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Abstract—We demonstrate the use of reinforcement learning 

for achieving efficient switching schemes for a field-free 

operation of spin-orbit torque magnetoresistive random access 

memory cells. A cell is switched purely electrically by applying 

two orthogonal current pulses. It is shown that using a 

reinforcement learning approach, a neural network model can 

be trained on a fixed material parameter set for finding optimal 

switching pulse sequences. This model is not only suitable to 

switch a memory cell in the presence of thermal fluctuations, but 

also for varied cell material parameters. 
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I. INTRODUCTION 

The charge-based SRAM memory cells broadly in use 
today are volatile by design. The progressive down-scaling of 
these devices comes at the price of an increase in standby 
power consumption. A possible solution to this problem is to 
use adequately fast nonvolatile memory devices. Spin-orbit 
torque magnetoresistive random access memory (SOT-
MRAM) is one of the most promising variants. SOT-MRAM 
devices exhibit large endurance and very fast operation, which 
makes them suitable for use in high-level caches, where 
currently CMOS-based devices are predominant. Another 
technology development entering various scientific fields is 
machine learning (ML). Its ability to handle huge data sets and 
infer knowledge from them has enabled many scientific 
advances [1]. The ML sub-branch of reinforcement learning 
(RL) [2] is based on the imitation of the way humans learn, 
with impressive demonstrations of superior performance in 
chess or Go [3]. 

This work is an advancement to the previous introduction 
of RL for SOT-MRAM switching presented in [4]. In this 
work we show that RL can be used to find pulse sequences for 
reliable SOT-MRAM cell switching. Most importantly, a 
model trained for a specific parameter set performs excellently 
on a broad distribution of varying materials and parameters 
and can help to find more reliable pulse sequences. 

II. SPIN-ORBIT TORQUE MEMORY 

In MRAM devices, the information is stored as the relative 
orientation of the magnetization in two ferromagnetic layers, 
which, together with a tunnel barrier which lies between them, 
form a magnetic tunnel junction (MTJ). The orientation of the 
magnetization changes only in one of the two ferromagnetic 
layers, the free layer (FL). The other one is called reference 
layer and its magnetization orientation is kept constant. The 
two biggest contenders in the nonvolatile memory field are 
spin-transfer torque MRAM (STT-MRAM) and 
SOT-MRAM. The reading procedure for stored information is 
the same in these two types of devices, but they differ in how 
the information is written. In STT-MRAM a spin-polarized 
current is sent through the MTJ, initiating the precessional 
motion of the magnetization, which eventually leads to 
switching. For SOT-MRAM on the other hand, the switching 

current does not flow through the MTJ, but through a heavy 
metal wire attached to the bottom of the FL, which exhibits a 
large spin Hall angle. Due to the spin Hall effect, the charge 
current is converted into a transverse spin current, exerting a 
torque on the magnetization in the FL, again initiating the 
precession and reversal of the magnetization. This separation 
of the read and the write path has positive effects on the 
reliability of these devices, as the current flowing through the 
MTJ cannot only lead to degradation of the thin tunnel oxide, 
but also to erroneously written information, when a read 
operation is performed. However, to deterministically switch 
an SOT-MRAM cell, an external magnetic field is still needed 
[5]. Many solutions have been proposed, e.g. [6], out of which 
one was introduced only recently and solves the problem by 
adding a second heavy metal wire, orthogonal to the first one, 
but only partially overlapping the FL (cf. Fig. 1) [7]. By 
applying pulses to both wires, the magnetization can be 
reversed reliably without the need of an external field. 
However, pulses applied to both metal wires are needed for 
reliable switching. The dynamics of the magnetization in the 
free layer are described by an extended version of the Landau-
Lifshitz-Gilbert equation 
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in which m is the normalized magnetization, 𝛾 is the 
gyromagnetic ratio, 𝜇0 is the vacuum permeability, 𝛼 is the 
Gilbert damping factor, and MS is the saturation 
magnetization. The effective field Heff consists of several 
contributions, namely the exchange field, the uniaxial 
perpendicular anisotropy field, the demagnetizing field, the 
current-induced field, and a stochastic thermal field at 300 K. 
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Fig. 1: SOT-MRAM cell for switching based on two orthogonal 

