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A B S T R A C T   

Continuous miniaturization has brought the feature size of silicon technology down into the nanometer scale, 
where performance enhancement cannot easily be achieved by further size reduction. The use of new materials 
with advanced properties has become mandatory to meet the needs for higher performance at reduced power. 
Topological insulators possess highly conductive topologically protected edge states which are insensitive to 
scattering and thus suitable for energy efficient high-speed devices. Here, we evaluate the subband structure in a 
narrow nanoribbon of 1T′ molybdenum disulfide by employing an effective k⋅p Hamiltonian. Highly conductive 
topologically protected edge modes whose energies lie within the bulk band gap are investigated on equal footing 
with traditional electron and hole subbands. Due to the interaction between the edge modes at opposite sides, a 
small gap in their linear spectrum opens up in a narrow nanoribbon. This gap is shown to sharply increase with 
the perpendicular out-of-plane electric field, in contrast to the behavior in a wide nanoribbon with negligible 
edge modes interaction. The gap between the traditional electron and hole subbands also increases with the 
perpendicular electric field. The increase of both gaps leads to a rapid decrease of the ballistic nanoribbon 
conductance and current with the electric field, which can be used for designing molybdenum disulfide 
nanoribbon-based current switches.   

1. Introduction 

Topological insulators (TIs) belong to a new class of materials 
characterized by highly conductive edge states which lie in the 
forbidden band gap of the bulk insulating material. In order to have such 
states in the gap, the bulk host material must possess an inverted band 
structure with the valence band edge above the conduction band edge. 
The existence of states with a gapless linear Dirac-like energy dispersion 
localized at the edge of a TI could be visualized as a result of restoring 
the standard band order with the conduction band above the valence 
band at the interface of the host bulk TI with a normal dielectric (air). 
The edge states are topologically protected by time-reversal symmetry, 
which results in electron propagation without backscattering. 

Edge states in two-dimensional (2D) TIs propagating without back-
scattering are attractive for designing highly conductive channels [1]. 
However, possessing robust conductive channels is only one require-
ment. To make a good switch it is necessary to efficiently control the 

current by suppressing it in the off-state as well as to abruptly change 
between the on- and off-states. A plausible option to control the current 
efficiently in a 2D TI is to modulate scattering by moving the Fermi level 
into and out of the bulk bandgap [2]. If the Fermi level lies in the gap, 
the electrons propagate through the topologically protected edge 
without backscattering (on-state). In contrast, the electrons from the 
edge states can scatter and backscatter strongly through the bulk states, 
if the Fermi level moves out the bandgap and lies in the bulk conduction 
band or in the valence band. Scattering suppresses the edge states’ 
current by more than two-orders of magnitude compared to the on-state 
current, thus paving the way to build an imperfect two-dimensional 
topological insulator field-effect transistor [2]. 

Recently it was found that the 1T′ phase of MoS2, a well-known 2D 
material with high promise for future microelectronic devices [3], is a TI 
[4]. The inverted band structure predicted by ab-initio calculations is 
well approximated by parabolas, with the conduction and valence bands 
having masses of md(p)

y(x) and their extrema separated by an inverted gap 2δ 
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[4]. Without taking spin–orbit interaction into account, the material is a 
semimetal. The spin–orbit interaction opens a gap at the intersection of 
the valence and conduction bands, which appears at a finite value of the 
momentum ky along the OY axis. A topologically protected highly 
conductive state with linear Dirac-like energy dispersion along the kx 
momentum axis - parallel to the OX axis - exists within this spin–orbit 
gap and is located at an edge of the MoS2 sheet in the 1T′ phase [4]. 

Applying an orthogonal electric field, Ez, along the OZ axis perpen-
dicular to a MoS2 sheet in the 1T′ phase offers a possibility to manipulate 
the bulk spin–orbit gap. With increasing field, Ez, the gap can be 
reduced, closed, and reopened again [4]. If the gap between the bulk 
bands reduces, the energy window, within which the edge modes 
propagate without backscattering, shrinks. Outside of this energy win-
dow, efficient scattering between the edge and bulk modes reduces the 
current carried by the edge modes. When the gap in the host bulk ma-
terial is closed, scattering between the edge states and the non-protected 
electron and hole bulk efficiently suppresses the current through the 
channel, in complete analogy to the imperfect two-dimensional TI field- 
effect transistor [2]. With further increase of the electric field, the 
traditional band order is restored indicating a topological phase transi-
tion from a non-trivial to a trivial insulator. The gap opens again, but no 
edge states in the gap are allowed, and any current due to these states is 
thus completely absent [5]. The ability to modulate the gap and its 
nature by applying an external electric field therefore opens an alter-
native and complementary path to control the current flow with the gate 
voltage by efficiently eliminating the current carrying topologically 
protected states in the gap [5]. 

