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Abstract – We present the use of reinforcement learning for 

the discovery of pulse sequences for optimal switching of 

spin-orbit torque magnetoresistive memory devices. A 

neural network trained on fixed material parameters is able 

to switch a memory cell for a wide range of material 

parameter variations as well as for sub-critical current 

values. Micromagnetic simulations are used to prove the 

reliability of the trained neural network. 
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I. INTRODUCTION 

 
The increasing power consumption of semiconductor memory 

devices due to the progressive down-scaling and the entailing 

higher leakages is a pressing issue which could be solved with 

magnetoresistive random access memories (MRAM). Spin-orbit 

torque (SOT) MRAM is a highly promising contender for 

replacing existing charge-based random access memories due to 

its nonvolatility, high operation speed and large endurance. The 

need for an external magnetic field for deterministic switching 

[1] is eliminated in a recently introduced purely electrically 

controllable SOT-MRAM cell [2]. 

For the development of MRAM devices, accurate simulation 

tools are of paramount importance. They benefit from the 

increasing computational power of simulation hardware, but 

nevertheless the analysis of the equally increasing amounts of 

simulation results is challenging and employing advanced 

machine learning algorithms to manage and optimize the data 

becomes attractive. Machine learning assisted scientific 

research has become more widespread and has achieved 

impressive results [3]. We show how the machine learning sub-

field of reinforcement learning (RL) [4] can be used in order to 

discover optimal pulse sequences for deterministically 

switching the SOT-MRAM cell proposed in [2]. 

 

II. SPIN-ORBIT TORQUE MEMORY 

 

Besides spin-transfer torque MRAM, SOT-MRAM is the most 

promising type of magnetoresistive memory. The writing 

operation is performed by sending a charge current through a 

metal wire with a large spin Hall angle, which is attached to the 

free layer. This creates a transverse spin current, exerting a 

torque on the free layer magnetization and initiating a 

precessional motion, eventually leading to switching. 

Perpendicularly magnetized SOT-MRAM devices, however, 

require in addition a magnetic field to deterministically reverse 

the magnetization [1]. Among several proposed field-free 

schemes, e.g. [5], a memory cell introduced in [2] solves the 

problem by adding a second metal wire, orthogonal to the first 

one (cf. Fig. 1). It was shown that by sending current pulses 

through the two metal wires NM1 and NM2, the memory cell 

can be switched deterministically and purely electrically. 

Although the write path in SOT-MRAM is separated from the 

read path and thus oxide reliability issues are not a problem, a 

reduction of the write current is still desirable to reduce the 

stress on the surrounding circuitry [6]. 

The dynamics of the magnetization in the free layer of SOT-

MRAM cells can be simulated by solving the following 

extended Landau-Lifshitz-Gilbert equation. 
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Figure 1: SOT-MRAM cell for switching based on two 

orthogonal current pulses. The pulses are sent through the 

structure via two nonmagnetic heavy metal wires, one of which 

is fully overlapping the FL (NM1) and one only partially (NM2). 



m is the normalized magnetization, 𝛾 is the gyromagnetic ratio, 

𝜇0 is the vacuum permeability, 𝛼 is the Gilbert damping factor, 

and MS is the saturation magnetization. The effective field Heff 

consists of several contributions, namely the exchange field, the 

uniaxial perpendicular anisotropy field, the demagnetizing field, 

the current-induced field, and a stochastic thermal field at 

300 K. f1 and f2 are functions defining when the NM1 pulse and 

the NM2 pulse are active. The decision of when and how long 

to apply current pulses is primarily based on intuition so far and 

an automatic approach for the discovery of optimal current pulse 

sequences would be important. 

 

III. REINFORCEMENT LEARNING 

 
Reinforcement learning algorithms can be used to solve 

sequential decision-making problems for achieving a certain 

goal or objective. The two main entities in such scenarios in the 

context of RL are the agent and the environment. Over the length 

of one learning episode which is defined by the environment, 

the agent interacts with the environment by performing actions 

and gathering observations. Each performed action changes the 

state of the environment and the observations made by the agent 

are returned as signals from the environment consisting of 

information about the current state of the environment and a 

reward. The reward signal tells the agent how good (or bad) the 

previously performed action was for achieving the objective. 

Usually, many such episodes have to be performed, in which the 

agent refines its policy  𝜋, a mapping from states to actions, in 

such a way, that the received reward over the course of an 

episode is maximized. The basis for decision-making in value-

based reinforcement learning algorithms is the action-value 

function [2]. 

