
the average magnetization components were not included (Δmx, Δmy,

Δmz), by only knowing the current value of the components, it would 
not be clear in which direction the magnetization is moving at this point. 
Based on the state information, the learning agent deduces which action 

to take. The current setup allows the agent to take four different actions: 
both pulses are off, both pulses are on, the first pulse is on, the second is 
off, or the first pulse is off and the second pulse is on. 

3. Results and discussion 

3.1. Micromagnetic simulations 

Since an MTJ is located beside the writing part of the SOT-cell, the 
NM2 wire contacts only part of the FL depending on the wire width, as 
depicted in Fig. 1. Considering, initially, that the current density of the 
second pulse is equal to the current density of the first pulse, i.e. j2 =

2.2× 1012 A/m2, and for a pulse width T2 = 150 ps, the z-component of 
the magnetization dynamics for different values of the NM2 wire width 
is shown in Fig. 3. Deterministic switching was obtained for all values of 
tested w2, where each curve represents an average of 50 realizations, 
due to the stochastic thermal field at 300 K. One can see that the 
switching characteristics remain essentially the same and the switching 
time stays within a range of 0.3–0.4 ns (taken at mz = − 0.5). These 
results indicate that, due to the relatively large range of suitable w2 
dimensions, a particularly tight control of the NM2 wire patterning is 
not necessary, which is beneficial for the cell fabrication. 

The results shown in Fig. 3 were obtained for a constant current 
density, j2 = 2.2× 1012 A/m2, slightly above the critical value. In order 
to keep a constant current density, the applied current has to be adjusted 
proportionally to the wire width w2, i.e. I2 = j2w2l. Thus, reducing the 
wire width leads to a reduction of the current, provided that the current 
density is kept constant. Since the power is proportional to the square of 

Table 1 
Parameters used in the simulations. β-tungsten heavy metal wires are assumed, 
while the magnetic FL is CoFeB on MgO [7].  

Parameter Value 

Saturation magnetization, MS  1.1 × 106 A/m  
Exchange constant, A 1.0 × 10− 11 J/m  
Perpendicular anisotropy, K 8.4 × 105 J/m3  

Gilbert damping factor, α  0.035 
Spin Hall angle, θSH  0.3 
Free layer dimensions 40 nm × 20 nm × 1.2 nm  
NM1: w1 × l  20 nm × 3 nm  
NM2: w2 × l  16 – 36 nm × 3 nm   

Fig. 2. Reinforcement learning setup with two-pulse switching scheme. The 
simulation of the SOT-MRAM cell provides the environment, which the agent 
interacts with to take decisions that lead to a certain goal as, for example, the 
fastest switching time. 

Fig. 3. Switching dynamics for different values of the NM2 wire width. The 
applied current is varied proportionally to w2, while the current density is kept 
constant at j2 = 2.2× 1012 A/m2 and T2 = 150 ps. 

R.L. de Orio et al.                                                                                                                                                                                                                              



Solid State Electronics 185 (2021) 108075

4

the current, lowering the current is very important and advantageous, 
because the writing power is also reduced. The normalized switching 
power considering both current pulses (P∝(I2

1T1 + I2
2T2)/(T1 + T2)) for 

different values of w2 is shown in Table 2. The power is normalized in 
relation to I2 = 130 μA, which is the current amplitude of the pulse 
applied to the NM1 wire. By adjusting the second wire width and the 
corresponding current, a writing power reduction factor of more than 
2.0 is possible. 

Although fast and efficient switching has been obtained, the second 
current density is still larger than the critical one. This means that the 
NM2 wire cannot be routed through various cells in an array, because 
the SOT generated by the second current pulse drives the magnetization 
of the non-selected cells to the FL plane. Not only is the stored infor
mation temporarily disturbed, but also the probability of an undesired 
bit flip increases. This prevents the use of multi-cell routing. For each bit 
cell an extra access transistor is required to control the current flow 
through the selected cell only. This increases the number of transistors 
per cell, the cell area, and the wiring overhead, which certainly makes 
the cell integration more complex. Therefore, the switching current 
density must be reduced. The above approach to reduce the current is 
bounded by the minimum wire width. Moreover, if the NM2 wire con
tact with the FL becomes too narrow, the switching times increase again 
[22]. To further reduce the second current, and thus the power dissi
pation, the current density has to be decreased below the critical value. 