In order to enhance the on-current carried by the edge states it is 
beneficial to have many edges by stacking several, preferably narrow 
nanoribbons to decrease the transistor’s footprint. However, it is not 
clear whether the gap between the bulk bands is going to close with 
increasing electric field, as quantum confinement results in a wider gap. 
It is therefore expected that the bulk gap never closes in a nanoribbon; 
however, the quantitative value of the lowest electron and highest hole 
bulk-like subbands’ separation compared to the spin–orbit interaction 
induced gap is unknown. As the gap between the normal subbands does 
not close at any electric field, it is even less clear what is going to happen 
to the topologically protected edge modes and whether the electric 
current carried by them can be manipulated by applying a perpendicular 
electric field. 

In this article, we evaluate the subband structure in a narrow 
nanoribbon of 1T′-MoS2 TI as a function of the orthogonal electric field 
by employing an effective k⋅p Hamiltonian [4]. The gap between the 
non-topological bulk-like subbands never closes, instead increasing with 
the strength of the electric field. We find that a small gap in the spectrum 
of edge states opens at kx = 0 and we show that it increases with an 
applied orthogonal electric field. The gap in the edge states is due to an 
interaction between the states located at opposite edges of a narrow 
nanoribbon [6]. As the gap increases with the electric field in a nano-
ribbon, it leads to a rapid decrease in the edge states’ ballistic conduc-
tance with increasing electric field, which is potentially suitable for 
switching. However, this is in contrast with recent findings [7]. We 
elucidate on the reason of the discrepancy and compute the ballistic 
conductance due to the edge-like modes for several nanoribbon widths. 

2. Method 

2.1. Effective Hamiltonian 

The inverted band structure of 2D MoS2 in a 1T′ phase is well 
described by the parabolic dispersion relations 
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Therefore, without taking spin–orbit interaction into account, the 
material is a semi-metal provided that the Fermi level crosses the 
intersection points. The spin–orbit interaction makes the conduction and 
the valence bands interact with each other, which opens gaps around the 
intersection points at ky = ±k0. The effective Hamiltonian H is written 
as [4,5] 

H =
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Here ν1(2) are the velocities defining the strength of the spin–orbit 
interaction and αEz describes the additional Rashba splitting between 
the bands due to the perpendicular electric field Ez [5]. Ez can manip-
ulate and change the nature of the gap close to the degeneracy points at 
ky = ±k0. The parameters [4] are listed in Table 1. 

It is convenient to perform a canonical transformation of the 
Hamiltonian (4) 

H’(k) = A− 1HA (5)  

by means of a unitary matrix A. 

A =
1
2

⎛

⎜
⎜
⎝

1 1 1 1
1 1 − 1 − 1
1 − 1 1 − 1
1 − 1 − 1 1
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⎟
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⎠ (6) 

After the unitary transformation, the Hamiltonian H′ is in the block- 
diagonal form 

H′

=

(
H(k) 0

0 H†( − k)

)

, (7)  

where (Z†) stands for a conjugate transpose matrix Z. The possibility to 
express the Hamiltonian in the form (7) is a consequence of the time- 
reversal symmetry. To simplify the 2 × 2 Hamiltonian H(k), we 
perform the additional transformation 

Table 1 
Parameters [4] used in the model. me is the electron 
mass, e is the electron charge, and d is the width in OY 
direction.  

Variable Value 

δ 0.33 eV 
v1  3.87 105 m/s 
v2  0.46 105 m/s 

mp
x  0.5me  

mp
y  0.16me  

md
x  2.48me  

md
y  0.37me  

α  0.03 e nm 
k0  1.386 nm− 1 

d 40k− 1
0 = 28.86 nm   
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H(k) = B− 1H’B, (8)  

with 
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The transformation (8), (9) preserves the block-diagonal structure 
(7). The upper 2 × 2 block H(k) is of the form 
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If we measure energies in units of E0 = 2δ and the wave vectors k =
(
kx, ky

)
in units of k0, the Hamiltonian (10) can be conveniently written 

in the dimensionless form 

H(k) =

⎛

⎜
⎜
⎜
⎝

1
2
− k2

y
m
mp

y
− k2

x
m
mp

x
ν2ky − αEz + iν1kx

ν2ky − αEz − iν1kx −
1
2
+ k2

y
m
md

y
+ k2

x
m
md

x

⎞

⎟
⎟
⎟
⎠
, (11)  

where m =
md

ymp
y

md
y+mp

y 
and ν1(2) are the dimensionless velocities. The Hamil-

tonian (11) possesses a similar form to the famous Hamiltonian [8] 
describing the quantum spin Hall effect in Hg/CdTe heterojunctions. 
However, the relation between the parameters is different, which results 
in the inverted band structure with the gap open by the spin–orbit 
interaction at a finite value of ky = ±k0. The energy dispersion obtained 
from (11) and offset by 

