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A B S T R A C T   

Despite the breathtaking progress already achieved for electronic devices built from 2D materials, they are still 
far from exploiting their full theoretical performance potential. Many of these problems are due to the lack of 
suitable insulators which would go along with 2D materials as nicely as SiO2 goes with Si. For instance, 
amorphous oxides known from Si technologies contain numerous defects which degrade the device performance 
and stability, and hBN is not suitable for nanoscale devices due to limited dielectric properties. Thus, we suggest 
that an intensive search of beyond-hBN layered 2D insulators and other crystalline insulators such as CaF2, other 
fluorides and native oxides is required for the further development of next-generation 2D nanoelectronics.   

1. Introduction 

For more than half a century, microelectronics has been driven by 
Moore’s law, which predicts a doubling of the integration density every 
18 months and thus exponential growth, which is highly beneficial for 
economical and performance reasons. Despite many premature claims 
that Moore’s law is at an end, according to the IRDS [1] scaling will 
continue during the next decade. However, numerous challenges will 
have to be surmounted, many of them related to the fact that material 
scaling has reached atomic dimensions, particularly in the vertical di
rection. For instance, the mobility of silicon starts to deteriorate below 5 
nm [2], which can be expected for other 3D materials. Thus, the IRDS 
lists layered 2D semiconductors as a promising option for ultra-scaled 
FETs and memory devices after 2028. In line with these requirements, 
several groups have reported FETs with graphene [3], silicene [4], black 
phosphorus [5] and transition metal dichalcogenides [6,7] exhibiting 
excellent transistor characteristics. Research efforts have been mostly 
focused on finding the best channel materials with the highest mobilities 
and decent bandgaps. Also, some attempts on circuit integration of MoS2 
FETs have been undertaken [8]. 

However, 2D FETs also need suitable insulators to separate the 
controlling gate from the channel, which should be scalable and ideally 
go along with 2D semiconductors as nicely as SiO2 goes with silicon. The 
lack of these insulators makes it complicated to fully exploit the pre
dicted performance potential of 2D electronic devices, even despite the 

breathtaking progress already achieved in this field. As a result, there is 
still no commercially competitive 2D transistor technology available 
today. 

2. Results and discussion 

The selection of suitable insulators for 2D nanoelectronics represents 
an enormous challenge. However, this problem is of key importance, 
since scaling of 2D semiconductors towards sub-10 nm channel lengths 
is only possible with gate insulators scalable down to sub-1 nm equiv
alent oxide thicknesses (EOT). In order to achieve competitive device 
performance, these insulators need to meet stringent requirements 
regarding (i) low gate leakage currents, (ii) low density of interface 
traps, (iii) low density of border insulator traps and (iv) high dielectric 
strength [9]. Thus, careful selection requires the analysis of available 
insulators with respect to these four criteria, which are valid for scalable 
FETs with 2D channels. As for other devices such as optoelectronics and 
sensors which do not require aggressive scaling, only the requirements 
on clean interfaces and low densities of border insulator defects are of 
key importance. This is because high mobility and stable operation 
under applied gate bias stress are still required for these devices. 

Most widely used insulators for 2D electronic devices are amorphous 
3D oxides known from Si technologies (SiO2, HfO2, Al2O3), while native 
2D oxides (MO3, WO3 and Bi2SeO5), layered 2D crystals (hBN, mica) and 
ionic 3D crystals (CaF2 and other fluorides like SrF2, MgF2) have been 
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Fig. 1. Schematic structure of MoS2/HfO2(a), MoS2/hBN (b) and MoS2/CaF2 (c) interfaces. (d) Theoretical leakage currents through these insulators for EOT = 1 nm 
simulated using a simple WKB tunneling model [10]. 

Fig. 2. (a) Schematic cross-section of the van der Waals interface of CaF2(111) and an MoS2 channel in our FETs. (b) TEM image confirming the device structure. (c) 
Typical gate transfer characteristics of MoS2 FETs with CaF2 [18] and comparison with other MoS2 FETs [19,20] (d). 