   𝑄𝜋(𝑠, 𝑎) = 𝔼 [∑ 𝛾𝑡𝑅𝑡  | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
𝑇

𝑡=0
] () 

It assigns a value to state-action pairs, expressed as the 

expectation value of the cumulated and discounted reward 𝑅𝑡, 

given that the current state is 𝑠 and the performed action is 𝑎, 

following the current policy 𝜋. The discount factor 𝛾 is a 

parameter controlling the influence of rewards received later in 

an episode on the estimate of the action-value function at the 

current time step. Having an estimate for the action-value 

function, the policy tells the agent, which action is best to take 

in a certain state. During training, greedily always taking the 

action promising the highest reward, i.e. the action with the 

highest value of the action-value function, can lead to an agent 

getting stuck in a local minimum, and a trade-off between 

exploitation of existing knowledge and exploration of new 

strategies has to be made. In ε-greedy policies, this trade-off is 

controlled by the exploration probability ε. Here, the greedy 

action is taken with a probability of ε, and a random action is 

taken with probability 1-ε. 

 

IV. RL APPLIED TO SOT SWITCHING 

 
For applying RL in order to learn how to best apply pulses to 

switch the pulsed SOT memory cell as fast as possible, we 

employed the deep Q-network (DQN) algorithm [7]. This 

algorithm uses a neural network to approximate the action-value 

function. Based on an RL Python library [8], which provides an 

Figure 2: General setup of the reinforcement learning procedure: 

The simulation of the SOT-MRAM cell acts as environment 

which an agent interacts with, to build up a policy based on a 

neural network. 

TABLE I.  SOT CELL SIMULATION PARAMETERS 

Parameter Value 

Saturation magnetization, MS 1.1 × 106 A/m 

Perpendicular anisotropy, K 8.4 × 105 J/m3 

Exchange constant, A 1.0 × 1011 J/m 

Gilbert damping factor, α 0.035 

Spin Hall angle, θSH 0.3 

Free layer dimensions 40 nm × 20 nm × 1.2 nm 

NM1: w1 × l 20 nm × 3 nm 

NM2: w2 × l 20nm × 3 nm 

 

TABLE II.  DQN PARAMETERS 

Parameter Value 

Neural network size 11 × 150 × 100 × 4 

Discount factor, γ 0.9997 

Learning rate 7.5 × 10-4 

Exploration fraction 0.2 

Final exploration probability, ε 0.01 

Replay buffer size 3 × 105 

Batch size 512 

 



implementation of the DQN algorithm and allows to easily 

couple custom environments, the approach depicted in Fig. 2 

was implemented. Apart from the parameters given in Table I, 

the DQN agent was used with the default settings. For the 

environment, an in-house developed finite difference simulator 

[9] was coupled to the RL library and was adapted to allow the 

exchange of action, reward, and state signals. The training of the 

agent was performed with the fixed material parameters given 

in Table II. The agent was allowed to perform 4 distinct actions, 

namely turning both currents on, turning both pulses off and 

turning one pulse on and the other one off and vice versa. To 

prevent the agent from turning the pulses on and off arbitrarily 

fast, a minimum pulse width of 100 ps was enforced. Results 

published in [10] determined the critical current for the given 

memory cell to be 120 µA. However, it was also shown that the 

current value for the NM2 wire could be reduced, while 

maintaining deterministic switching. Thus, the current values 

for NM1 and NM2 were chosen as 130 µA and 100 µA, 

respectively. 

The state signal returned to the agent every time step consists 

of 11 variables: The average vector components of the 

magnetization (𝑚𝑥, 𝑚𝑦 , 𝑚𝑧), the difference of the average 

vector components of the magnetization to the previous iteration 

(∆𝑚𝑥 , ∆𝑚𝑦 , ∆𝑚𝑧), the average vector components of the 

effective magnetic field (𝐻𝑒𝑓𝑓,𝑥 , 𝐻𝑒𝑓𝑓,𝑦 , 𝐻𝑒𝑓𝑓,𝑧), and two 

variables which indicate whether the currents on the NM1 and 

NM2 wire can currently be turned on. 

The most important component besides the state vector is the 

rewarding scheme which gives the agent feedback about the 

goodness or badness of the actions it has taken and thus encodes 

the objective. The reward function we employed is defined as 

follows. 

   𝑟 = 𝑚𝑧,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑚𝑧,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 () 

With an 𝑚𝑧,𝑡𝑎𝑟𝑔𝑒𝑡  of -1, the given function always produces a 

negative reward which is more negative, the farther away the 

current value of the average z-component of the magnetization 

is from the target value. This not only incentivizes the agent to 

reverse the z-component of the magnetization from +1 to -1, but 

also to do it fast, as the longer it takes, the more negative reward 

is accumulated. 