ΔE =
1
2

md
y − mp

y

md
y + mp

y
(12)  

is shown in Fig. 1 for kx = 0. If the off-diagonal terms in (11) are zero, 
the dispersion curves intersect at ky = ±k0 and Ez = 0. The spin–orbit 
interaction described by the off-diagonal terms opens a gap at the 
intersection of the valence and the conduction bands at ky = ±k0, 
(Fig. 1, solid line). 

When an electric field Ez along the OZ axis is applied, the gap at one 
of the minima reduces, completely closes (Fig. 1, dotted line), and opens 

again (Fig. 1, dot-dashed line) at large electric fields. The gap at large 
electric fields becomes direct and the bands are correctly ordered, so no 
edge states are possible within the bulk gap. 

The gap also depends on kx as shown in Fig. 2. The term which de-
pends linearly on kx enters in the off-diagonal terms in (11) similar to the 
term 

(
ν2ky − αEz

)
σx linear in ky, where σx is the x-Pauli matrix How-

ever, in contrast to the ky term, the kx term − ν1kxσyenters with σy Pauli 
matrix. As both orthogonal off-diagonal terms define the spin–orbit 
contribution to the gap Δ, it can be expressed as 

Δ = (v2
1kx

2 +
(
v2ky − αEz

)2
)

1
2. (13) 

Expression (13) explains the dependence of the gap on kx seen in 
Fig. 2. It also explains, why the gap never closes, if the momentum kx is 
nonzero. 

2.2. Subband calculations 

We consider a nanoribbon of width d confined along the OY axis. As 
the Hamiltonian (7) is block-diagonal, the eigenvalue problem of each 
block can be solved separately. Since the lower 2 × 2 block H†( − k) of 
the Hamiltonian (7) is the time-reversal of the upper block H(k), the 
corresponding spin-down eigenwave function ψ↓(y) can be found from 
the spin-up solution for the upper block in (7) by the time-reversal 
symmetry transformation ψ↓(y) = − iσyψ*

↑(y) [6], where σy is the Pauli 
matrix. We therefore only focus on the solutions ψ↑(y) of the upper 2 × 2 
block HamiltonianH(k).

In the transverse direction only quantized values of the momentum 
ky = kj are allowed [9,10]. In addition, it is expected that at Ez = 0 two 
topologically protected edge states localize at opposite edges of the 
nanoribbon at an energy E within the gap which is opened at ky =±k0by 
the spin–orbit interaction. 

The subband wave functions ψkx
(y) in the quantization direction 

have the general form [9] 

ψ↑kx
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∑4

j=1
Aj
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a
b

)
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(
ikjy

)
, (14)  

where Aj are some expansion coefficients, the wave numbers k1,⋯, k4 

are the roots of ε(kx,kj) = E, where ε
(
kx, kj

)
is the bulk dispersion, and 

the spinor (a, b)T is an eigenvector of (11) with 

a = ν2kj − αEz + iν1kx (15a)  

b = −
1
2
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j
m
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y
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x
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Fig. 1. Bulk energy dispersion in 1T′-MoS2 two-dimensional material, kx = 0. 
It displays the gaps at ky = k0 in the inverted band structure at Ez = 0 (solid 
lines). Increasing the electric field to Ez = α− 1ν2 closes the gap (dotted lines) 
and reopens it again as a direct gap (Ez = 2α− 1ν2, dot-dashed lines). 

Fig. 2. Bulk energy dispersion in 1T′-MoS2 two-dimensional material for kx =

0.1k0 at Ez = 0 (solid lines), Ez = α− 1ν2 (dotted lines), and Ez = 2α− 1ν2 (dot- 
dashed lines). 
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Setting the wave function at both edges to zero yields the quantiza-
tion condition 

det(M) = 0, (16)  

where the matrix M = ( m1 m2 m3 m4 ) is composed of the col-
umn vectors mj defined as 

mj =

⎛

⎜
⎜
⎝

a
b

aexp
(
ikjd

)

bexp
(
ikjd

)

⎞

⎟
⎟
⎠ (17) 

From the condition det(EI − H) = 0 a quartic equation for ky is 
obtained: 

k4
y + c2k2

y + c1ky + c0 = 0. (18) 

