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Abstract
The Wigner formalism is a convenient way of describing quantum mechanical effects through a framework of distribution 
functions in phase space. Currently, there are stochastic and deterministic approaches in use. In our deterministic method, 
the critical discretization of the diffusion term is done through the utilization of an integral formulation of the Wigner 
equation. This deterministic method is studied in the context of superposed quantum states as a precursor to simulations of 
entangled states.
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1 Introduction

During the development of modern and future electronic 
devices, frequently quantum mechanical effects in carrier 
transport processes have to be accounted for. In cases such as 
these, the Wigner formalism presents a convenient formula-
tion in phase space, thereby allowing many classical notions 
and concepts to be reused [7, 8].

In our deterministic method, the critical discretization of 
the diffusion term is done through the utilization of an inte-
gral formulation of the Wigner equation [2, 12]. The devel-
oped method describes the time evolution of the solution as 
a superposition of fundamental wave packages.

In cases where physical quantities vary over many orders 
of magnitude in the phase space, the deterministic methods 
are the only possible approach, because stochastic methods 
lack the necessary precision [6].

2  The deterministic method

The basis for the following considerations is the Wigner 
equation in one dimension

It describes the evolution of the Wigner function f
�
(x, k, t) 

under the influence of the Wigner potential Vw . This Wigner 
potential is derived from the electrostatic potential by

with Lcoh the coherence length. A detailed explanation of the 
aspects of the Wigner formalism can be found, for instance, 
in [11]. In contrast to classical probability distributions, the 
distribution in the Wigner picture may also take negative 
values, therefore named quasi-distribution functions.

The promoted deterministic approach uses the integral 
formulation of the Wigner equation. The integral form [10, 
13] is obtained by considering the characteristics of the 
Liouville operator on the left-hand side of (1), which are 
the Newtonian trajectories x(., t) initialized with x′ , k′ , t′

This approach has already been used for the development 
of stochastic solvers, which rely on the corresponding 

(1)

�f
�
(x, k, t)

�t
−

ℏ k

m∗

�f
�
(x, k, t)

�x
= ∫ dk� Vw(x, k − k�) f

�
(x, k�, t).

(2)Vw(x, k) =
1

iℏ

1

Lcoh

Lcoh∕2

∫
−Lcoh∕2

e−i2ks[V(x + s) + V(x − s)]ds,

(3)x(x�, k�, t�, t) = x� +
ℏ

m∗
k�(t − t�).
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Neumann series of the integral equation [1, 4, 9]. The exist-
ence of the partial time derivative guarantees the uniqueness 
of the solution to the studied evolution problem [3].

The discretization of the quantities in phase space (x, k) and 
time t is performed in the simulation domain on an equidistant 
ortho grid

The developed deterministic method describes the evolution 
of the discrete Wigner function f

�
(ν, μ, τ) at a certain point 

(ν�x, μ�k) in phase space at time τ�t by

which can be interpreted as the superposition of fundamental 
wave packages qν,μ,τ weighted by the initial distribution f0 of 
the Wigner function. For each point (ν, μ) in discrete phase 
space, an initial distribution qν,μ,0 at � = 0 defined by

evolves into a single fundamental solution qν,μ,τ

in the simulation domain. Here, N�(l�, l) describes the dis-
crete version of the trajectories (3)

The fact that the discrete version of the trajectory presumes 
integral numbers is accounted for by the int operator in (8) 
and will be discussed later.

The introduced functions Γ and � depend on the discrete 
Wigner potential

with

(4)
x = n�x, k = m�k, t = l�t, ∀ n ∈ [0…N],

m ∈ [−M…M], l ∈ [0…L].

(5)f
�
(ν, μ, τ) =

∑

n

∑

m

f0(n,m) ⋅ qν,μ,τ(n,m),

(6)qν,μ,0(n,m) = �ν,n �μ,m

(7)

qν,μ,τ(n
�,m�) = e

−
1
∑

j=0

�(N�(0,j))�t

qν,μ,τ−1(N
�(0, 1),m�)

+ �t

1
�

l=0

�

m

Γ(N�(0, l),m,m�) e
−

l
∑

j=0

�(N�(0,j))�t

qν,μ,τ−l(N
�(0, l),m) �l

(8)N
�(l�, l) = n

� + int

(

ℏ

m∗

�k�t

�x
m

�(l − l
�)
)

.

