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The scaling of silicon complementary metal–oxide– 
semiconductor (CMOS) technology has reached sub-10-nm 
technology nodes, but further scaling is increasingly chal-

lenging because the gate electrostatics of the devices demand an 
aggressive reduction in channel thickness to preserve the desired 
performance1. The ultimate channel thickness for a field-effect 
transistor (FET) is potentially in the sub-1-nm range. However, 
this is not readily accessible for any three-dimensional (3D) semi-
conducting crystal because of increased scattering of charge car-
riers at the channel-to-dielectric interfaces, which leads to severe  
mobility degradation2.

Two-dimensional (2D) semiconducting materials, which in 
monolayer form have a thickness of ~0.6 nm, could provide a 
solution. Such materials include transition metal dichalcogenides 
(TMDs) with the general formula MX2, where M is a transition metal 
(for example, Mo or W) and X is a chalcogen (for example, S, Se 
or Te)3–8. The absence of dangling bonds in the materials also offers 
the potential to achieve better channel-to-dielectric interfaces. Early 
studies based on mechanically exfoliated single-crystalline 2D flakes, 
and more recent developments based on large-area grown synthetic 
2D monolayers, have illustrated the promising characteristics of 2D 
transistors. However, the multitude of challenges that remain to be 
solved makes the potential incorporation of 2D FETs in future very 
large-scale integration (VLSI) technologies far from clear.

In this Review, we explore the development of 2D FETs for 
future integrated circuits. We first consider the large-area growth 

of 2D channel materials and the fabrication of a 2D FET, as well as 
the extraction of key parameters for a comprehensive assessment 
of device performance. We emphasize the importance of studying 
the device-to-device variation, stability and reliability of the 2D 
FETs. We then assess the key challenges that must be addressed to 
achieve VLSI applications based on 2D FETs. These include reduc-
ing the contact resistance RC, achieving stable doping, advancing 
mobility engineering and improving the integration of high-κ 
dielectrics (where κ is the dielectric constant). Finally, we highlight 
potential applications of 2D FETs in digital and analogue electron-
ics, memory, neuromorphic computing, sensing devices and inter-
connect technology.

Fundamentals of 2D material processing
Early demonstrations of 2D FETs were based on micromechanically 
exfoliated flakes9. Although the exfoliation technique lacks scalabil-
ity and manufacturability, it enables rapid experimental screening 
of different 2D materials and serves as a testbed for device opti-
mization and applications. It also helps to check the compatibility 
of 2D materials with standard processing techniques. However, 
for VLSI integration of 2D FETs, wafer-scale synthesis is unavoid-
able and chemical vapour deposition (CVD) and metal–organic 
CVD (MOCVD) techniques are the forerunners in this context10. 
Figure 1a shows MOCVD-grown MoS2, MoSe2, WS2 and WSe2 on 
two-inch sapphire wafers11. Although the most important growth 
parameter is the process temperature, which is typically >500 °C, 
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the choice of precursors and substrate can also influence the 
growth. For example, crystalline substrates such as sapphire can 
facilitate the epitaxial growth of TMDs, which greatly reduces the 
number of grain boundaries and improves the performance of the 
2D FETs12. Note that 2D FETs must meet the performance criterion 
set forth by the International Roadmap for Devices and Systems 
(IRDS) for consideration as front end-of-line (FEOL) devices in 
advanced nodes, as discussed later. The performance criterion is 
less stringent for back end-of-line (BEOL) devices13, but CMOS pro-
cess compatibility necessitates low-temperature growth (<450 °C) 
of TMDs, which is non-trivial14 and requires further investigation 
beyond some initial demonstrations15,16. Alternatively, temperature- 
and substrate-related constraints of monolithic integration can be 
avoided by growing TMDs on desired substrates with higher ther-
mal budgets, followed by clean and damage-free large-area trans-
fers17. Figure 1b shows a commonly used wet-transfer technique 
developed by Zhang and others18.

Fabrication of 2D FETs. Fabrication of all layers required for 2D 
FETs must be clean and free from mechanical damage during the 
various lithography, etching and deposition processes. Photoresist 
residues can be removed by thermal/current annealing post device 
fabrication and by plasma treatment before depositing the con-
tacts19,20. However, plasma treatment can damage the underlying 2D 

materials. Easily removable sacrificial metal/polymer layers can also 
be used with standard lithography techniques to reduce photore-
sist residue21. Note that, for 300 mm integration, it is likely that a 
different integration scheme will be adopted that no longer relies 
on liftoff techniques22. Figure 1c presents a schematic of a 2D FET 
with the most commonly used global back-gate geometry and Fig. 
1d shows a scanning electron microscopy (SEM) image of a trans-
mission line measurement (TLM) structure. Note that the mono-
layer MoS2 film is etched into a rectangular shape to ensure constant 
channel width W, which is recommended practice. However, as the 
channel width becomes narrower at advanced VLSI nodes, dan-
gling bonds at the edges must be passivated accordingly. Finally, for 
VLSI integration, individually controllable dual-gated 2D FETs are 
required. Such structures have been investigated in the form of stan-
dard top-gated23,24, split-gated25 and gate-all-around26 geometries.