current pulses. The pulses are sent through the structure via two non-

magnetic heavy metal wires, of which one is fully overlapping the FL 

(NM1) and one only partially (NM2). 
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Θ1 and Θ2 are functions defining when the NM1 pulse and the 
NM2 pulse are active. While previous publications on this 
SOT memory cell have investigated the switching reliability 
under variation of the pulse duration, pulse current values, 
material parameter variation, and the delay of an NM2 pulse 
following an NM1 pulse, decisions on the exact placement of 
the pulses were based on intuition. An automated way for 
finding optimal pulse sequences is highly desirable. What 
complicates the challenge of finding good pulse sequences for 
switching a memory cell, is the fact that MRAM fabrication 
processes underlie variability. Thus, material parameters like 
the saturation magnetization and the magnetic anisotropy can 
have variations of ±10% [8]. The impact of variations of 
these parameters on the critical current of the pulsed SOT-
MRAM cell was already investigated in [9]. 

III. REINFORCEMENT LEARNING 

In reinforcement learning, an agent repeatedly interacts 
with an environment by performing certain actions. In this 
iterative process, after every action of the agent, the 
environment returns information about the new state it has 
transitioned to and a reward, indicating how good or bad the 
action was. This information is used by the agent to refine its 
policy, which is a mapping from states to actions. The basis 
for the decision-making in so-called value-based 
reinforcement learning algorithms, like Q-learning [2], is the 
action-value function. 

   𝑄𝜋(𝑠,𝑎)=𝔼[∑ 𝛾𝑡𝑅𝑡 | 𝑆𝑡=𝑠,𝐴𝑡=𝑎
𝑇

𝑡=0
] () 

The action-value function is defined with respect to a policy 
π. It is the expectation value of the cumulated reward Rt, 
discounted by the factor γ, given that the action at time t, At, is 

a and that the state at time t, St, is s. The discount factor γ 
defines how strongly future rewards influence the action-value 
estimate at time t. Other solution methods for approximate 
optimization, like genetic algorithms, simulated annealing or 
evolution strategies do not estimate value functions. They 
rather mimic biological evolution with a survival of the fittest 
behavior. As they do not make use of state or action 
information, learning is often less efficient than in RL [2]. If 
an RL agent encounters the same state multiple times, it can 
refine its estimate of the action-value function by either 
making a greedy decision and taking the action which 
promises the highest reward, or it can decide to further explore 
the state-action space by performing a - from the current point 
of view - sub-optimal action, with the possibility of 
discovering a new, better policy. As the action-value function 
is the basis for decision-making in Q-learning, having a good 
estimate is important and the state-action space should be 
explored thoroughly to have a good action-value 
approximation. The trade-off between exploration and 
exploitation of existing knowledge can be controlled with the 
exploration probability ε. The action with the highest estimate 
of the action-value is taken with a probability 1-ε and an 
explorative choice is made with a probability ε. For our 
experiments we employed the deep Q-network (DQN) 
algorithm [10]. This advancement of the original Q-learning 
algorithm uses a neural network as function approximator. 

IV. RL FOR SOT SWITCHING 

For applying RL to the pulsed SOT-MRAM cell, the 
approach depicted in Fig. 2 was set up. Based on an existing 
Python RL library [11], a custom RL environment was 
created, whose core consists of an in-house developed finite 
difference simulator of the previously described memory 
cell [12]. The parameters used for the micromagnetic 
simulations are given in Table I. The implementation of [11] 
was used for the DQN functionality with the RL agent being 
configured with the default parameters of the RL framework, 
apart from the given settings in Table II. With these settings 
the best learning performance was observed. 

