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Open boundary conditions for the Wigner equation have been introduced by Frensley [1] who  
used inflow boundary conditions at spatial boundaries. On a coarse mesh Frensley’s model 
produces superficially reasonable solutions, which however are an artifact of numerical 
diffusion. The model breaks down in the limit of a fine mesh [2].  

Frensley’s discretization corresponds to anti-periodic boundary conditions in the non-spatial 
coordinate of the characteristic von Neumann equation. To remedy the breakdown an absorbing 
imaginary potential can be employed as suggested in [3]. The absorbing potential avoids 
spurious reflections at non-spatial boundaries in the characteristic equation. 

Here we introduce a formulation of open boundary conditions based on a symmetric treatment 
of spatial and non-spatial coordinates in the characteristic equation. We apply inflow type 
boundary conditions also at the non-spatial boundaries. For this we use the Fourier transform 
of the characteristic function in the spatial coordinate which is denoted ambiguity function. We 
impose the condition that the flow into the domain at non-spatial boundaries is zero.  

As shown in Figures 1 and 2 results based on “no inflow” boundary conditions (open BCs) 
closely reproduce results from the quantum transmitting boundary method (QTBM). In Figure 
3 we compare results from open BCs with results when using an absorbing potential and find 
excellent agreement. This work clarifies the notion of open boundary conditions for the Wigner 
and the characteristic Neumann equation and demonstrates its numerical robustness. 
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