Electrical characterization of 2D FETs. Good practice for 2D FET 
characterization should take into account the following protocols. 
It has been shown that the electrical characteristics of as-fabricated 
2D FETs drift and change under repeated testing. Therefore, it is 
recommended that the measurement conditions are stabilized 
by controlled biasing schemes before key device parameters are 
extracted and the procedure is reported accordingly. Standard mea-
surements of 2D FETs include the transfer characteristics (that is, 

a b

c

f g h

10 µm

L

W

Monolayer 
MoS2

e

MoS2 WS2

MoSe2 WSe2

d

Insulator

Source Drain

Back-gate

Growth
substrate 
with 2D film 

PMMA 

NaOH

Device 
fabrication 
substrate 

VGS (V) VDS (V)

0 5 10
0

20

40

60
VDS

VGS

nS

80

10–10

10–12

10–14

10–8

10–6

10–4

I D
 (A

 µ
m

1 )

I D
 (µ

A
 µ

m
–1

)

ID  (A
 µm

–1)

0

50

100

150

0 1 2 3 4 5

R
T
 (k

Ω
 µ

m
)

R
C
 (k

Ω
 µ

m
)

0

200

400

600

L (µm)

0 1 2 3 4 5
0

20

40

60

ns (1012 cm–2)

2 4 6 8 10

25 mm 25 mm

25 mm25 mm

Fig. 1 | Two-dimensional FET fabrication and characterization. a, Epitaxial large-area growth of highly crystalline 2D monolayers on a sapphire substrate 
using a MOCVD technique by the Two-Dimensional Crystal Consortium (2DCC), an initiative of the National Science Foundation (NSF) through the 
Materials Innovation Platform (MIP)11. b, The poly(methyl methacrylate) (PMMA)-based wet-transfer technique developed by Zhang and others18.  
c, Schematic of a 2D FET with global back-gate. d, SEM image of a TLM structure fabricated on monolayer MoS2. The channel is etched in a rectangular 
geometry to ensure constant channel width W. e,f, Transfer characteristics (that is, source-to-drain current, ID) measured by sweeping the gate voltage 
(VGS) at constant drain voltage (VDS), plotted in linear and logarithmic scale (e) and output characteristics obtained by measuring ID by sweeping VDS at 
constant VGS (f) of a 2D FET based on MOCVD-grown monolayer MoS2. ID is reported in units of µA µm−1 by normalizing to W. g, Total channel resistance 
(RT) as a function of channel length (L) for different carrier concentrations (nS) obtained from a TLM geometry for monolayer MoS2 with a 30 nm Ni/40 nm 
Au contact. Contact resistance (RC) can be extracted from the x intercept of the linear fit of RT versus L following Supplementary equation (5). h, RC versus 
nS obtained from 23 TLM structures. The error bars show the median and the interval between 25th percentile and 75th percentile. Panel a reproduced with 
permission from ref. 11, Pennsylvania State University. Panels d–h adapted with permission from ref. 125 under a Creative Commons licence CC BY 4.0.
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measuring the drain current (ID) while sweeping the source-to-gate 
voltage (VGS) at constant source-to-drain voltage (VDS) plotted in 
linear and logarithmic scale, Fig. 1e) and output characteristics 
obtained by measuring ID while sweeping VDS at constant VGS (Fig. 
1f). ID should be reported in units of µA µm−1 by normalizing to the 
width of the 2D channel (W). The gate leakage current (IG) should 
also be reported to ensure that ID is free from any artefacts. It is 
also recommended that the voltage sweeps are performed in both 
directions, for different sweep rates and sweep ranges, to reveal the 
hysteresis in the device characteristics27. As detailed in the follow-
ing, a comprehensive report on device performance indicators must 
include the off current (IOFF), on current (ION), current on/off ratio, 
threshold voltage (VTH), carrier mobility (μ), inverse subthreshold 
slope (SS), contact resistance (RC) and saturation velocity (vSAT).

IOFF is often determined by the noise floor of the measurement 
instrument if not stated otherwise. For ION, it is important to specify 
VDS and the gate overdrive voltage (VGS − VTH) or the carrier con-
centration nS (Supplementary Section 1 provides a discussion of 
the extraction of nS). The current on/off ratio must be stated for 
a given gate voltage range (VGS,max−VGS,min). VTH can be extracted 
using linear extrapolation (VTHlin) of the transfer characteristics28, 
the Y-function method (VTHY)29 or the constant-current method 
(VTHcc)28 (Supplementary Section 2 provides an illustration of the 
extraction of VTH by different methods). Note that VTH will dif-
fer depending on the extraction method, so the method should 
be reported accordingly. Carrier mobility (μ) can be extracted 
from the peak transconductance (μgm), Y-function (μY) or TLM 
(μTLM) (Supplementary Section 2 presents further discussion on 
mobility extraction)30. SS should be reported as an average over 
several orders of magnitude change in ID. Although the expected 
SS for any ultrathin-body (UTB) FET is 60 mV dec−1, this value is 
rarely achieved in 2D FETs due to the finite interface trap capaci-
tance (CIT) given by the interface trap density, DIT (Supplementary 
Section 2)31. RC is extracted using the TLM geometry for different 
nS using Fig. 1g and Supplementary equation (5) as shown in Fig. 
1h. Note that, unlike silicon FETs, where metal–silicon interfaces 
are mostly ohmic in nature owing to the formation of metal sili-
cide, metal–2D interfaces are mostly Schottky in nature, with the 
Schottky barrier (SB) width being a function of VGS (refs. 29,32). 
Furthermore, for silicon FETs, the channel underneath the metal 
contacts is degenerately doped and hence cannot be gated, whereas 
the 2D channels are mostly intrinsic and are under gate control in 
a back-gated geometry29,32. As a result, the value of RC in 2D FETs 
depends on (VGS − VTH) or nS and must be reported accordingly (Fig. 
1h). For a more comprehensive understanding of metal–2D con-
tacts, temperature-dependent measurements must be performed to 
extract the SB height32–34.

Saturation velocity (vSAT) is another important parameter for 
FETs. Although, at low lateral electric field E, the average electron 
or hole drift velocity (vd) increases linearly with mobility following 
vd = μE, at large electric field the carrier velocity saturates. In silicon, 
vsat ≈ 107 cm s−1 occurs at E > 1 V μm−1 (ref. 35), a value that is readily 
achievable in submicrometre FETs. Thus, ION becomes less depen-
dent on μ and is instead proportional to vsat, following ION = qnSvsat 
(ref. 36). Recently, Nathawat et al.37 reported vsat ≈ 6 × 106 cm s−1 for 
MoS2 on SiO2 using a pulsed measurement technique. If this aver-
age velocity were maintained along the channel of a MoS2 transistor, 
ION ≥ 1 mA μm−1 could be achieved in this monolayer semiconduc-
tor at a carrier density of nS ≥ 1013 cm−2 (Supplementary Section 
3 provides more discussion about vsat). Figure 2a summarizes the 
experimental results for vsat in various 2D and 3D materials38.