A. State 

A crucial part for deciding which action to perform is the 
state vector returned to the RL agent at every time step. It has 
to be ensured that ambiguities are avoided and that the state 
delivers sufficient information. It is thus important, that data 
about the dynamics of the magnetization are included, because 
it would not be possible to decide on the best action without 
knowing in which direction the magnetization components are 
moving. The state vector used for the experiments consists of 

 

Fig. 2: General setup of the reinforcement learning simulation: A 

simulation of the SOT-MRAM cell acts as environment which an 

agent interacts with to build up a policy based on a neural network. 

TABLE II.  DQN PARAMETERS 

Parameter Value 

Neural network size 11 × 150 × 100 × 4 

Discount factor, γ 0.9997 

Learning rate 7.5 × 10-4 

Exploration fraction 0.2 

Final exploration probability, ε 0.01 

Replay buffer size 3 × 105 

Batch size 512 

 

TABLE I.  SOT CELL SIMULATION PARAMETERS 

Parameter Value 

Saturation magnetization, MS 1.1 × 106 A/m 

Perpendicular anisotropy, K 8.4 × 105 J/m3 

Exchange constant, A 1.0 × 1011 J/m 

Gilbert damping factor, α 0.035 

Spin Hall angle, θSH 0.3 

Free layer dimensions 40 nm × 20 nm × 1.2 nm 

NM1: w1 × l 20 nm × 3 nm 

NM2: w2 × l 20nm × 3 nm 
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11 variables: the averages of the magnetization vector 
components (mx, my, mz), the average effective field vector 
components (Heff,x, Heff,y, Heff,z), the difference of the 
magnetization’s vector components to the previous time step 
(∆mx, ∆my, ∆mz), and two variables indicating whether the 
NM1 and NM2 pulse are currently settable. These 11 state 
variables lead to a policy network input layer size of 11. 

B. Actions 

The agent is allowed to perform four different actions. 
With the restriction of a minimum amount of time between 
pulse changes of 100 picoseconds, the NM1 pulse and the 
NM2 pulse can be turned on and off individually. The output 
layer of the policy neural network is thus of size 4. The output 
of each of the output layer’s neurons corresponds to an 
estimate of the action-value function for a specific state-action 
pair. Depending on whether a greedy action or an explorative 
action should be taken, either an action promising the highest 
reward or a random one is returned. The returned action is an 
integer value from 0 to 3, which subsequently is used to select 
the settings of the pulses in the environment code. Based on 
the critical current value of 120 µA [9], the current value for 
the NM1 pulse was fixed to a value slightly above, i.e. 
130 µA. As in [9] it was shown that the current value of the 
NM2 pulse can be below the critical current, a current value 
of 100 µA was chosen. 

C. Reward 

The rewarding scheme is what leads the learning algorithm 
in the right direction and thus has to be designed carefully. The 
objective of the experiments is to achieve a fast transition of 
the average z-component of the magnetization from +1 to 
−1. For every simulation step, the agent receives a negative 
reward whose exact value depends on the distance between 
the current position of the average z-component 𝑚𝑧,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

and the target value 𝑚𝑧,𝑡𝑎𝑟𝑔𝑒𝑡 and is defined as: 

   𝑟=𝑚𝑧,𝑡𝑎𝑟𝑔𝑒𝑡−𝑚𝑧,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 () 

Thus, with 𝑚𝑧,𝑡𝑎𝑟𝑔𝑒𝑡=−1 , the further away the 

magnetization is from the target value, the more negative the 
reward is. This also ensures that the agent tries to get the 

z-component down rapidly, in order to reduce the overall 
accumulated negative reward. 

V. RESULTS 

The RL approach as seen in Fig. 2 was employed to train 

a policy neural network to reverse the FL magnetization in the 

SOT memory cell from +1 to −1, whereas we consider the 

reversal to be successful when the z-component of the 

magnetization reaches −0.9. The training process consisted of 

repeated, independent switching simulations, each with a 

maximum simulated time of 2 nanoseconds. After 

1 picosecond, the new state information as well as the reward 

for the previously selected action were returned to the agent, 

amounting to a total of 106 state-action pairs with their rewards 

for the agent to learn from. 

