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Abstract—Defects in insulators can have a highly detrimental
impact on the performance of semiconductor devices. The study
of defect formation in these amorphous insulating materials is
a computationally challenging task, due to the relatively large
model sizes required and their stochastic nature. Here, we
propose a novel machine learning framework to predict the
formation and structure of defects in amorphous materials. Our
approach aims at significantly reducing the computational costs,
while maintaining a high level of accuracy. We present the results
of applying our workflow to the formation of hydroxyl E’ center
defects in amorphous silicon dioxide, which have recently been
suggested to be responsible for random telegraph and 1/f noise, as
well as the bias temperature instability. The process of predicting
a particular defect structure is studied in full-detail and statistical
results are presented for a testing data-set.

I. INTRODUCTION

The study of point defects in amorphous materials plays a
crucial role in the development of a wide range of modern
microelectronic technologies (e.g., random access memory
(RAM) devices) [1]-[3]. The majority of calculations required
for defect studies are routinely performed with ab initio
methods, in particular those based on density functional theory
(DFT). However, these methods are computationally expensive
and this disadvantage narrows their use to relatively small
systems (on the order of a few hundred atoms) and particularly
short time scales (on the order of tens of ps). This substantially
limits their applicability for the calculation of large statistics,
which is a crucial factor in the study of amorphous structures.
In this context, computationally inexpensive machine learning
(ML) based solutions offer a very promising approach for
drastically reducing the computational efforts needed to study
defects in complex atomistic structures. ML based solutions
can either aid current ab initio based methods or even replace
them entirely [4], [5].

In this work, a ML based solution was developed to predict
the structure of hydroxyl E’ center defects in amorphous
silicon dioxide (a-SiO;) models. The study of these defects is
particularly important in the field of modern micro- and nano-
electronic device reliability issues, since they are suspected
to be responsible for bias temperature instability (BTI) and
random telegraph noise (RTN) in MOS transistors [6]—[8].

We present a framework based on ML applied to predict a
particular defect structure in a specific material. However, our
approach is not limited to this particular test case and can be
easily applied to other types of defects and/or other materials.

II. METHODOLOGY

The first step towards an efficient ML based prediction
is a consistent training data-set. We prepared 16 different
defect-free a-SiO, models, each containing a total of 216
atoms. These structures were created by utilizing the melt-
quench technique [9] within the molecular dynamics engine
LAMMPS [10] in conjunction with the classical force field
ReaxFF [11]. Examples of these structures are shown in Fig. 1.
A total number of 1271 unique hydroxyl E’ centers were se-
lectively created by placing a hydrogen atom in the vicinity of
a bridging oxygen atom, followed by a subsequent geometrical
relaxation. An elongated (weaker) Si-O bond will break and a
hydroxyl (OH) group forms with a remaining defective silicon
dangling bond in its neutral configuration, as shown in Fig. 2.

Fig. 1: Example of two a-SiO, structures containing 216 atoms
each, used in this work to train and test the ML model. Yellow
depicts silicon atoms, while red depicts oxygen atoms.
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Fig. 2: A hydrogen atom is placed in the vicinity of a bridging
oxygen atom (a) and the structure is subsequently relaxed.
Breaking of an elongated Si-O bond leads to the formation
of a hydroxyl E’ center (b), which is a silicon dangling bond
facing a hydroxyl (OH) group.
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Fig. 3: Proposed workflow to predict the structure of defects in atomistic models. First, the local environment around the atom
of interest in the defect free structure is represented by a descriptor. This matrix contains a vector for every atom near the
site of interest and it is used as an input for a ML model, which then predicts the descriptor of a defect formed at that site
(1). An optimization method is used to adjust the coordinates of the atoms in the defect free structure until their description
matrix matches the predicted one (2). Finally, in order to validate the results, the ML predicted structure is compared to its
equivalent DFT-relaxed structure (if available), by means of a comparison function (e.g., geometrical distance) (3).