Note that, during the measurement of a 2D FET, particularly 
with thicker back-gate oxides, current saturation can occur through 
either pinch-off or velocity saturation and self-heating (SH), as illus-
trated in Fig. 2b. In the former case, the saturation current has a clas-
sical35 quadratic dependence, (VGS − VTH)2, whereas in the latter case 

the current scales linearly36 or even sublinearly (when SH becomes 
non-negligible38) with (VGS − VTH). SH is a challenge because 
it degrades transistor performance and reliability, and because 
it introduces complications for interpretation of the high-field 
device parameters, such as vsat. SH plays an important role in 2D 
FETs, which are an extreme case of semiconductor-on-insulator 
(SOI) technology38, because the 2D channel is often on a thermally 
resistive film of SiO2. In addition, the weak van der Waals inter-
face with SiO2 has a relatively large thermal boundary resistance 
(TBR ≈ 60 m2 K GW−1), equivalent to the thermal resistance of ~80 
nm SiO2 at room temperature39,40. Direct thermal measurements 
of MoS2 FETs have found that their temperature rise can exceed 
~200 °C during operation40.

SH in 2D FETs can be identified from the output characteristics 
(Fig. 2c). First, we note a sublinear dependence of the saturation 
current on (VGS − VTH) is distinct from the linear relationship due 
to velocity saturation or the quadratic dependence due to classi-
cal pinch-off. Second, extreme SH can lead to negative differential 
conductance (NDC) at high current levels, which has also been 
observed in measurements taken at sufficiently high VDS (and ID)41. 
Both effects are caused by increased scattering as the temperature 
increases during high-current operation. Several measures can be 
taken to limit SH effects in 2D transistors. First, a reduction of the 
channel length increases thermal dissipation into the metal con-
tacts39,42. Second, switching transistors with nanosecond (or faster) 
pulses37 reduces SH by operating them below the thermal time con-
stant43, which can be on the order of ~100 ns. Third, the thermal 
resistance could be reduced by decreasing the insulator thickness 
(or using hexagonal boron nitride (hBN) as a lateral heat spreader44) 
and improving the TBR of the interfaces surrounding the 2D mate-
rial. Supplementary Section 4 provides more discussion of SH.

The importance of mobility. Note that carrier mobility is less 
important for ultra-scaled devices than is often assumed because 
the terminal currents in nanoscale transistors are limited by RC 
(refs. 30,38,45,46), vsat (when optical phonon scattering dominates36) 
or injection velocity (in ultrashort channels comparable to the 
scattering mean free path47). Still, mobility is a useful quantity to 
estimate electron or hole scattering rates and effective masses at a 
given temperature (for scattering with phonons), carrier density 
(Coulomb screening effects), channel thickness (surface roughness) 
and gate insulator properties (remote phonon and impurity scatter-
ing). However, because mobility, unlike current, is never measured 
directly, its extraction can be prone to substantial errors.

So, what is more important for transistor performance—cur-
rent (high ION and low IOFF), high transconductance (gm), low out-
put conductance (go) or low parasitic capacitance? As an example, 
Fig. 2d displays ION from measurements of monolayer MoS2 tran-
sistors38,46,48–55 as a function of L, at the same VDS = 1 V and maxi-
mum VGS reported. The solid curves represent a simple model with 
ION = VDS/(LRsh + 2RC), where Rsh = (qnSμ)−1 ≈ 8 kΩ sq−1 is the average 
channel sheet resistance with nS = 2 × 1013 cm−2, μ = 40 cm2 V−1 s−1 
and RC = 1 kΩ μm or 500 Ω μm, in the range of the best contacts 
reported so far30,38,45,46. Micrometre-scale transistors are lim-
ited by their mobility or saturation velocity38, but short channels 
(L < 2RC/Rsh, especially <100 nm) are strongly limited by their con-
tacts. Thus, the largest improvements of short-channel MoS2 tran-
sistors will be achieved by further reducing the contact resistance, 
together with reduction of the effective oxide thickness (EOT). 
Other benchmarking data for multilayer and other 2D material 
transistors are available on a recently launched website52.

Insulators and reliability. A prerequisite for 2D FETs to be consid-
ered mature enough for VLSI applications is that they operate reliably 
over their entire lifetime of typically 10 years. Different method-
ologies provide different perspectives on how the reliability of 2D 
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devices is adversely affected by inferior semiconductor-to-insulator 
interfaces as well as insulator defects. Valuable insights can be 
gained about the semiconductor-to-insulator interface from study-
ing low-frequency variations (millhertz to megahertz) in ID—com-
monly called flicker or 1/f noise56,57. The magnitude of the noise 
spectral density determines the precision limit of FET operation, 
which can be increased by eliminating charge traps in the vicinity of 
the channel, either via encapsulation57 or by including hBN between 
the substrate and the 2D channel56. The same charge traps can be 
studied on an atomic level in nanoscale FETs, where the number 
of traps per device can be reduced from several thousand down 
to a countable number of less than 100. In this case, the current 
fluctuations take the form of discrete steps, as every single trapping 
event triggers a discrete step in ID, which is called random tele-
graph noise (RTN). So far, the technological difficulty of fabricating 
high-quality 2D FETs with a sufficiently small charge trap or defect 
density (NT < 1012 cm−2) and active area (A < 100 nm × 100 nm), 
which together determine the total number of defects (N = NT × A), 
has limited the number of studies on RTN in 2D FETs58,59. The loca-
tion of the defects has been analysed, confirming that the most 

detrimental charge traps are located at adsorbates and in the gate 
insulator59. Figure 3a shows the atomic structure of the MoS2/SiO2 
interface (left), which is more defective than the Si/SiO2 interface 
(right). Most importantly, the average time constants of the traps 
cover an extremely wide range, from nanoseconds (and probably 
faster) to years (Fig. 3b).