Fig. 4 shows the magnetization switching for several magnitudes of 
the second current below the critical one, where w2 = 20 nm is fixed. In 
this case the current decrease also leads to a decrease of the current 
density. Even for I2 = 60 μA, which corresponds to a reduction as large 
as 50% of the critical current, the switching characteristics are still 
preserved, i.e. the switching remains deterministic and fast. This is 
further demonstrated in Fig. 5, which summarizes the switching times as 
a function of the second current magnitude and pulse duration. The 
writing current density can be decreased to about 50% of the critical 
one, while maintaining the switching time at 0.3 ns for T2⩾150 ps. If the 
current is decreased below 60 μA, the switching becomes non- 
deterministic. 

As a consequence of the lower applied current, the power con
sumption is also significantly reduced. Table 3 shows the current, the 
current density, and the power consumption for a fixed wire width w2 =

20 nm. Decreasing the second current by 50%, from 130 μA to 65 μA, 
corresponds to a reduction of 75% of the second pulse’s power/energy. 
When both current pulses are considered, the total writing power is 
reduced by 40%. If we take into account this power reduction together 
with that from the adjustment of the NM2 wire width (c.f. Table 2), the 
total writing power is decreased by a factor of 3.3, which represents a 
power reduction of 70%. It should be pointed out that such a power 
reduction is obtained without loss in switching performance. Therefore, 
the efficiency of the switching scheme has been significantly improved. 

For a current of the second pulse smaller than the critical value, the 
corresponding SOT is weaker and non-selected cells of a memory array 
are not disturbed. This is confirmed by the magnetization dynamics 
reported in Figs. 6 and 7. Here, the cell is not selected by the first pulse 

and only the second current pulse is applied. The weak SOT slightly 
deviates the magnetization from the initial out-of-plane orientation. As 
Fig. 7 shows, mz does not fall below 0.9 and the magnetization rapidly 
moves back to its initial position after some precession around the 
perpendicular anisotropy field, indicated by the oscillating mx and my 

components in Fig. 6. This proves that non-selected cells remain un
disturbed and an undesired bit flip does not occur, when a cell is subject 
to the second current pulse only. 

Table 2 
Magnitude of the second current pulse and power consumption as a function of 
the NM2 wire width. The simulation parameters are: I1 = 130 μA 
(j1 = 2.2 × 1012 A/m2), T1 = 130 ps, and T2 = 150 ps. I2 varies proportionally 
with w2 in order to keep the current density fixed at j2 = 2.2 × 1012 A/m2.  

w2 (nm)  I2 (μA)  Normalized power 

36 234 2.20 
32 208 1.84 
28 182 1.51 
24 156 1.24 
20 130 1.00 
16 104 0.81  

Fig. 4. z-component of the magnetization for various current pulses I2 below 
the critical current and considering w2 = 20 nm. The switching is deterministic 
and fast even for a current 50% lower than the critical one. 

Fig. 5. Switching time as a function of the second current I2 and as a function 
of the pulse duration T2. The applied current can be significantly reduced, while 
the switching time remains constant. 

Table 3 
Second pulse current, current density, and writing power for currents below the 
critical value. w2 = 20 nm is fixed.  

I2 (μA)  j2 (1012A/m2)  Normalized power 

130 2.2 1.00 
115 1.9 0.88 
100 1.7 0.78 
80 1.3 0.67 
65 1.1 0.60 
60 1.0 0.58  
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3.2. Reinforcement learning 

The previous analysis focused on the reduction of the current 
amplitude and its impact on the switching. It was shown that the current 
can be lower than the critical value and a reliable switching is still 
guaranteed. A minimum switching time of 300 ps was obtained. 