(9)Γ(x,m,m�)=V+
w
(x,m−m�) + V−

w
(x,m�−m)+�(x) �m,m�

(10)�(x) =
∑

m

V+
w
(x,m),

(11)V+
w
(x,m) =

{

Vw(x,m) ifVw(x,m) > 0,

0 else,

(12)V−
w
(x,m) =

{

−Vw(x,m) ifVw(x,m) < 0,

0 else.

2.1  Computation

Equation (7) shows a mixture of terms qν,μ in τ , which are 
the unknown values of the actual time step, and in τ − 1 , 
which are the already calculated values of the previous 
time step. Reordering the unknowns to the left side deliv-
ers an equation system for each unknown distribution qν,μ,τ

The vector �ν,μ,τ represents the unknown distribution of a 
single fundamental solution for (ν, μ) with its based equation 
system of complexity 2M×N  . For each combination (ν, μ) in 
the simulation domain, the equation system has to be solved 
consecutively for each time step τ.

The weighting factors �l originate from the numerical 
time integration in the continuous representation of (7). 
Unfortunately, these factors appear in both the left- and 
right-hand side of the equation system (14). According to 
the trapezoidal rule, factors of �l = 0.5 are used.

In cases where the Wigner potential stays stationary over 
time, �ν,μ,τ stays stationary, too. Consequentially, the equa-
tion system may be calculated only once for the first time 
step. Subsequent values of fν,μ,τ can be achieved by reinser-
tion of previously calculated distributions of f

�
 in place of f0 

in (13), which reduces calculation times dramatically.
Equation (7) describes the computation of time step 

τ from its preceding time step. However, variants of cal-
culating the fundamental solutions �ν,μ,τ from multiple 
previous time steps, or even from the initial distribution, 
seem feasible. Actually, the rank of the resulting equation 
systems will be boosted rapidly. As these equation systems 
have to be solved for each (ν, μ) , the applicability of that 
method will be problematic shortly for a few number of 
implied time steps.

2.2  Interpolation

For common device dimensions, the examination of the 
trajectory (8) detects areas of low velocities as prob-
lematic. By a simple truncation to integer values, the 
deterministic trajectories stop evolving, especially for 
small values of m'. Apart from a simple spatial resolu-
tion enhancement, which mainly impacts the simulation 
times, the movement could be adapted by accounting for 
the accumulation in positional error.

However, a resulting step-wise moving wavefront may 
result in increasing amplifying oscillations in the solution, 
especially near corners in the potential distribution.

(13)fν,μ,τ = �T
0
⋅ �ν,μ,τ

(14)�ν,μ ⋅ �ν,μ,τ = �ν,μ ⋅ �ν,μ,τ−1.
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In this case, an interpolation of N′ between the grid points 
and, as a consequence, to the involved values of qν,μ,τ delivers 
best results. Attention has to be paid to the fact that informa-
tion is lost in this connection and edges may broaden during 
this interpolation.

3  Application to the time evolution of wave 
packages

The Wigner methodology is often validated by the applica-
tion to wave packages, as it describes the dependencies of the 
quantities, not only in spatial direction but also in k-space, in 
a comfortable way. Also the developed method is well suited 
to examine wave packages [5].

3.1  A single Gaussian wave package

The complex wave function of a minimum uncertainty wave 
packet [7] around the spatial position x0 is described as

with � the standard deviation and k0 the wave number of 
the package. Via the factor A, the probability function is 
normalized to unity

The corresponding Wigner function allows a simple analytic 
presentation if the coherence length is let to infinity, giv-
ing rise to a continuous k. Accordingly, the factor 1∕Lcoh is 
replaced by 1∕2�

For the Wigner function of the one-dimensional Gaussian 
wave package in phase space (x, k), this yields

Here, the factor B normalizes the Wigner function over x 
and k, satisfying

(15)ψx0
(x) = A e

−
(x−x0)

2

2�2 eik0x,

(16)

∞

∫
−∞

ψ∗(x) ψ(x) dx = 1.