In addition to noise, the charge-trapping events at insula-
tor defects in the vicinity of the channel cause a hysteresis in the 
transfer characteristics of 2D FETs27,60,61 that can be orders of 
magnitude larger than what is observed in commercial silicon 
technologies62. Charge trapping can also cause an apparent SS of 
<60 mV dec−1 during the 2D FET transfer characteristics measure-
ments, as shown for oxide-based FETs63. Detailed studies have 
revealed that the critical defects are located in the insulator ~1–5 nm 
(ref. 64) away from the channel, which classifies them as border 
traps. In addition to border traps, water and other gaseous adsor-
bates from an ambient environment60 or residue from immature 
processing at the critical semiconductor-to-insulator interface will 
substantially increase the observed hysteresis. Typically, the hyster-
esis increases with increasing voltage ranges27 and sweep times61.  
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This knowledge can be exploited with a pulsed measurement 
scheme, where the hysteresis is considerably decreased for pulses in 
the millisecond range64. To reduce the density of border traps, a less 
defective gate insulator, for example, a multilayer hBN crystal27,61 
or ionic CaF2 (ref. 65), can be used. The hysteresis in two example 
devices is shown in Fig. 3c and the hysteresis width is compared for 
many different devices in Fig. 3d. Although the hysteresis has to be 
avoided for stable FET operation, it is useful for neuromorphic cir-
cuits66, and the sensitivity of the hysteresis on the gas concentration 
can be exploited in gas sensors67.

In addition to hysteresis, slower border traps can charge during 
device operation, thereby causing a shift of the threshold voltage, 
which, over time, accumulates until the operating point changes 
too much and the device fails68,69. This phenomenon is typically 
referred to as bias temperature instability (BTI). For BTI character-
ization, a gate bias is applied for a certain time and the shift of the 
threshold voltage (ΔVTH) is recorded during the stress and recovery 
phases. Several studies have evaluated the BTI characteristics of 2D 
FETs27,68,69 (Fig. 3e), where accelerated degradation was observed 
for stress-recovery measurements at elevated temperatures, typi-
cally between 40 °C and 200 °C (refs. 27,68,69). Recovery traces contain 
valuable information on the permanence of the device degradation 
inflicted by gate bias stress69.

Another reliability issue that is related to device failure towards 
the end of the lifetime is time-dependent dielectric breakdown 
(TDDB)70. TDDB depends primarily on the gate insulator as its 
physical mechanism is governed by the formation of defects in 
the insulator. Once the defect density crosses a critical thresh-
old, a conductive filament is formed, which leads to a strong 
increase in the gate leakage current70. Contrary to the well-studied  

breakdown of SiO2, 2D insulators have been shown to break down 
in a layer-by-layer fashion71. Even though TDDB needs to be 
avoided to provide stable FET operation, the physical mechanisms 
eventually leading to breakdown can be used to build resistive 
random-access memories72.

An additional reliability concern is degradation caused by apply-
ing a high voltage at the drain side of the device—the so-called 
hot carrier degradation (HCD). Although HCD in silicon FETs 
is among the central reliability concerns in scaled devices73, only 
very little is known about HCD in 2D material-based devices74; 
HCD may be fundamental for functionalized 2D materials or 
hydrogen-passivated edges, as these bonds could be susceptible to 
hot carrier-triggered dissociation.

The aforementioned reliability issues—1/f noise, RTN, hyster-
esis, BTI, TDDB and HCD—have a common root cause, namely 
charge-trapping events at defects and the formation of new defects 
at suitable defect precursor sites such as strained or dangling bonds 
in the vicinity of the 2D channel material. As a consequence, the 
typically highly defective interface between the 2D semiconductor 
and conventional 3D oxides, such as SiO2 or HfO2, which addition-
ally contain high numbers of intrinsic defects, will result in poor 
reliability. The border traps in the insulator are energetically aligned 
within distinct defect bands that are broader in amorphous oxides 
and tend to degenerate to discrete levels in crystalline insulators31. 
This could help in solving the reliability challenges of 2D FETs by 
using less defective, crystalline insulators, which offer the possibil-
ity of forming a (quasi) van der Waals interface with the 2D semi-
conductor in the channel31. From our current perspective, the most 
promising candidates for this purpose are layered 2D insulators 
such as hBN61, mica75, native layered oxides like Bi2SeO5 (ref. 76) or 
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fluorides such as CaF2 (ref. 65). Even so, the introduction of such new 
insulators poses its own challenges related to the growth of crys-
talline insulators at a moderate thermal budget or other important 
insulator requirements such as a high dielectric constant (see the 
section ‘Dielectric integration’). Nevertheless, many of the reliabil-
ity problems that might inhibit the use of 2D FETs in VLSI chips 
can at the same time be used to build 2D material-based devices, 
such as non-volatile memory elements72, synaptic devices for neu-
romorphic computing66 or highly sensitive sensors77, as outlined 
in more detail in the section ‘Potential applications for 2D FETs in  
future VLSI’.

Key technological challenges for 2D transistors
According to the IRDS for scaled FETs, 2D materials are a possible 
solution for the challenges faced in the technology nodes beyond 
2028, that is, at the ultimate scaling limit78. The IRDS roadmap 
places stringent requirements on every technology that aims for 
these ultra-scaled dimensions, the most critical among them being 
low contact resistances, gate lengths on the order of 10 nm (ref. 55), 
on currents in the range of 100 μA μm−1–1 mA μm−1, an inversion 
layer thickness of only 0.9 nm, off-state currents of 10 nA μm−1 
for high-performance (HP) and 100 pA μm−1 for low-power (LP) 
requirements and competitive device reliability78. Here, we discuss 
the state of the art in 2D material-based nanoelectronics focusing 
on these aspects.