Calculations were performed using the PBE functional [12] in
the CP2K software package [13], which is a computationally
expensive process. Typically, 4 nodes with 48 cores each
require several hours to complete a single geometry relaxation.
In total, the data-set is composed of 1271 hydroxyl E’ centers
and the respective defect free host structures. Once the data-
set is created, the next step is to represent these structures
in a way compatible with the selected ML algorithm. Such
a mathematical representation of the structures (i.e., a
vector or matrix) is called a descriptor. There is a wide
range of available descriptors, ranging from local to global
representations and including structural and/or electrostatic
contributions, such as atom-centered symmetry functions
(ACSF) [14], Ewald sum matrix [15] and smooth overlap
of atomic positions (SOAP) [16]. Among the different
options, we chose a structural representation using the SOAP
descriptor, since this descriptor showed the best performance
in our previous work, in which we used a ML model to
predict the formation energies of hydroxyl E’ centers in
a-SiO; structures [17]. However, given the flexibility of our
approach, any other descriptor, even individually designed
ones, can be used within the proposed workflow.

Out of the 16 a-Si0O, structures, 15 are used to train the model
and one is left for testing purposes. This translates into 1188
hydroxyl E’ center structures in the training set and 83 in
the testing set. The atoms within a 3 A cutoff radius at every
defect site, which on average contains about 9 atoms, are
used to construct a local descriptor of the defect environment,
utilizing the SOAP descriptor, as implemented in the Python
package DScribe [18]. To analyze the data, we employ a
kernel ridge regression (KRR) model [19], as implemented in
the scikit-learn package [20]. This is a cost-efficient model,
which performed well in our previous study [17]. In this
work, we extend its application to the prediction of defect
structures, instead of just their formation energies.

Our ML model is trained to find the relationship between the
SOAP descriptions of the hydroxyl E’ centers and their host
defect free a-SiO, structures. Once the ML model is trained,
it is capable of predicting the formation of defects and their
structural properties in new structures. The procedure is as
follows:

1) Prediction: The environments of the surrounding atoms
of interest in the defect-free structure are represented
with the SOAP descriptor. This matrix is used as an
input for the ML model, to predict the SOAP descriptor
of the resulting defect complex.

2) Optimization: An optimization method is used to adjust
the coordinates of the atoms in the defect free structure
until its descriptor matrix matches the descriptor matrix
predicted by the ML model for the defect structure.
In this particular application, the Nelder-Mead method,
with a convergence criteria of 5% of the initial loss
function value.

3) Validation: The final step of the process is to validate
the results. This is done by comparing the ML predicted
defect structure with the equivalent target structure
produced by DFT relaxation. We use the geometrical
distance between the ML predicted and DFT relaxed
defect site as a measure for the prediction quality.

The entire proposed workflow is graphically summarized
in Fig. 3. As stated above, the same generic workflow could
be used in the prediction of other defects in new materials.

III. RESULTS AND DISCUSSION

In order to provide a clear illustration of the application
of our proposed framework, the workflow shown in Fig. 3
is applied to the prediction of a particular defect, namely a
hydroxyl E’ center in an initially defect-free a-SiO, structure.
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Fig. 4: (a) Prediction of the formation of a hydroxyl E’ center in an a-SiO, structure. The local environments of the atoms
around the oxygen atom of interest are described with a matrix of SOAP descriptors (1). This matrix is used as input for our
ML model (2), to predict the SOAP description matrix of the defective site (3). An optimization method is used to adjust the
coordinates of the atoms in the input structure, in order to minimize the mean squared error (MSE) between the optimized and
predicted SOAP matrices, and hence forms the defect in the a-SiO, structure. The bottom right figure shows how the difference
between the initial and predicted defect structure descriptor matrices reduces as the optimization progresses. The final result
(5) is the predicted defect structure. (b) Zoom to the predicted structure. (c) Superposition between the ML predicted defect
structure (color) and its DFT-relaxed equivalent (shadow) around the defect site.