 

V. RESULTS 

 

After training, the weights of the neural network are not 

adjusted any further and the agent-environment setup as shown 

in Fig. 2 can be used to perform switching simulations in which 

the agent dynamically decides when to apply pulses. 

As there is a thermal field contribution to the effective 

magnetic field, we performed 50 realizations with the 

parameters given in Table II in which the agent tried to reverse 

the magnetization. The results are shown in Fig. 3. Due to the 

slight transparency of the single plot lines, one can see where 

multiple trajectories overlap, as those regions appear more solid. 

For the NM1 pulse, all the lines overlap exactly, which means 

that in all the realizations, the NM1 pulse was applied once in 

the beginning of the realization. The first two applied pulses on 

the NM2 wire were also applied in all realizations. Up until 1 ns, 

the magnetization trajectories match very closely, but then they 

start to drift apart. Between 1 ns and 1.5 ns, further NM2 pulses 

are applied in different realizations. The exact positions of these 

pulses vary, depending on the trajectory of the magnetization. 

The threshold of -0.9, at which we consider the memory cell to 

be switched, is reached deterministically in all realizations. 

To determine how reliable the neural network can switch the 

memory cell under variations of material parameters, while 

having been trained on the fixed parameters given in Table II, 

further experiments were performed, in which the saturation 

magnetization MS and the anisotropy constant K were varied 

individually by up to ±5%. Fig. 4 shows the results of these 

experiments, where the color-coding corresponds to how much 

overall reward the agent was able to accumulate. This total 

reward is higher, the closer the z-component of the 

magnetization is brought to the target value of -1. It is also 

higher if this transition is faster, as less negative reward is 

gathered. The blue-colored dots indicate a good overall 

performance. However, towards the top left corner, the 

performance of the switching realizations decreases. This can be 

Figure 3: Results of 50 realizations for fixed material parameters 

and INM1 = 130 µA and INM2 = 100 µA using the trained neural 

network model. Results of the single runs are plotted slightly 

transparent, such that regions where multiple lines overlap 

appear more solid. 



explained with the fact, that these combinations of values for the 

anisotropy constant and the saturation magnetization require 

higher current values to be switched, because the critical current 

is higher, as was shown in [10]. Out of the 121 performed 

switching simulations with varying parameters, ~75% were 

brought below the threshold of -0.9. 

As presented in [10], the critical current for the used memory 

cell with the material parameters given in Table II is 120 µA. To 

evaluate the possibility of switching with a reduced current, the 

current value of the NM1 wire was lowered to a sub-critical 

value of 110 µA. Fig. 5 shows results of 50 switching 

realizations with the material parameters of the memory cell set 

to the ones used for training (Table II). Again, it can be observed 

that a single pulse on the NM1 wire and two pulses on the NM2 

wire are applied in the beginning. These were applied in all 

realizations. The reduction of the NM1 current value, however, 

also reduces the variation in the trajectories of the z-component 

of the magnetization. The magnetization is oscillating less and 

settling faster towards the target value of -1. The crossing of the 

-0.9 threshold happens approximately 800 ps earlier than with 

the higher NM1 current. Again, performing simulations with 

varying the saturation magnetization as well as the anisotropy 

constant by up to ±5%, the results presented in Fig. 6 were 

achieved. The line separating the better performing realizations 

from the worse performing ones has shifted towards the center 

of the plot and the performance of the realizations in the top left 

corner decreased. Nevertheless, in 59% of the performed 

realizations, good performance could still be achieved, and the 

magnetization could successfully be reversed. 

 

VI. CONCLUSION 

 
We presented an RL approach, in which an RL agent 

autonomously learns how to reverse the magnetization in an 

SOT-MRAM cell. The agent dynamically applies pulses to 

achieve fast and deterministic switching. Even though being 

trained on a fixed material parameter set, the agent performs well 

under variation of these parameters. A current reduction to a sub-

critical value shows even better switching performance for the 

fixed parameter case, but also achieves good results under 

variation of material parameters. 

  

Figure 4: Accumulated reward achieved for an anisotropy 

constant K and a saturation magnetization MS varied by ±5% 

with INM1 = 130 µA and INM2 = 100 µA. Results are shown for a 

total of 121 parameter combinations. 

Figure 5: Results of 50 realizations for fixed material 

parameters and INM1 = 110 µA and INM2 = 100 µA using the 

trained neural network model. Results of the single runs are 

plotted slightly transparent, such that regions where multiple 

lines overlap appear more solid. 

Figure 6: Accumulated reward achieved for an anisotropy 

constant K and a saturation magnetization MS varied by ±5 % 

with INM1 = 110 µA and INM2 = 100 µA. Results are shown for a 

total of 121 parameter combinations. 
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