Contact resistance. Contact resistance holds the key to achiev-
ing high-performance 2D FETs. According to the IRDS 2020 
Update78, the total parasitic series resistance (RSD) must be reduced 
to 221 Ω μm over the course of the next 15 years. Note that, for sili-
con transistors, RSD = 2RC + 2RA, where RC is the contact resistance 
and RA is the access resistance, which includes contributions from 
the accumulation layer, spreading resistance and sheet resistance 
of the source–drain. The best RC values for 2D FETs reported so 

far are ~123 Ω μm for a bismuth-contacted n-MoS2 monolayer53, 
~180 Ω μm for n-channel monolayer MoS2 (Ag/Au contact) after 
amorphous titanium suboxide (ATO) doping54, and ~100 Ω μm for 
p-channel multilayer WSe2 after nitric oxide (NO) doping (unpub-
lished). Figure 4a summarizes some of the best reports of contact 
resistance for different TMDs52. Fundamental challenges in achiev-
ing low contact resistance in 2D FETs stem from the existence of 
a SB at the metal–2D interface, metal oxidation, metal reaction 
and damage to the 2D material, incomplete coverage due to metal 
grains and so on32. Attempts have been made to lower the SB height 
through metal work-function engineering, 2D/2D contacting and 
depinning of the Fermi level using interlayer insertion, as well as 
narrowing the SB width through surface charge transfer doping 
(SCTD)32. Although impressive, most approaches lack scalability 
for VLSI. In fact, high-performance n- or p-type 2D FETs with on 
currents approaching the mA μm−1 regime (to rival current silicon 
technology) with an inverse SS in the 60 mV dec−1 regime and a suf-
ficiently low off current at supply voltages VDD of ~1 V have not yet 
been achieved.

Future generations of 2D FETs will require a device layout as 
shown in Fig. 4b to avoid the overlap capacitances between elec-
trodes that are currently present in almost all prototype 2D devices. 
In other words, both n- and p-type 2D FETs need to be developed 
with degenerate doping underneath the contacts and the gate oper-
ating on the intrinsic region. Some attempts at designing such 
a doping profile have been made79, but the device performance 
remains inadequate. Conventional substitutional doping by means 
of ion implantation is undesirable because of probable damage to 
the ultrathin 2D channel, so SCTD or in situ growth approaches 
need to be employed. Another alternative could be making contact 
to phase-engineered metallic 2D materials80.

Contact scaling is another important consideration for 2D FETs 
because nanoscale devices also require nanoscale contacts. As shown 
in Fig. 4c, RC increases as the contact length (LC) is reduced following 
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the expression RC =
√

ρCRSHcoth(LC/LT), where, ρC is the specific 
contact resistivity, RSH is the channel sheet resistance under the con-
tact and LT =

√

ρC/RSH  is the transfer length, which determines 
the extent of current crowding32,81. For LC ≫ LT, RC =

√

ρCRSH , 
independent of LC, whereas, for LC ≪ LT, RC = ρC/LC. Therefore, true 
reduction in RC for aggressively scaled devices necessitates LT scal-
ing and/or reduction in ρC. To achieve LT < 10 nm, ρC ≈ 10−8 Ω cm2 
must be achieved when RSH ≈ 10 kΩ sq−1. Even for the best reported 
RC for the TMDs, ρC is still about an order of magnitude higher than 
for heavily doped silicon contacts. English et al.30 have reported 
LT = 20–40 nm for gold contacts to MoS2. Note that there is ongoing 
consideration of where carriers are actually injected at the metal–
2D interface, with evidence that top-contacted devices with thin-
ner flakes and contact gating (that is, gate overlap) lead to more 
edge-dominated injection and thus offer better LC scalability82,83. 
However, without contact gating, this edge injection behaviour may 
not hold and thus pure edge-contacted devices may be a more viable 
solution for aggressively scaled 2D FETs84.

Doping 2D semiconductors. A comprehensive review of various 
doping strategies for TMDs has been compiled by Luo and col-
leagues85. In TMDs it is possible to replace both cationic and anionic 
elements substitutionally by foreign atoms with comparable radii 
without substantial distortion of the crystal structure of the host 
material86. Cationic elements can be replaced by elements such as 
niobium87 and rhenium88 to achieve p- and n-type doping, respec-
tively (Fig. 4d). However, as the doping has to be introduced dur-
ing the growth stage, it is difficult to spatially pattern the dopants. 

Substitutional doping has also been realized by replacing the anions 
through exposure to plasmas such as carbon89, nitrogen90 and so 
on (Fig. 4e). Although patternable, plasma doping introduces lat-
tice defects, which leads to performance degradation. Additionally, 
structural incorporation of the dopant in the lattice does not imply 
dopant activation.

A better doping strategy is SCTD, with which the work func-
tion, electron affinity and concentration of the adsorbed or depos-
ited interfacial species determine the type and extent of doping of 
the underlying 2D channel. SCTD has been demonstrated in several 
TMD materials, enabling both n- and p-type doping, with varying 
levels of effectiveness85. Doping can also be induced by depositing 
a sub-stoichiometric insulator such as aluminium oxide45, amor-
phous titanium suboxide54, molybdenum trioxide79,91,92 or silicon 
nitride93 (Fig. 4f). Another approach is ozone or oxygen plasma 
treatment, which converts the top layer of TMDs to their respective 
sub-stoichiometric oxides and results in strong p-type doping in the 
underlying layers79,91. In FETs based on multilayer 2D materials, the 
interlayer space has been exploited for doping via intercalation of 
foreign ions, atoms and even small molecules, although stability, 
patternability and fabrication process compatibility are key chal-
lenges with this approach. Supplementary Section 5 summarizes 
some of the most promising doping approaches, their resulting dop-
ing type and the corresponding doping concentrations reported for 
monolayer and multilayer TMDs.