Fig. 3. (a) Band diagrams showing energetic alignments of different insulators relatively to most frequently used 2D semiconductors. For amorphous oxides defect 
bands are shown. (b) Atomically sharp interface between the 2D semiconductor Bi2O2Se and its native oxide Bi2SeO5 [13]. 
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also used or considered as promising candidates. However, 3D oxides 
form poor quality interfaces with 2D semiconductors (Fig. 1a), espe
cially when grown in thin layers, and contain border traps which 
severely perturb stable device operation [11]. The latter is also valid for 
some native oxides such as MO3 and WO3, which are non-stoichiometric 
[12]. As a result, they have a limited dielectric stability which makes it 
hard to use them in real devices. Nevertheless, other native oxides such 
as crystalline Bi2SeO5 appear to be more promising and have been 
already applied in FETs [13], though still require an in-depth analysis of 
their dielectric properties. The layered 2D insulator hBN, on the other 
hand, forms excellent van der Waals interfaces with 2D semiconductors 
(Fig. 1b), but has mediocre dielectric properties (EG = 6 eV, ε < 5) [14] 
which result in excessive leakage currents for sub-1 nm EOT. The po
tential of other 2D insulators is currently unclear, in part due to the 
absence of scalable growth techniques. For instance, only exfoliated 
flakes of mica have been used in FETs so far [15]. 

Thus, we suggest that for now the most promising insulators for 2D 
electronics are 3D ionic crystals like CaF2 which form well-defined in
terfaces (Fig. 1c). In contrast to hBN, fluorides have good dielectric 
properties (e.g. EG = 12.1 eV, ε = 8.43 for CaF2 [16]) and thus exhibit 
low gate leakage currents (Fig. 1d). Also, these insulators have excellent 
dielectric strength [17] and low density of border traps [18]. Further
more, fluorides can be epitaxially grown on large-area wafers, thereby 
enabling fully integrated nanoelectronic devices. Also, careful prepara
tion of Si substrates and the growth temperature of 250 ◦C lead to very 
homogeneous CaF2 films [10,18]. Owing to this, excellent performance 
of MoS2 FETs with record thin epitaxial CaF2 of only 2 nm (0.9 nm EOT) 
[18] has been achieved recently (Fig. 2a,b), which is barely possible 
with any other insulator discussed above. Even though these are bare 
channel back-gated prototypes, they exhibit promising performance 
(Fig. 2c) such as on/off current ratio up to 107 and SS down to 90 mV/ 
dec while outperforming more mature MoS2 FETs with SiO2 [19] and 
top-gated devices with PTCDA/HfO2 [20] (Fig. 2d). Thus, further 
research on these insulators appears a very promising pathway for the 
development of scalable 2D FETs and other 2D devices with similar 
structure such as photodetectors and sensors. 

We also note that despite all the open challenges, an interesting so
lution could be still offered by native oxides of 2D materials assuming 
that they are crystalline. However, it is important to consider that some 
of them have very narrow bandgaps as compared to conventional oxides 
and fluorides (Fig. 3a). Nevertheless, recently demonstrated crystalline 
Bi2SeO5 [13] already offers top-gate integration, while forming an 
atomically sharp interface with its semiconductor Bi2O2Se (Fig. 3b). 

While the estimated key dielectric parameters of this insulator are EG 
= 3.9 eV and ε = 21, further research is required to understand if this 
narrow bandgap can enable reasonable band offsets with the channel to 
maintain low gate leakage currents for sub-1 nm EOT. Also, the potential 
of other insulators of this type should be explored in more detail. 

3. Conclusions 

In summary, 3D oxide insulators appear barely suitable for integra
tion into 2D devices while hBN is not suitable for nanoscale FETs. Thus, 
an intensive search of beyond-hBN layered 2D insulators and further 
development of 2D devices with crystalline fluorides and native oxides 
appears promising for next-generation 2D nanoelectronics. 
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