Details of our application and the individual steps are shown
in Fig. 4. A bridging O atom in the top right of the structure
is selected as the precursor configuration for the hydroxyl
E’ center. Subsequently, the SOAP descriptor matrix of the
surroundings of the O atom is computed with the parameters:
Teut = 3.0 A and ny.y = lnax = 4, as shown in Fig. 5.

The resulting matrix is used as an input for our ML model,
which was previously trained with the training data-set. Our
ML model predicts the expected SOAP description matrix of
the defective structure at the site of interest.

Once this prediction is made, a loss function is defined as
the mean squared error (MSE) between the predicted SOAP
and the defect free structure with one additional H atom
placed in the direct vicinity, 1 A, of the bridging atom, to
form the defect. An optimization method is used to adjust
the coordinates of the respective atoms in the input structure
until this loss function reduces below a certain threshold
value. The optimization method selected in this case is the
Nelder-Mead method, implemented in the Python package
SciPy [21]. However, given the flexibility of our approach,
other optimization methods, including optional bounds or
(non-) linear constraints can be used instead. The final result
is the predicted structure of the defect, as shown in the
bottom-left of Fig. 4.

| e

Fig. 5: Defect free structure descriptor matrix. Each row of
this matrix is the SOAP vector representation of the local
environment of a specific atom. Only those atoms within a
certain cutoff distance from the central oxygen atom (C. O.
A.) of interest, are considered.

The complete prediction and optimization process took 0.5
seconds on a typical desktop machine (Intel Core i7 2.2 GHz
and 8 GB of RAM).

Given the stochastic nature of the amorphous network, the
accuracy and efficiency of our proposed framework must be
analyzed on a statistical scale. We therefore benchmarked it
against a full set of data of an a-SiO, model, the testing data-
set. Nevertheless, the respective DFT calculations are available
and were used as a reference by computing the distance vector
of atoms within 6 A around the defect site. The results are
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scaled w.r.t. the number of atoms involved, in order to obtain
a normalized quantity.
The loss function to be minimized in the optimization process
was defined as the MSE between the SOAP matrices of the
input and predicted structures (loss function A)'. A second
loss function was defined by adding a penalty if the distance
between the hydrogen and central oxygen atoms deviated from
1 A (loss function B)?. The process of predicting the hydroxyl
E’ center defect structures in the testing data-set was repeated
under identical conditions for both loss functions.
The results can be seen in Fig. 6, which shows the distribution
of the deviations of the ML based approach compared to the
DFT results across the testing data-set. For the 83 structures
in the testing set, the average distance between the ML and
DFT structures is 0.461 A/atom for loss function A and
0.285 A/atom for loss function B. This shows that the frame-
work works without any user knowledge about the system.
However, with some detailed information and knowledge, the
individual modules can be fine-tuned to provide even more
accurate predictions.
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Fig. 6: Distribution of the deviations of the ML predicted
defect structures compared to its equivalent DFT-relaxed struc-
tures, together with its mean value. Atoms within a 6.0 A
cutoff distance from the central oxygen atom are considered.

IV. CONCLUSIONS

There is a wide range of applications in which machine
learning (ML) based techniques can provide computationally
inexpensive, but accurate solutions, as shown by several ex-
amples in the literature [4], [5], [15]. In this work, a solution
was developed to study the formation of hydroxyl E’ center
defects in amorphous silicon dioxide (a-SiO;). The results
clearly demonstrate a competitive level of accuracy, while
being computationally inexpensive when compared to DFT.
The presented approach benefits from being highly modular,
meaning that its components are interchangeable with other
descriptors, ML models and optimization algorithms, depend-
ing on the individual problem. Hence, it can be easily extended
and adapted to other defect species in a-SiO,, or even different
materials, such as hafnium dioxide (HfO,).

large simulation cells and investigations on a large statistical
scale. Furthermore, applications with a demand of on-the-
fly calculations of certain data, such as kinetic Monte Carlo
(kMC) simulations [22], benefit from the presented framework.
Currently, reaction rates in such simulations have to be pre-
defined. However, with our approach, structural and energetic
information can be calculated almost instantaneously.
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