Mobility engineering. The carrier mobility values reported for 
most 2D materials are substantially lower than their theoretically 
predicted values, indicating that there is large room for improve-
ment94. As a result of the UTB, carrier transport in 2D materials 
is often not determined by their intrinsic mobility limited by pho-
non scattering, but by extrinsic effects, including phonon scattering 
from the dielectrics, Coulomb scattering from the charge impuri-
ties, scattering from defects, and surface roughness scattering from 
the interfaces95,96. Point defects are the most important scattering 
source in TMDs. Owing to the low formation energy of the chal-
cogen vacancy, a large amount of sulfur vacancies are commonly 
observed in synthesized MoS2, which can induce short-range scat-
tering and degrade carrier mobility97. Najmaei et al.98 reported that 
a self-assembled monolayer can partially repair such vacancies and 
substantially improve the electron mobility. Ma and Jena99 predicted 
that high-κ dielectrics provide effective screening of the charge 
impurities leading to high Coulomb-limited mobility, but the soft 
optical phonons in high-κ dielectrics result in low phonon-limited 
mobility. Selecting moderate-permittivity dielectrics can optimize 
the carrier mobility in 2D materials. It has been demonstrated that 
hBN encapsulation of 2D materials reduces scattering from substrate 
phonons and charged impurities, resulting in higher carrier mobili-
ties100. Alternatively, strain can be used for mobility engineering101.

Scale length. As mentioned earlier, a key motivation for using 
2D semiconductors in aggressively scaled devices is their UTB 
(tS), which can mitigate so-called short-channel effects, such as 
drain-induced barrier lowering (DIBL, Box 1). In addition to mini-
mizing the contact dimensions (by improving the contact resistance) 
and gate-to-contact spacing102 (including doping), the smallest gate 
lengths must be achieved by minimizing the electrostatic scale 
length λ. This scale length represents the competition between the 
gate and drain potential for control of the channel charge, and a 
stronger gate-to-channel coupling leads to a desirable, shorter λ. 
To avoid short-channel effects, the transistor gate length must be at 
least three to four times larger than λ, which depends on the channel 
and gate insulator thickness (tS and tOX), as well as their dielectric 
constants (εS and εOX). Improvement in λ can be achieved by moving 
from standard single-gated geometries82 to dual-gated24,103, fin104 and 
gate-all-around (GAA) geometries26.

Box 1 | Drain-induced barrier lowering and scale length and 
short-channel effects

The left panel shows the conduction band edge versus position 
along the channel of an n-type 2D transistor below threshold, il-
lustrating the electrostatic scale length λ and the DIBL phenom-
enon. Most 2D FETs have non-zero contact SB, as shown. Elec-
trons are shown as small red particles in the source, entering the 
channel as the channel barrier is lowered. The right panel shows 
ID versus VGS, illustrating lower VTH and worse SS due to DIBL at 
higher VDS. The solid lines are at low VDS and the dashed lines are 
with high VDS in both panels. DIBL is minimized when L > 3 to 
4λ. A common approximation of this scale length in SOI transis-
tors191 is λ≈

√
εStStOX/εOX ; however, this expression must be re-

visited when one of the thicknesses is much larger than the other. 
For example, in 2D FETs with tS ≪ tOX, most electric fields from 
the drain traverse the insulator instead of the semiconductor 
body. The scale length also depends on FET geometry, for exam-
ple, single- versus double-gate, gated versus doped contacts, iso-
tropic versus anisotropic material permittivity. For a symmetric 
double-gate FET192,193, the scale length is a solution of tan(tS/2λ)
tan(tOX/λ) = εOX/εS, where the first term becomes linear in tS for 
tS ≪ λ, as in monolayer 2D FETs. In this case, tS is at the atomic 
limit and can no longer be scaled down, so tOX remains the main 
parameter that must be reduced to prevent short-channel effects.
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Dielectric integration. Integration of ultrathin dielectrics is criti-
cal to the success of 2D FETs in advanced technologies. Several 
key criteria need to be satisfied by a candidate gate dielectric stack 
(transition/buffer layer with suitable high-κ dielectric) to enable a 
high-performance 2D FET technology (Box 2).

With regards to gate dielectric scaling, there is a need to balance 
the thickness of the dielectric for minimizing gate leakage current 
with the push for high gate capacitance for improved gate coupling. 
According to the IRDS roadmap, the inversion layer thickness must 
not exceed 0.9 nm (ref. 78). The inversion layer thickness consists of 
the EOT and the physical extension of the inversion layer, which 
amounts to ~0.4 nm, corresponding to the approximate size of the 
electron orbit105. Thus, for an inversion layer thickness of 0.9 nm, 
an EOT of ~0.5 nm must be achieved with low leakage. For hBN, as 
one of the most commonly used layered insulators, this corresponds 
to two atomic monolayers and a physical thickness of ~0.66 nm 
because of the small permittivity of hBN of ~5. However, this small 
physical thickness leads to excessive leakage currents that render 
hBN unsuitable as a gate insulator for 2D FETs at the scaling limit106. 
Instead of hBN, several other insulators for 2D FETs, such as mica75, 
HfO2 (ref. 107), CaF2 (ref. 65) or Bi2SeO5 (ref. 76), could hypothetically 
offer smaller leakage currents due to their increased physical thick-
ness at the same EOT, provided they can be integrated with the 2D 
channel as discussed below.

The inert basal planes of 2D semiconductors inhibit the abil-
ity to nucleate growth of high-κ dielectrics using standard atomic 
layer deposition (ALD) processes. Efforts to realize scalable, high-κ 
dielectrics on top of 2D materials can be broadly classified into four 
approaches (Fig. 5): surface treatments23,108,109, ALD process modifi-
cations22,110,111, buffer/seeding layers65,112–115 and transferred or trans-
formed films73,76,100,116–118. For surface treatments, the premise is to 
generate reactive sites on the otherwise inert basal plane, either by 
intentionally generating defects or by adding adsorbents. Although 
it has been suggested that exposing a MoS2 surface to ozone can lead 
to a sacrificial oxygen layer on the surface that does not disrupt the 
MoS2 crystal and allows for a uniform, pinhole-free Al2O3 dielectric 
using ALD (Fig. 5a)114, many follow-on reports suggest inconsis-
tencies in this process and reactive oxidation to the 2D crystal108.  