A simultaneous solution of (16) and (18) is found numerically using 
the Newton method. We define the unknown vector as x =

(k1, k2, k3, k4,E)T and treatkx as an input parameter. By means of Vieta’s 
formulas a nonlinear equation system of the form F(x) = 0 can be set up, 
where the vector-valued function F is composed of the following 
components: 

F1 = k1k2k3k4 − c0  

F2 = k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4 + c1  

F3 = k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4 − c2  

F4 = k1 + k2 + k3 + k4  

F5 = det(M). (19) 

In a typical band structure calculation, one chooses an initial point 
(kx,E). To have the Newton iteration converge to an energy close to its 
initial value and to prevent jumps to some remote subbands, the update 
vector has to be damped. During the Newton iteration, E is allowed to 
assume real values only, whereas thekj are complex. 

Fig. 3 displays the behavior of the real part (the imaginary part is 
zero for Ez = 0) of the determinant as a function of energy, for kx = 0. 
We are interested in the crossings of the curve with the line E = 0. The 
bulk gap due to the spin–orbit interaction occurs at E ≈ ±0.06. The 
value of the determinant approaches zero from negative values and 
touches it at a single point. If we now draw a horizontal line at an energy 
E in Fig. 1 and start moving E from negative values up to positive values, 
it enters into the gap at E ≈ − 0.06 and leaves the gap at E ≈ 0.06 for Ez =

0 (Fig. 1, solid lines). Therefore, at these energies, the constant energy E 

horizontal line touches the maximum (minimum) of the dispersion 
curves. At these points k1 = k2 and k3 = k4, which ensures the deter-
minant (16) is zero. 

Although (16) is zero at these energies, the roots discussed above 
must be excluded from the consideration of subbands in a nanoribbon. 
Indeed, (16) is zero because at least two of the columns (17) are identical 
due to k1 = k2 and/or k3 = k4. In this case the wave function (14) 
contains only three coefficients Aj which are determined by zero 
boundary conditions. As the wave function (14) contains two compo-
nents, and each of the components must be zero at the edges of the 
nanoribbon, we have an overdetermined system of four linear equations 
for these three coefficients Aj. The only solution in this case is the trivial 
one, where the wave function is zero everywhere. Therefore, these roots 
do not correspond to subbands and must be disregarded. We note here 
that these solutions were wrongly assigned in [7] to subbands, which 
resulted in an incorrect interpretation of the results as we discuss later in 
detail. 

All other intersections with the line det(M) = 0 correspond to sub-
band energies. We clearly observe two roots located in the gap at 
E ≈ ±0.005. A close inspection shows that the wave numbers kj corre-
sponding to these two solutions are complex. The wave functions for the 
spin-up case corresponding to these solutions in the gap are located at an 
edge of the nanoribbon as shown in Figs. 4 and 5 for kx = 0.1k0 and 
E ≈ ±0.005, respectively. The electron (E ≈ 0.005) wave function 
shown in Fig. 4 is localized at the left edge of the nanoribbon. Due to 
time-reversal symmetry, the electron wave function square for the 
opposite spin orientation (spin down) and for kx = − 0.1k0 coincides 
with the one shown in Fig. 4. The spin-up wave function is localized at 
the right edge of the nanoribbon at kx = − 0.1k0. It is a mirror sym-
metric to the wave function shown in Fig. 4 relative to the center of the 
nanoribbon. 

The wave function for holes (E ≈ − 0.005) in the spin-up case is 
shown in Fig. 5. It is located at the opposite edge of the wave function for 
electrons. Following similar arguments, the hole wave functions for the 
spin-down case and kx = ±0.1k0 can be easily obtained. The wave 
function for the spin-down case and kx = − 0.1k0 is localized at the left 
edge, while the wave function for the spin-up case and kx = − 0.1k0 
coincides with the one shown in Fig. 5. We note that only the part of the 
wave function describing the subbands are similar, while the complete 
wave function includes the plane wave factor describing the propaga-
tions in opposite directions along the OXaxis. 

In contrast to [6], where only an exponential decay of the edge states 
was predicted, the wave functions shown in Figs. 4 and 5 display both 
oscillations and decay. We also note that the period of the electron wave 
function oscillations is not equal to that of the hole function and is a bit 

Fig. 3. Real and imaginary parts of det(M) computed at kx = 0, Ez = 0, d =

40k− 1
0 . The bulk gap is seen at E ≈ ±0.06, where the real part touches the line 

E = 0 from below. The subband energies are obtained from det(M) = 0. To-
pological edge states are seen in the bulk gap. 