(17)f
�
(x, k) =

1

2�

∞

∫
−∞

ψ∗(x +
y

2
) ψ(x −

y

2
) eiky dy.

(18)f
�
(x, k) = B e

−
(x−x0)

2

�2 e−(k−k0)
2�2

.

(19)

∞

∫
−∞

∞

∫
−∞

f
�
(x, k) dk dx = 1.

3.2  Two superposed states

In the following, a superposition of the wave functions of 
two wave packages will be examined. Two Gaussian pack-
ages are located at −x0 and +x0 , respectively, which propa-
gate in the same direction with same speed. The resulting 
normalized wave function can be evaluated as the sum of 
both packages

Accordingly, the phase space representation delivers

In detail, the Wigner function consists of three parts. These 
are the two parts stemming from each separate package of 
the wave function plus an additional term in between from 
the mixed product of the separate wave packages in (17). 
The latter shows identical envelope to each single package 
and shows oscillatory behavior in k. Notably, the frequency 
depends directly on the distance of the packages x0 , while 
its amplitude is not affected with an amplitude two times of 
a separate package. A similar setup is discussed in [5], for 
instance.

The according phase space representation is shown in 
Fig. 1. In the following, the Wigner functions and density 
distribution functions are drawn without the scaling factor 
C to achieve normalized functions in the range [−2, 2] . The 
transformed system results in three contributions, which are 
the two contributions called the Gaussian states, which can 
be seen on the left- and right-hand sides, plus an additional 
term called the correlation state, which is shown in the mid-
dle. In this regime, in contrast to classical distribution func-
tions, the Wigner function also takes negative values. This 
oscillatory behavior of the analytic Wigner function, Eq. 
(21), poses some numerical requirements for the discrete 
counterpart, which will be discussed later.

The density distribution function in x-space is calculated 
by integration or, in the discrete case, by summation over all 
k-values of the Wigner function

In the analytic Wigner function (21), the oscillations in 
k-space are canceled out. The resulting density function

(20)ψ(x) =
1
√

2

�

ψx0
(x) + ψ−x0

(x)
�

.

(21)
f
�
(x, k) = C

[

e
−

(x−x0)
2

�2 e
−(k−k0)

2�2

+ e
−

(x+x0)
2

�2 e
−(k−k0)

2�2

+ 2 e
−

x2

�2 e
−(k−k0)

2�2

cos 2 x0 (k − k0)
]

.

(22)f (x, t) = ∫ f
�
(x, k, t) dk.

(23)f (x) = D
(

e
−

(x−x0)
2

�2 + e
−

(x+x0)
2

�2 + e
−

x2

�2 ⋅ e
−

x2
0

�2

)
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shows contributions of three Gaussian packages, each with 
standard deviation �  , at position x0 and −x0 and the third 
contribution in the middle at x = 0 , where the latter one 

is weighted by the factor e−
x2
0

�2  , which is smaller by magni-
tudes than the other two Gaussians. The result of the discrete 
counterpart is shown in Fig. 2, where the oscillations are 
canceled by the summation over k.

Contrary to the previous calculation, in phase space the 
oscillatory correlated state must not be neglected as it shows 
contribution double the size than the other two Gaussians.

In this way, the well-known analytical behavior of the 
minimum uncertainty Wigner function is used to validate 
our discrete numerical approach.

Figure 3 shows the situation in Wigner space when the 
packages traveled to the right. The density distributions of 
the Wigner function show a broadening in spatial direction. 
Additionally to the movement, the Wigner function shows a 
warping in dependence of the k-value. Contrary to the pre-
vious calculation, in phase space the oscillatory correlated 
state must not be neglected as it shows contribution double 
the size than the other two Gaussians.

3.3  Introduction of a barrier

In this section, the behavior after passing a barrier will be 
examined. A barrier at the right side of the packages will 
be applied. One by one the packages will pass the barrier, 
where a fraction passes the barrier and another fraction is 
reflected. One might find the Gaussians are relatively smooth 
and wide, so the grid spacing may be noncritical and the 
coherence length may be chosen relaxed.