A variety of other surface treatments have been reported, typically 
in the form of plasma exposure (for example, O2, H2 and N2), but 
they all tend to exhibit some degree of 2D crystal damage and/or 
low uniformity.

The second approach to achieving high-κ nucleation is through 
modification of the ALD process. This is largely related to surface 
treatments as it involves modification of the precursor choice or 
inclusion of a plasma precursor step to drive surface function-
alization and, ultimately, nucleation. Some of the thinnest high-κ 
dielectrics so far have been demonstrated using plasma-enhanced 
ALD (PEALD; HfO2 down to ~3 nm on MoS2, Fig. 5b)111. However, 
this process has also been shown to severely damage the topmost 
2D layer110, which may be acceptable in a few-layer film but is a 
non-starter for monolayers.

Buffer layers can be used to support the nucleation of high-κ 
dielectrics on 2D channels. However, buffer layers are rarely high-κ 
and must be as thin and effectual as possible. There has been some 
success in this regard by using metal oxides formed via the deposi-
tion of a thin metal seed layer (for example, electron beam evapo-
ration of Al) followed by its oxidation45,112, but the evaporation of 
most metal layers shows damage to the uppermost layers of 2D 
semiconductors119. Others have explored organic films113, but these 
tend to suffer from a relatively low electrical permittivity as well as 
a disordered structure that can lead to large variability. A recent 
demonstration used a vacuum-phase-deposited molecular crystal 
monolayer (PTCDA) to achieve an EOT of ~1 nm from an ultra-
thin high-κ dielectric grown on the seed layer (Fig. 5c)115. On the 
whole, buffer layers pose a scaling challenge as they would need to 
be simultaneously nanometre-thin, uniform, reliable and as high-κ 
as possible, although recent PTCDA work does show promise if it 
can be reproduced more broadly.

The last general approach to realizing a scalable high-κ dielec-
tric on inert 2D surfaces is to use transferred or transformed films. 
Most common is hBN116, though other options are emerging, such 
as MoO3 (ref. 118), GaS (ref. 73) and CaF2 (ref. 65). Compelling demon-
strations of ‘all 2D’ transistors have come from these transferred-film 
approaches117,120. Another option is to partially transform the 2D 
semiconductor into its native high-κ oxide with sub-1-nm EOT 
(Fig. 5d)76,107. This 2D film transformation approach is promising 
but requires further study to assess the uniformity and yield of the 
process, which also lacks broad applicability to the diverse range of 
2D semiconductors as it would only be compatible with those that 
are able to be controllably oxidized into a high-quality insulator.

As can be seen, a variety of approaches have been taken to resolve 
the challenges of integrating a scalable, high-quality dielectric into 
the gate stack of 2D FETs. Although some of these have shown real 
promise, the reality is that a viable process will have to be compat-
ible with the demands of a particular technology. It is recommended 
that continued research efforts consider the uniformity and scalabil-
ity of proposed processes so that their true utility may be assessed.

Device-to-device variability. The vast majority of the literature on 
2D FETs is limited to the demonstration of a few selected devices 
and does not touch upon the question of yield, that is, the num-
ber of devices that achieve comparable performance. Although 
achieving good device-level metrics such as low contact resistance, 
high on current and short gate lengths is important for improv-
ing system-level performance, device-to-device variation is often 
the ultimate limiter in transistor scaling and integration. In silicon 
FinFET technology, variability sources such as work-function varia-
tions, fin edge roughness and random dopant fluctuations are well 
known, monitored and modelled on a wafer scale, contributing to an 
in-depth understanding that helps to drastically reduce the overall 
variability121,122. In comparison, although 2D FETs will share quite a 
few of those issues, specific knowledge about variability sources in 
2D FETs seems to be fragmentary so far. Recently, a few studies have 

Box 2 | Criteria for the gate dielectric

 (1) Yield a gate capacitance of >3 µF cm−2 to ensure a carrier 
density of >1013 cm−2 at VGS < 1 V.

 (2) Have an electronic structure that, in combination with the 
semiconductor, allows for small (minimal) thermionic and 
tunnel gate leakage current <0.01 A cm−2 (ref. 194) as required 
for LP circuits.

 (3) Form an inert interface with the 2D channel material to en-
sure no reactivity and minimal degradation of carrier mobil-
ity (a known issue in silicon technology)195.

 (4) Have low interface and bulk defect/trap density to operate 
near the ideal SS value of 60 mV dec−1 with no detectable 
hysteresis.

 (5) Be compatible with pinhole-free, conformal deposition 
techniques such as ALD with subnanometre wafer-scale 
thickness control and low spatial fixed charge variation196.

 (6) Allow for threshold voltage tuning using metal gate 
work-function engineering to enable NMOS and PMOS 
without channel doping. This requirement can be relaxed 
if different 2D materials are used for n-type and p-type 
channels or if the oxide itself can dope the channel through 
SCTD197.

 (7) Be suitable for reliable operation for >10 years with a break-
down field of ~10 MV cm−1 (ref. 198).
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addressed the variability in 2D FETs at the chip- and wafer-scale 
level28,82,103,123–125, as summarized in Supplementary Section 6.