Fig. 4. The wave function squared and its two spinor components, evaluated 
for the topological edge state at αEz = 0.1ν2, kx = 0.1k0, and E ≈ 0.005. The 
wave function shows both oscillation and an exponential decay. 
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shorter. This is because the minima of the hole bands in Fig. 1 are at 
slightly smaller wave vectors than those of the electron bands. This 
displacement of the bulk band’s minimum from the Gamma-point at 
ky = 0 is reflected in the oscillations of subband wave functions super-
imposed on the exponential decay. This displacement is due to different 
parameters in the otherwise similar Hamiltonian considered in [6], 
where no oscillations were predicted. 

The roots of the determinant for |E| > 0.06 correspond to subbands 
whose kj are all real. The wave functions are delocalized throughout the 
width of the nanoribbon. Due to the strong non-parabolicity of the bulk 
dispersion, the positions of the subband minima and their dispersions 
can only be found by solving (16) and (18) numerically. 

Fig. 6 shows the behavior of the determinant at αEz = 0.7ν2k0. In 
this case the gap at k = k0 determined by the extrema of the bulk band 
structure and the zeroes of (16) at E ≈ ±0.02 is reduced, but not 
completely closed. The extrema of the bulk band structure at k = − k0 
are clearly seen as zeroes of (16) at E ≈ ±0.1. 

The edge modes appear close to E ≈ ±0.02. At this particular value of 
the electric field the edge modes are about to leave the gap and become 
delocalized as the imaginary parts of two out of four kj responsible for 
the localization at the edges become zero. The two solutions at E ≈ ±

0.075 have split off from the traditional bulk-like subbands. Their wave 
functions’ behavior is qualitatively different from the bulk subbands’ 
behavior as two out of four of their kj acquire an imaginary part. This 

happens because the gap at ky = k0 shrinks with increasing Ez, the gap at 
ky = − k0 exhibits an opposite trend and becomes wider. Therefore, the 
lowest traditional subband, whose energy is initially outside of the gap, 
enters the gap at ky = − k0 thus forcing the two roots to become complex. 

The behavior of the determinant at an even higher electric field 
αEz = 1.4ν2k0 is shown in Fig. 7. As the field is larger than the critical 
field αEz = ν2k0, at which there is no gap at ky = k0, the gap seen at |E| <
0.03 is now a direct gap. Therefore, no edge states can exist within the 
direct gap, which is confirmed by the absence of zeroes of the deter-
minant within the direct gap |E| < 0.03. There are four subbands lying 
outside the direct gap at ky = k0 but still within the gap at ky = − k0 

defined by zeroes of (16) due to the bulk band extrema at E ≈ − 0.14 and 
E ≈ 0.15, respectively. While the solutions at E ≈ ±0.09 are split off 
from the traditional subbands, in complete analogy to the situation in 
Fig. 6, the subbands at E ≈ ±0.05 originate from the edge states which 
were continuously pushed outside of the gap at ky = − k0. 

3. Subbands dispersions in nanoribbon 

The dispersions of several electron and hole subbands are shown in 
Fig. 8. The width d of the nanoribbon along the OY axis equals 
d = 40k− 1

0 = 28.86 nm. The lowest electron/topmost hole subbands 
possess a linear dispersion. This distinguishes the subbands from tradi-
tional subbands in silicon films. The energies of these subbands lie in the 
bulk band gap (Fig. 1, solid lines). The subbands correspond to the to-
pologically protected edge modes as their wave functions are localized 
at the edges [11]. 

A close inspection reveals that a small gap has opened at kx = 0 
reflecting the fact that the topological states located at the two opposite 
edges of the nanoribbon start interacting at kx ≈ 0 [6]. At larger kx the 
coupling between the edge states becomes insignificant, because the 
edge states located at opposite edges (Figs. 4 and 5) propagate in 
opposite directions and do not interact. 

Fig. 9 shows the subbands’ dispersions at an electric field of Ez ≈
ν2k0

α . 
The gap between the bulk bands would be closed at this field value in an 
infinitely large system (Fig. 1). However, in contrast to the bulk 
dispersion, the splitting between the lowest electron and topmost hole 
subband in a narrow nanoribbon remains finite and actually increases 
compared to the case without electric field. The splitting becomes even 
larger at higher electric fields as demonstrated in Fig. 10. As the gap 
between the lowest electron/topmost hole subband grows with the 
electric field, their dispersions change from a linear to a quadratic 
behavior in a broader interval of kx. 

To obtain the higher electron/hole subbands’ other roots outside of 
the bulk gap at Ez = 0 must be evaluated. We note that an approximation 

Fig. 5. The wave function squared and its two spinor components, evaluated 
for the topological edge state at αEz = 0.1ν2, kx = 0.1k0, but E ≈ − 0.005. The 
wave function is localized at the opposite edge. 