Contrarily, for the correlation state an appropriate esti-
mate for the grid spacing has to be found. In solving the 
equation system, the fluctuations in k have to be resolved 
properly by the grid spacing �k . Even though the Gaussian 
wave function is relatively smooth, the sampling in k-space 
may cause undersampling effects of the oscillation. This 
results in a nonphysical behavior of the reflected wave and 

Fig. 1  Surface plot of the 
Wigner function of two super-
posed wave states. Two Gauss-
ian packages at −x0 and +x0 
(where x0 = 60 nm) plus the 
correlation state in the middle 
(at x = 0 ) can be seen, which 
shows oscillatory behavior in 
k-direction. The Wigner func-
tion is drawn without the factor 
C to achieve a proper scaling.

Fig. 2  Density distribution function f(x) (without the factor D) of two 
superposed wave packages at the initial stage. The picture does not 
differ from the view of two classical wave packages, where only two 
separate wave packages at −x0 and +x0 (with x0 = 60 nm) could be 
seen. The correlation state nearly cancels out in the view of the den-
sity distribution
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peaks in the distribution function in the order of the entire 
distribution. An estimate for �k can be found by comparison 
with the period of the oscillation in (21)

with a sampling two times the period in k. This gives an 
estimate of �k in dependence of the spatial distance of the 
initial packages.

As the coherence length Lcoh is related to �k by

estimate (24) gives a minimum

which implies that the coherence length has to spawn the 
whole region of both packages. This seems also plausible in 
a physical point of view.

Figure 4 shows a comparison of simulations with and 
without correlation state after the right package reached a 
rectangular barrier.

Correlated packages with � = 10 nm at −x0 and 
x0 = 40 nm are used. The rectangular barrier is located at 
x = 60 nm with a height of 0.3 eV and a width of 5 nm . 
Underlying simulations are performed on a simulation grid 
with N=500, M=90 which spawns a simulation domain of 
250 nm × ±1 nm−1.

The introduced criterion delivers a maximal �k =
0.039 nm−1 which corresponds to a minimal coherence 

(24)2 k x0 =
2𝜋

T
k and T > 2𝛥k ⇒ 𝛥k <

𝜋

2x0
,

(25)�k =
�

Lcoh
,

(26)Lcoh > 2x0,

length of Lcoh = 80 nm . The upper image shows a simu-
lation with correlation state, and the lower image shows 
two wave packages calculated independently. In this case, 
the incident waves will be nearly completely reflected at 
the barrier. The right package was already reflected and 
changed its direction. The influence of the correlation state 
can be detected when the reflected right package reaches 
the left package. At this point, the correlation state nearly 
stopped and is about to change direction.

3.4  Discussion

In the Wigner point of view, all three resulting distribu-
tions of the correlated wave packages can be simulated 
and studied independently, which shows the following 
observation:

Clearly, the left package did not reach the barrier and is 
not affected by it, whereas the right package already was 
reflected.

An interesting effect can be observed within the corre-
lated package, although the envelope of the correlation state 
did not reach the barrier, it is already influenced by it. The 
movement nearly stopped and started turning its direction. 
This can be clearly explained by the fact that the correlation 
state also holds information of the right, already reflected 
package.

However, in the numerical method the originating behav-
ior of the packages has to be accounted for by a proper 
selection of the grid spacing in k-direction or, reciprocally 
affected, an adequate coherence length.

Fig. 3  Surface plot of the 
Wigner functions of the wave 
packages after time evolution. 
No barrier is used and the 
packages move undistorted. In 
phase space, a warping of the 
distributions is detected. This is 
caused by the fact that different 
regions in k move with different 
velocities.
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4  Conclusion

In this paper, a deterministic method for solving the Wigner 
equation has been presented. Through its application to 
superposed wave packages, the adequate handling of the cor-
related state has been demonstrated, although strict limits on 
the resolution in k-space have to be satisfied. These bounds 
may represent a challenge for the solution, which has to be 
analyzed in further work.
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Fig. 4  Comparison of two 
simulations after the right 
package was reflected by a 
barrier, located at x = 60 nm . 
The left package travels to the 
right, whereas the right package 
already changed its direction. 
The upper figure is calculated 
with a correlation state, whereas 
in the lower figure two separate 
wave packages are simulated. 
The correlation state nearly 
stopped moving at this moment 
and is on the point to change 
direction.
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