ASHPC21 — AUSTRIAN-SLOVENIAN HPC MEETING 2021 ONLINE MEETING, MAy 315 — JUNE 27¢, 2021

Evaluating Parallel Feature Detection Methods for Implicit Surfaces

Christoph Lenz®, Alexander Scharinger®, Michael Quell®,
Paul Manstetten?, Andreas Hossinger’, and Josef Weinbub®

@ Christian Doppler Laboratory for High Performance TCAD, Institute for Microelectronics, TU Wien
bSilvaco Europe Ltd., St Ives, UK

A common approach when simulating semiconductor fabrication processes is to rely on an implicit surface
representation: Multiple level set functions are used to model topographical changes during individual
process steps [1]. To perform high resolution simulations with feasible run times, one approach is to use
adaptive resolutions to capture local features, such as sharp edges. A precise and fast feature detection
method, guiding the adaption mechanism, is desirable to optimize the overall computational efficiency.

We implemented and compared three shared-memory parallelized methods to detect features of a level set
function: (1) Normal flagging which compares the angle of each normal vector to the normal vectors in
a local neighborhood. In contrast, the other two methods are based on calculating the mean curvature
of the surface, i.e., using the (2) general formula for mean curvature of a level set function and the (3)
shape operator. However, the latter requires the level set function to be a signed-distance function [2].
All three methods flag the same regions. However, they differ in the extent of the required neighborhood
information (stencil) and how many floating-point operations (FLOPs) are performed per grid point. The
shared-memory parallelization is accomplished by domain segmentation based on the underlying hierarchical
run-length encoded data structure of the level set representation [1].

Fig. 1 shows the performance results
for all three feature detection meth-
ods benchmarked on a single node
of VSC-4 and based on a representa-
tive Trench geometry stemming from
an exemplary semiconductor fabrica-
tion process. The speedup for meth-
ods 1 and 2 is comparable for up to

Speedup

1

6

T
12

T
24

Number of Threads

48

Time (ms)

108 4

107 4

@® 1) Normal Flagging
2) General Formula
-@- 3) Shape Operator

1

6

T T
12 24 48

Number of Threads

48 threads, whereas method 3 shows
inferior speedup. However, the abso-
lute run time of method 3 is 3 times

Fig. 1: Run time and speedup of a Trench geometry with 10% grid points.

smaller than method 1 and about 1.5 times smaller than method 2. The low multi-core scalability is
expected due to the fact that all methods require a relatively low amount of FLOPs and are thus inherently
memory-bound. That being said, method 3 has the shortest serial run time as it requires the smallest
stencil. However, its speedup is thus also limited as data traffic dominates due to an even smaller number
of required FLOPs compared to the other methods.

Acknowledgement. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the Na-
tional Foundation for Research, Technology and Development is gratefully acknowledged. The computational results presented
have been achieved using the Vienna Scientific Cluster (VSC).

References

[1] O. Ertl: Numerical Methods for Topography Simulation, Doctoral Dissertation, TU Wien (2010)

[2] Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press
(1999)

31