Fig. 6. Real and imaginary parts of det(M) computed at kx = 0, αEz = 0.7ν2, 
d = 40k− 1

0 . At E ≈ ±0.02 the imaginary part of the two kj ensuring the locali-
zation at the edges approaches zero. New types of roots with imaginary part 
equals to zero at E ≈ ±0.075 appear. 

Fig. 7. Real and imaginary parts of det(M) computed at kx = 0, αEz = 1.4ν2, 
d = 40k− 1

0 . No solution within the direct gap at |E|<0.03 is allowed. Two so-
lutions whose imaginary part are equal to zero at E ≈ ±0.05 and E ≈ ±0.08 are 
now observed. 
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of parabolic bands could only be applied to very high energy subbands, 
as close to the bulk gap the dispersion relation is highly nonparabolic, so 
(16) must be resolved numerically. Let us define the “bulk” gap in a 
nanoribbon of a finite width as the gap between the first traditional, 
non-topological electron and hole subband. Obviously, the gap does not 
close at Ez =

ν2k0
α (Fig. 9) and keeps increasing for larger electric fields 

(Fig. 10). 
Fig. 11 shows the dependence of the electron (hole) subband minima 

(maxima) Ee(h)
n on the electric field Ez. In agreement with the dispersion 

relations for a 2D sheet (Fig. 1) the “bulk” gap in a nanoribbon shows 
signs of a reduction with Ez (Fig. 11), until the field reaches Ez ≈

0.7ν2k0
α , 

after which the trend is inverted and the “bulk” gap starts increasing. 
This value is lower than the value Ez =

ν2k0
α corresponding to the bands’ 

inversion in the bulk, Fig. 1, and shown in Fig. 11 by the crossing of the 

dashed lines. We note that at the value Ez ≈
0.7ν2k0

α of the electric field 
two of the four values of the wave vectors defining the wave function of 
edge-localized solutions become real (Fig. 6), so the edge wave function 
(14) becomes “delocalized” across the width of the nanoribbon. 

Let us now compare the dispersions shown in Figs. 9 and 3c from [7]. 
The striking distinction is the absence of the linear bulk-like dispersion 
which is attributed to the edge modes in [7]. Although the determinant 
(16) is zero along this linear dispersion, these solutions are not related to 
the edge modes. These zeroes of (16) appear at the energies corre-
sponding to the extrema of the bulk dispersion. At the extrema with 
energy E, the two roots kj of the equation ε

(
kx, kj

)
= E are equal. It 

immediately causes the determinant (16) to become zero, because the 
two columns (17) are identical. In the case of αEz = ν2k0, the bulk 
dispersion is linear as seen in Fig. 1. Although these solutions give zeroes 
of (16), they have nothing to do with the subband solutions satisfying 
(16) because of the boundary conditions, the subband wave function 

Fig. 8. Subbands in a nanoribbon of the width d = 40/k0, Ez = 0. The subband 
with an almost linear dispersion (in red) corresponding to the topologically 
protected edge state is clearly seen. A small gap is opened at kx = 0 due to the 
interaction between the edge modes at opposite edges of the nanoribbon. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 9. Subband energies at αEz = ν2k0, when the gap at ky = k0 is closed, see 
Fig. 1, dotted lines. Red lines describe subbands with two real and two complex 
kj, while blue subbands have four real kj real at small kx. No subbands with 
linear dispersion are observed. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Subbands in a nanoribbon of the width d = 40/k0 at αEz = 2ν2k0 when 
the direct gap is opened again at ky = k0, see Fig. 1, dot-dashed lines. Now six 
subbands (in red) at small kx acquire two real and two complex kj. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 11. Dependence of electron (E > 0) and hole (E < 0) subband minima 
(maxima) on the electric field Ez for the first three subbands, dk0 = 40. In 
contrast to the bulk case (shown with dashed lines), the gap never closes and 
keeps increasing with Ez. 
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must satisfy. Therefore, the linear bulk-like modes seen in Fig. 3c of [7] 
must be disregarded as they do not correspond to the subbands. The 
subband spectrum is gapped as shown in Fig. 9. 