Among the performed training processes, the 

best-performing neural network model was further scrutinized 

by again performing switching simulations, but without any 

further adjustment of the neural network weights. Like this, 

the switching reliability over 50 realizations under a 

fluctuating thermal field was investigated. The results are 

shown in Fig. 3. The applied pulses and the magnetization 

trajectories of the single realizations are almost 

undistinguishable up until 1 nanosecond. Only afterwards the 

thermal field leads to a slight divergence of the magnetization 

between the realizations. Then the neural network model 

applies further NM2 pulses, of which the exact positions vary 

depending on the respective trajectory of the magnetization. 

Nevertheless, within a time window of ~2 nanoseconds, the 

z-component of all realizations is deterministically brought 

from +1 to −1. 
As material parameter variations of ±10% can occur in 

MRAM fabrication processes [8], we further studied how 

reliable the trained model can reverse the magnetization in the 

presence of variations of the saturation magnetization MS and 

the anisotropy constant K. For every combination of the 

parameters a simulation was performed and the trained model 

decided when to apply NM1 and NM2 pulses. The resulting 

trajectories of the current pulses and the magnetization can be 

seen in Fig. 4 and Fig. 5, respectively. Comparing the results 

 

Fig. 3: Results of 50 realizations for fixed material parameters using 

the trained neural network model. Results of the single runs are 

plotted slightly transparent, such that regions where multiple lines 

overlap appear more solid. 

 

 

Fig. 4: Pulses applied to NM1 and NM2 during 441 realizations with 

varying material parameters. The results of the single runs are 

plotted slightly transparent, such that regions where multiple lines 

overlap appear more solid. 
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with the ones presented in Fig. 3, one can see that there is more 

variability in the applied pulses as well as the magnetization 

trajectories. Out of the 441 realizations, ~42 % reach the −0.9 

threshold at the end of the 2-nanosecond simulation time. An 

equal number of trajectories, ~42 %, could not even be 

brought below the xy-plane, leaving ~16 % of the trajectories 

between 0 and −0.9. 
For a clearer picture of the performance of the model in 

this varied-parameter scenario, Fig. 6 gives an overview of the 

achieved accumulated reward for all the examined variation 

combinations. Most apparent is the upper left corner, for 

which the model accumulates more negative rewards, 

i.e. struggles to bring the z-component closer to −1. These 

low-performing runs correspond to the magnetization 

trajectories whose z-components stay positive throughout the 

simulation. This is consistent with results published in [9], 

which indicate that in this region of the two material 

parameters, a higher current is required to deterministically 

switch the memory cell. The lower right corner suggests that 

the applied current can also be too high for certain parameter 

combinations, as the achieved reward in this region starts to 

decrease and it is known from [9] that for a high saturation 

magnetization and a low anisotropy constant, the critical 

current is well below the used 130 µA. Nevertheless, a broad 

parameter range can still successfully be switched. 

VI. CONCLUSION 

 We demonstrated that reinforcement learning is a 
promising technique to optimize the switching of SOT-
MRAM cells. It is shown that, by training the neural network 
model to maximize its received reward during the learning 
phase for a fixed parameter set, an optimal pulse scheme for 
deterministic switching in the presence of thermal fluctuations 
and parameter variations is achieved. Pulse sequences derived 
from this study can considerably reduce the failure rate of 
SOT-MRAM write operations and increase their reliability. 
By incorporating material parameter variations into the 
learning phase of the neural network, there is potential for 
improving the switching reliability even more. 
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Fig. 5: Average z-component of the magnetization for 441 

realizations with varying material parameters. Results of the single 

runs are plotted slightly transparent, such that regions where 

multiple lines overlap appear more solid. 

 

 

 

Fig. 6: Accumulated reward achieved for anisotropy constant K and 

saturation magnetization MS varied by ±10%. Results are shown for a 

total of 441 realizations. 
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