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Abstract— The application of level set and fast march-

ing methods to the simulation of surface topography in

three dimensions for semiconductor processes are pre-

sented. Many techniques, including a narrow band level

set method, fast marching for the Eikonal equation, ex-

tension of the speed function, transport models, visibil-

ity determination, and an iterative equation solver are

used to obtain a very fast simulator.

I. Introduction

Three-dimensional topography simulation is still
faced with many challenges which limit its general
applicability and usefulness. In addition, three-
dimensional topography simulation tends to be very
CPU and memory intensive to date.

Roughly speaking, various surface representation al-
gorithms for topography simulation in three dimensions
fall into three categories [1].

• Segment-based models, such as the facet motion
model [2], [3]: In this model a nodal triangulariza-
tion of the interface is used. The position of the
nodes is then updated by determining front infor-
mation about the normals and curvature of surface
facets. Because interstices or duplications between
neighboring surface facets occur during their ad-
vance along the normal, area-readjustment proce-
dures are needed. However, these procedures in-
duce significant computational error into the simu-
lation result in proportion to the complexity of the
process geometry.

• Cell-based models, such as the cellular model [4],
[5]: These models can easily handle topological
changes and can be extended to three dimensions.
However, the determination of geometric quanti-
ties such as surface normals and curvature can be
inaccurate.

• Level set method-based models [6], [7], [8]: In this
method the interface extraction is based on the so-
lution of a hyperbolic partial differential equation.
The location of an interface is the zero level set
of a higher dimensional function called level set
function. This model provides an interesting al-
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ternative method for solving the above mentioned
problems.

Based on an efficient and precise level set method in-
cluding narrow banding [9] and extending the speed
function [10] in a sophisticated algorithm, we have de-
veloped a general three-dimensional topography simu-
lator for the simulation of deposition and etching pro-
cesses. The simulator works efficiently concerning com-
putational time and memory consumption, and it si-
multaneously ensures high resolution.

The outline of this paper is as follows. First, we
present briefly the level set method. Second, we de-
scribe briefly how to extend the speed function com-
bined with narrow banding using a fast marching
method. Third, the stability and the complexity of the
simulator is discussed. Fourth, we present the transport
models. Finally, simulation results are shown.

II. The level set method

The level set method provides means for describing
boundaries, i.e., curves, surfaces or hypersurfaces in ar-
bitrary dimensions, and their evolution in time which is
caused by forces or fluxes normal to the surface [6]. The
basic idea is to view the curve or surface in question at
a certain time t as the zero level set (with respect to
the space variables) of a certain function u(t,x), the so
called level set function. Thus the initial surface is the
set {x | u(0,x) = 0}.

Each point on the surface is moved with a certain
speed normal to the surface and this determines the
time evolution of the surface. The speed normal to the
surface will be denoted by F (t,x). For points on the
zero level set what is usually determined by physical
models and in our case by etching and deposition pro-
cesses, or more precisely, by the fluxes of certain gas
species and subsequent surface reactions. The speed
function F (t,x) generally depends on the time and
space variables and we assume for now that it is de-
fined on the whole simulation domain and for the time
interval considered.

The surface at a later time t1 shall also be considered
as the zero level set of the function u(t,x), namely {x |
u(t1,x) = 0}. This leads to the level set equation

ut + F (t,x)‖∇xu‖ = 0, u(0,x) given,

in the unknown variable u, where u(0,x) determines
the initial surface. Having solved this equation the zero



level set of the solution is the sought curve or surface
at all later times.

Although in the numerical application the level set
function is eventually calculated on a grid, the reso-
lution achieved is in fact much higher than the reso-
lution of the grid, and hence higher than the resolu-
tion achieved using a cellular format on a grid of the
same size. This is because in the last step, the surface
extraction step, where the curve or surface is recon-
structed from the function values on the grid, the zero
level set is approximated by lines or triangles using lin-
ear interpolation. Here it is of course assumed that the
level set function essentially remains the signed distance
function which is locally a linear function near the zero
level set. This is the case with the implementation de-
veloped.

Now in order to apply the level set method a suit-
able initial function u(0,x) has to be determined first.
There are two requirements: first it goes without saying
that its zero level set has to be the surface given by the
application, and second it should essentially be a linear
function so that in the final surface extraction step lin-
ear interpolation can be applied. A beneficial choice is
the signed distance function of a point from the given
surface. This function is the common distance function
multiplied by minus or plus one, depending on which
side of the surface the point lies in. The common dis-
tance function of a point x from a set M is then defined
by d(x, M) := infy∈M d(x, y), where d is metric, usually
the Euclidean distance.

In summary, first the initial level set grid is calculated
as the signed distance function from a given initial sur-
face. Then the speed function values on the whole grid
are used to update the level set grid in a finite differ-
ence or finite element scheme. Usually the values of
the speed function are not determined on the whole do-
main by the physical models and, therefore, have to be
extrapolated suitably from the values provided on the
boundary, i.e., the zero level set. This will be discussed
in the next section.

III. Extending the speed function and narrow
banding using a fast marching method

In most applications the speed function is not known
on the whole simulation domain, but only at the sur-
face. In order to use the level set method it has to
be suitably extended from the known values to the
whole simulation domain. This can be carried out itera-
tively by starting from the points nearest to the surface.
Mathematical arguments show [6] that the signed dis-
tance function can be maintained from one time step to
the next by choosing a suitable extension.

The idea leading to fast level set algorithms stems
from observing that only the values of the level set func-
tion near its zero level set are essential, and thus only
the values at the grid points in a narrow band around

the zero level set have to be calculated.
Both extending the speed function and narrow band-

ing require the construction of the distance function
from the zero level set in the order of increasing dis-
tance. But calculating the exact distance function from
a surface consisting of a large number of small triangles
is computationally expensive and can be only justified
for the initialization. An approximation to the distance
function can be computed by a special fast marching
method [6], [10].