In this section we apply the RL approach to find out the pulse 
configuration which leads to the fastest switching condition, defined 
here by the time the z-component of the magnetization reaches − 0.5. 
The amplitude of the two pulses was fixed to I1 = 130 μA for the first 
pulse and I2 = 100 μA for the second pulse. It should be pointed out that 
the latter is lower than the critical current, following the results from the 
micromagnetic simulations of the previous section. To simplify the 
learning process, the amount of possible actions carried out by the agent 
(c.f. Fig. 2) has been restricted. The current setup of the experiment 
allows the agent to individually switch the two pulses on or off, with a 
minimum pulse width of 100 ps for each pulse. A learning episode was 
considered finished once the z-component of the magnetization reached 
− 0.5. It should be emphasized that the focus of the RL experiments is to 
train a model for magnetization reversal which leads to the shortest 
switching time. These experiments have not been designed to take into 
account the effect of fluctuations or errors in the pulse parameters and 

timing. 
Six individual experiments with different random seeds were per

formed. Fig. 8 shows results of the learning process. In Fig. 8(a), 20 
independent results of the switching time over the course of the learning 
period are shown and one can see that learning is not yet fully deter
ministic. Fig. 8(b) presents the mean switching time (episode length) 
over the six best learning runs. Over the course of 106 learning steps, 
first an increase in the episode length, due to the initial focus on 
exploration of the state–action space, can be observed, which is followed 
by a decrease resulting in a final mean switching time of around 240 ps. 

Fig. 9 shows the pulse sequence learned by the DQN algorithm. Both 
pulses are turned on right in the beginning and the first pulse is turned 
off again after 100 ps, after which the z-component of the magnetization 
drops below the threshold of − 0.5. We observe that, although the target 
value is reached, since the second pulse is left on for the rest of the 
simulation, the magnetization does not fully switch to − 1, but rather 
converges to a value of around − 0.8. This demonstrates the importance 
of the rewarding scheme and general setup of the RL experiment. As the 
RL agent was rewarded for finishing the episode as fast as possible and 
the episode was considered finished as soon as the threshold of − 0.5 was 
reached, the agent learned how to get to the threshold and did not care 
what happened afterwards. 

Fig. 10 shows the dynamics of the z-component of the magnetization 
for pulse sequences which are slight variations of the learned one. The 
blue curves show that, when the second pulse is turned off once − 0.5 is 
reached, the magnetization moves towards − 1. This confirms that 
turning both pulses on right in the beginning indeed leads to fast 
switching. Further experiments with small timing differences were 
performed and Fig. 10 shows that extending the first pulse and/or 
delaying the second pulse (orange and greens curves) leads to longer 
switching times compared to the learned sequence with the second pulse 
switched off. In one scenario (purple curve) it even leads to no switching 
at all. As previously mentioned, the current RL setup does not account 
for possible errors in the pulse timing, so a relatively small variation of 
the ideal pulse sequence can lead to an unreliable scheme. Nevertheless, 
the results yield a proof of concept. The proposed RL method has been 
able to achieve its goal and find a pulse sequence producing the fastest 
magnetization switching by the two-pulse scheme. 

In order to demonstrate that the learned scheme with the second 
pulse switched off (blue curve in Fig. 10) results in deterministic 
switching, 50 switching realizations of this pulse sequence were per
formed for which the results are given in Fig. 11. The variation between 
the different realizations is very small and all of them switch. It should 

Fig. 6. Magnetization components mx and my without pre-selecting the cell. 
The simulations parameters are: I1 = 0, T1 = 130 ps, I2 = 100 μA, T2 =

150 ps. 

Fig. 7. Detail of the z-component of the magnetization without pre-selecting 
the cell. 

Fig. 8. Learning curve showing the mean episode length over 106 time steps. 
(a) Switching time over the course of the learning period of 20 independent 
runs. (b) Mean and standard deviation of the switching time over the six 
best runs. 
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be pointed out that based on the learned pulse sequence, a switching 
time of 146 ps is obtained. This is about one-half of the switching time 
obtained by the manual analysis of the previous section, 300 ps, which 
demonstrates the potential of the RL approach in combination with 
micromagnetic modeling. 

4. Conclusion 

Deterministic switching of a perpendicularly magnetized free layer 
by spin–orbit torques can be accomplished using a two-pulse approach 
with increased power efficiency. The first pulse selects the cell, while the 
second, low current pulse completes the switching. The switching 
characteristics remained practically unchanged, even when the second 
current was 50% lower than the critical one. In this case, the switching 

power was reduced by 40%. Thus the scheme became more efficient. A 
reinforcement learning approach was applied to determine the pulse 
sequence which leads to the shortest switching time. With this approach 
a switching time as short as 146 ps was obtained in comparison to the 
300 ps of the manually optimized configuration. Our results confirm that 
reinforcement learning is a promising tool to automate the search for a 
faster, energy efficient switching scheme for SOT-MRAM cells. 
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