Our conclusion is based on the assumption that the wave function is 
in the form (14) valid when all four of the roots kj of the equation 
ε
(
kx, kj

)
= E are different. Although it is not the case at isolated points 

where the two roots kj of the equation ε
(
kx, kj

)
= E coincide, it does not 

affect the generality of our result. As we prove in the Appendix, the zero 
boundary conditions on the wave function can only be satisfied at a very 
specific, discrete set of nanoribbon widths. The set of widths is different 
for any kx momentum. As we show in the Appendix, for a fixed nano-
ribbon width, the boundary conditions can only be satisfied at isolated 
kx points. A continuous solution does not exist and, therefore, no sub-
band with a continuous dispersion corresponding to the degenerate 
roots kj. 

In order to further demonstrate the fact that the linear dispersion 
observed in Fig. 3c of [7] does not correspond to any subband, we plot 
the lowest electron/topmost hole subbands’ energy dependence on the 
electric field for several nanoribbon widths in Fig. 12. The gap between 
the lowest electron and topmost hole subband increases with the 
nanoribbons width decreased. The transition, when the confined edge- 
like states becomes delocalized along the whole width of the nano-
ribbon, is determined by the intersection of the corresponding disper-
sions with the dashed lines in Fig. 12 showing the dependence of the 
bulk bands on Ez. As is seen from Fig. 12, this transition shifts towards 
lower electric field values for narrow nanoribbons. 

At the same time, the minimum and maximum of the bulk bands at 
ky = k0, incorrectly attributed in [7] to the edge-like modes and shown 
in Fig. 12 with green dashed lines, display a linear dependence on the 
electric field but do not depend on the nanoribbon width. This confirms 
our claim that these linear solutions due to the extrema of the bulk 
dispersion must be disregarded for describing the quantized subbands in 
a nanoribbon. 

4. Ballistic conductance 

An increase in the energy separation between the electron and hole 
subbands (Fig. 11) in nanoribbons as a function of a perpendicular 
electric field is reflected in a rapid decrease of the nanoribbon ballistic 
conductance [12]. The ballistic conductance is computed as 

G =
2e2

h
∑

i

⎡

⎢
⎢
⎢
⎣

1

exp
{

Ee
i − EF

kBT

}

+ 1
+

1

exp
{

EF − Eh
i

kBT

}

+ 1

⎤

⎥
⎥
⎥
⎦
, (20)  

where T is the temperature and EF is the Fermi energy. If the Fermi 
energy is close to the middle of the gap (EF ≈ 0), the edge-like subbands 
dominate the conductance G [12]. The role of the traditional subbands is 
non-negligible as the two lowest (topmost) electron (hole) bulk-like 
contribute 30% of the ballistic conductance. However, all contribu-
tions to the total conductance G rapidly decrease as a function of Ez. This 
makes 1T′-MoS2 promising for switching applications [12]. 

Let us evaluate the ballistic conductance due to the lowest electron 
and topmost hole edge-like subband only and compare it with the results 
of [7] for different nanoribbon widths. As it is seen in Fig. 13, the bal-
listic conductance decreases with the perpendicular electric field. This is 
in sharp contrast with [7] where, after an initial decrease, the ballistic 
conductance starts increasing at higher fields. The increase of the bal-
listic conductance in [7] is the consequence of the extrema of the bulk 
dispersion. Although (16) is satisfied, these roots are not due to the 
subbands and must be disregarded as demonstrated above. Therefore, 
the ballistic conductance due to the lowest electron/topmost hole sub-
band decreases with increasing electric field Ez. 

5. Conclusion 

The subband structure in a narrow nanoribbon of 1T′ molybdenum 
disulfide as a function of an out-of-plane electric field is evaluated by 
employing the effective four-band k⋅p Hamiltonian. It is shown that by 
an appropriate unitary transformation the Hamiltonian can be recast in 
a convenient block-diagonal form used to describe topological in-
sulators. In a confined geometry of a nanoribbon the Hamiltonian de-
scribes the complete subband structure including topologically 
protected edge modes. In contrast to the behavior in a wide nanoribbon, 
where the bulk gap closes at a certain field value and becomes direct at 
higher values of the electric field, the gap between the traditional lowest 
electron and highest hole subband never closes and increases with the 
perpendicular electric field. The increase in the separations between the 
electron and hole subbands leads to a substantial decrease of their 
contribution to the total ballistic conductance and current as a function 
of the perpendicular electric field. 

Fig. 12. Dependence of the lowest electron and topmost subbands on the 
perpendicular electric field in nanoribbons of different widths. The separation 
gap between the subbands increases with Ez. The dependence of the bulk bands 
minimum and maximum at ky = k0 on Ez is shown with dashed lines. 