IV. Stability and the
Courant-Friedrichs-Levy (CFL)

Condition

For advancing the level set function we have used a
second-order space convex finite difference scheme [11],
[12]. Consider ∆x, ∆y, ∆z, and ∆t as discretization
steps in space and in time, respectively. A necessary
condition for the stability of this scheme is the Courant-
Friedrichs-Levy (CFL) condition which requires that

∆t · Fmax ≤ min(∆x, ∆y, ∆z).

The CFL condition guarantees that the front can cross
no more than one grid cell during each time step. In
order to have a stable simulator based on the finite dif-
ference method, the CFL condition must be satisfied
[12].

However, a fundamental problem stemming from the
CFL condition limits the simulator performance. If we
increase the spatial resolution by λ, assuming that Fmax

remains constant, we have to reduce the maximum ∆t
by the same factor λ, which increases the number of
simulation steps by λ for reaching the same thickness.
Furthermore, an increase in spatial resolution by λ in-
creases approximately the number of extracted surface
elements by λ2 and then the computational effort of the
visibility determination by λ4. In summary, an increase
in spatial resolution by λ leads to an increase in simu-
lation time by a factor λ5, if one uses the most precise
visibility determination.

V. Transport Models

The transport of the particles above the wafer sur-
face specifies the deposition and etch rate. Assume that
within a feature the frequency of particle-particle colli-
sions is negligible relative to particle-surface collisions,
that is, we are in the molecular or Knudsen regime [13].
In this case the transport of the particles can be simu-
lated using the radiosity model. In the other case the
collision of single particles plays a major role and their
concentration is determined by the diffusion equation.

A. Particle Distribution for Deposition and Etching

For modeling deposition it is assumed that the dis-
tribution of the particles coming from the source obeys



a cosine function around the normal vector of the plane
in which the source lies [13], [14]. This implies that the
flux at a surface element is proportional to the cosine
of the angle between the connecting line between the
center of mass of a surface element and the source and
the normal vector of the source plane.

A function which has been used for ions in plasma
systems for etching processes is the normal distribution
f(θ) = (2πσ)−1/2 · exp(−θ2/2σ2) where θ is the angle
around the normal vector of the source plane and the
angular width of the distribution is specified by σ. For
the reflections of particles diffuse and specular reflec-
tion are assumed for deposition and etching processes,
respectively [13].

B. Visibility Determination

Most of the computation time for simulating the
transport of the particles above the wafer by the ra-
diosity model is consumed in determining the visibility
between the surface elements. This is an O(m2) opera-
tion, where m is the number of surface elements growing
approximately like O(n2). If the connecting line be-
tween the center of mass of two surface elements does
not intersect the surface, i.e., the zero level set, those
surface elements are visible from each other. In order to
decrease the computational effort related to determin-
ing the visibility between the surface triangles, we have
assumed that two triangles are visible from each other
if the center point of the grid cells in which the triangles
are located, are visible from each other. Since there are
at least two triangles in each grid cell, considerable time
is saved.

C. Radiosity Model

The radiosity model assumes that the total flux de-
pends on the flux directly from the source, as well as an
additional flux due to the particles which do not stick
and are re-emitted. After discretizing the problem the
flux vector whose elements are the total flux at different
surface elements can be expressed by a matrix equation.

There are two numerical approaches for solving this
problem. The first one is to use a direct solver for the
matrix equation. Although this is practical in two di-
mensions [10], it becomes impractical due to the compu-
tational effort needed by calculating the inverse matrix
for three-dimensional problems. In three dimensions we
solve the equation iteratively.

C.1 Iterative Solver

The iterative solution [6] consists of a series expan-
sion in the interaction matrix. Suitably interpreted, it
can be viewed as a multi-bounce model, in which the
number of terms in the series expansion corresponds to
the number of bounces that a particle can undergo be-
fore its effects are negligible. This approach allows to
check the error remainder term to determine how many

Fig. 1. A T-shape initial boundary for a deposition process.

Fig. 2. Simulation result of the deposition of different materials.

terms must be kept. Since most of the particles either
stick or leave the domain after a reasonable number of
bounces, this is an efficient approach. By constructing
the remainder term, we can measure the convergence
of the expansion and keep enough terms to bound the
error below a user-specified tolerance.

VI. Simulation Results

In this section we present some three-dimensional
simulation results for deposition and etching processes.
We begin with a source deposition into a T-shape initial
boundary shown in Fig. 1. Fig. 2 shows the simulation
result of a source deposition from a plane located above
the trench including visibility and shading effects. The



Fig. 3. An initial boundary for an etching process using masking.

Fig. 4. Simulation result of etching.

deposition simulation have been done for two different
materials The particle distribution is a cosine distribu-
tion around the normal vector of source plane.

Fig. 4 shows a straightforward simulation of isotropic
etching Fig. 3 from which material is being isotropically
etched including the masking. As expected, the sides
of the trench are cleanly etched away and are rounded.

VII. Conclusion

State of the art algorithms for surface evolution pro-
cesses like deposition and etching processes in three di-
mensions have been implemented. A general simulator
was developed based on the level set method combin-
ing the narrow banding and fast marching method for

extending the speed function. The speed of simulation
was improved in several steps, e.g., in initialization, vis-
ibility determination, and solving the radiosity matrix.
Two examples for simulation of etching and deposition
processes were presented. The complexity of different
parts of the simulator was discussed. Furthermore, the
effect of increasing the grid resolution on the simulation
time was shown.
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