Fig. 13. Ballistic conductance due to the lowest electron-topmost hole subband 
in a 1T′-MoS2 nanoribbon of different widths. The ballistic conductance keeps 
decreasing with Ez increased. 
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The edge modes’ energies lie in the bulk gap. Their dispersion re-
lations are almost linear as a function of the momentum along the 
nanoribbon and their wave functions are localized at the edges and 
display damped oscillation. Due to the interaction of the edge modes 
located at the opposite sides of a narrow nanoribbon, a small gap in their 
linear dispersion spectrum opens at momenta close to zero. The gap 
increases rapidly with a perpendicular electric field resulting in a sub-
stantial decrease of the contribution due to the edge modes in the bal-
listic conductance. As the ballistic conductance decreases substantially, 
varying the electric field is shown to be an attractive option for 
designing molybdenum disulfide nanoribbon-based current switches. 
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Appendix 

In order to find the subbands in a nanoribbon of the widths d along the OY axis we must solve the Schrödinger equation with the Hamiltonian (11) 
for the wave function ψ↑kx

(y) and energy dispersion E(kx). 

(H − E(kx)⋅I )ψ↑kx
(y) = 0 (A1) 

The wave function must satisfy zero boundary conditions at both edges of the nanoribbon. 

ψ↑kx
(y = 0) = ψ↑kx

(y = d) = 0 (A2) 

(A1) is a second-order differential equation. To find its general solution as a function of y, we have to determine the kyroots of the characteristic 
equation 

det(H − E⋅I) = 0 (A3) 

It is equivalent to finding the kjroots of the equation 

ε
(
kx, kj

)
= E, (A4)  

where ε
(
kx, ky

)
isthebulk energy dispersion of an infinite sheet and kj, j = 1,⋯4 are the four ky roots of the characteristic Eqs. (A3) and (A4). 

If all four roots kj are different, the wave function is of the form (14). However, when any two of the roots k1 = k2 = k are equal, the wave function 
is of the form 

ψ↑kx
(y) = (A1 +A2y)

(
a
b

)

exp(iky)+
∑4

j=3
Aj

(
aj
bj

)

exp
(
ikjy

)
, (A5)  

where the spinor 
(
aj, bj

)T is defined by (15) with ky = kj. 
In order to have a nontrivial solution satisfying (A2) the following determinant must be zero: 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

a 0 a3 a4
b 0 b3 b4

aexp(ikd) adexp(ikd) a3exp(ik3d) a4exp(ik4d)
bexp(ikd) bdexp(ikd) b3exp(ik3d) b4exp(ik4d)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0 (A6) 

By replacing the first column with a 
linear combination of the first and second column the determinant (A6) reduces to 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

a 0 a3 a4
b 0 b3 b4
0 a a3exp(ik3d) a4exp(ik4d)
0 b b3exp(ik3d) b4exp(ik4d)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0. (A7) 

From here we obtain: 
⃒
⃒
⃒
⃒

ba3 − ab3 ba4 − ab4
(ba3 − ab3)exp(ik3d) (ba4 − ab4)exp(ik4d)

⃒
⃒
⃒
⃒ = 0 (A8) 

We introduce 

c1 = ba3 − ab3, (A9a)  

c2 = ba4 − ab4. (A9b) 

Because the spinors (a, b)Tand 
(
aj, bj

)T
, j = 3,4 evaluated at nonequal roots k1 = k2 = k and kj, c1,2 in (A9) are always nonzero. 
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(A8) is rewritten as 

c1c2exp(ik3d) = c1c2exp(ik4d). (A10) 

It is satisfied only, if 

exp(ik3d) = exp(ik4d). (A11) 

If k3is different from k4, (A11) is equivalent to 

dn =

⃒
⃒
⃒
⃒

2πn
k3 − k4

⃒
⃒
⃒
⃒, n = 1, 2,⋯. (A12) 

Because k3, k4 are uniquely defined by the extremum of the energy E of the bulk dispersion ε(kx, k) = E at fixed kx and Ez. (A12) is an equation for d. 
As dn depends on kx, these discrete isolated solutions do not correspond to any subband in a ribbon of the fixed width d and must be disregarded. 

If k3 = k4 which may only happen atEz = 0, k3 = − k, and the wave function has the form 

ψ↑kx
(y) = (A1 +A2y)

(
a
b

)

exp(iky)+ (A3 +A4y)
(

a3
b3

)

exp(ik3y). (A13) 

This results in the following determinant: 
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

a 0 a3 0
b 0 b3 0
0 a 0 a3
0 b 0 b3

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= − (ab3 − a3b)2 (A14) 

As the spinors (a, b)T and (a3, b3)
T are the eigenfunctions of (11) with different k3 = − k, (A13) can have only accidental isolated roots, see e.g. (15). 

Therefore, no subband exits with a continuous dispersion corresponding to the degenerate roots kj. 
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