One obvious source of variability in 2D FETs arises from growth 
defects including the formation of vacancies, multilayer islands 
and grain boundaries. Vacancies cause unintentional doping and 
Fermi-level fluctuations within the film and can result in variation 
in contact resistance82,126. Multilayer islands and grain boundar-
ies cause variations arising from quantum confinement effects, 
local strain fields and defect/substrate-induced charge transfer127. 
Although bilayer islands do not cause VTH variation28,128, they 
can cause substantial variation in SS in short-channel devices128. 
Another source of variability comes from physiosorbed and/or 
chemisorbed impurities at 2D–dielectric interfaces and can cause 
unintended VTH shift, operational instability, hysteresis and drift 
in the electrical characteristics29. These organic–inorganic inter-
facial species can originate from the solvents used in the transfer 
process, lithography or during high-κ dielectric integration. Clean 
wafer-scale transfer techniques that can minimize cracks, wrinkles 
and residues can be useful129,130. Recently, a wafer-to-wafer bond-
ing and debonding scheme was used for the transfer of WS2 lay-
ers grown on 300 mm wafers in a silicon CMOS131. Post-transfer 
cleaning using plasma can further aid cleaning and restoration of 
TMDs20. The adhesion of the transferred film on the target wafer 
is also important. Finally, for high-κ dielectric integration, using a 
gate-first process instead of a gate-last process has been shown to 
reduce variability123.

The coefficient of variance and the correlations of important 
figures of merit that help identify the root causes of the variations 
are important metrics to quantify device-to-device variability132. 
To decouple device-to-device variation from process-related vari-
ability, difference in VTH (obtained from adjacent devices within 
the same die) can be analysed across multiple dies103,128. Similarly, 
Pelgrom plots can be used to study scaling-induced variations. An 
encouraging recent study using MoS2 FETs demonstrated slopes in 
Pelgrom diagrams similar to those in silicon FinFETs128. Assessing 
temporal variation to study the stability of 2D materials is also cru-
cial131. Variation in VTH (σVTH) can be used as a benchmarking metric 

and can be projected for a scaled EOT to account for differences in 
dielectric environments28,125, as shown in Supplementary Section 6.

It appears that 2D material defectivity is likely to be the major 
issue in controlling wafer-scale device variation and performance. 
For example, according to scanning tunnelling microscopy stud-
ies133 as well as calibration of simulations and mobility data134,135, the 
mobility of even the best 2D semiconductors is at present limited by 
point defect densities on the order of 1012 cm−2. The electron mean 
free path in MoS2 is only 2–4 nm at room temperature39. When defect 
densities can be lowered below ~1011 cm−2 at the wafer scale, the 
mobility will be primarily limited by intrinsic and remote dielectric 
phonons. In this respect, 2D semiconductors appear more forgiving 
(to defects) than silicon or III–V semiconductors, in part because 
the intrinsic mobilities are lower already. Nevertheless, more work is 
needed to understand how 2D transistor variability and defectivity 
must be tackled to reach their true potential for future VLSI.

Potential applications for 2D FETs in future VLSI
Two-dimensional FETs offer a broad range of potential VLSI appli-
cations, including conventional micro/nanoelectronics, 3D inte-
gration, hardware for artificial intelligence, sensing and diffusion 
barrier replacement for copper interconnects, which we will discuss 
in the following.

Micro/nanoelectronics. Two-dimensional FETs can be used for 
standard digital logic, analogue circuits and radiofrequency (RF) 
electronics, as well as active and passive components in vari-
ous volatile and non-volatile memory devices including static 
random-access memory (SRAM), dynamic random-access memory 
(DRAM) and floating-gate (FG) memory.

For digital logic, the IRDS 2028 node requires a switching delay 
of ~0.78 ps and switching energy of ~0.47 fJ (ref. 78). Additionally, 
the static power must be limited by maintaining IOFF of 10 nA µm−1 
and 100 pA µm−1 for the HP and LP IRDS nodes, respectively. 
Two-dimensional FETs demonstrate tremendous potential in 
matching or even outperforming silicon FinFETs in this con-
text136–138. Beyond a single device, circuit-level demonstrations of 2D 
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FETs include a microprocessor139, an analogue operational ampli-
fier140 and a SRAM cell141. One key consideration for 2D FET-based 
VLSI is device–circuit co-optimization142. For example, the domi-
nant effect of contact resistance can be reduced by reducing inter-
connect wire dimensions, and the increased power consumption 
of dual-gated architectures can be reduced by optimizing the back- 
gate overlap143.

In addition to helping CMOS logic scaling, 2D transistors can 
improve memory scaling. Six-transistor (6T) SRAM and its larger 
version register files are the main memory elements in logic chips. 
As they are based on logic technology transistors, any scaling, per-
formance and leakage benefits that 2D FETs demonstrate for CMOS 
would reflect directly on 2D SRAM properties. In fact, SRAM 
designs based on 2D FETs with a three-tier structure show a sub-
stantial increase in memory capacity per unit area for application 
in future energy-efficient computing systems144. Two-dimensional 
FETs are also very interesting options as DRAM access transis-
tors because they can scale better than silicon FETs while main-
taining both low leakage and comparable on current145. Various 
non-volatile memories, such as FG memories, which are key for 
retaining large amounts of data in electronic products, can use 2D 
FETs to replace the low-mobility and poor-SS poly-silicon NAND 
transistors currently in use. However, this will require the growth of 
2D channels under a low thermal budget on sidewalls of very high 
aspect ratio via holes. Good progress with TMD channel growth on 
oxide sidewalls has been demonstrated146, but further improvement 
in transistor performance and scalability is required. Emerging 
memories such as Fe-FETs, offering better scaling (only one transis-
tor) and high-speed operation (due to the ferroelectric switching 
mechanism, unlike the slow FG write speed), can also exploit the 
2D channel147. Beyond memory and logic, 2D FETs can be useful 
for RF electronics148, hardware security149,150, as well as flexible151 and 
display152 electronics.

Three-dimensional integration. Three-dimensional mono-
lithic integration has presented a potential pathway for the future 
of the semiconducting industry. For the year 2034, table 1 of the 
IRDS 2020 ‘More Moore’ defines the ‘07-nm eq node’ with a gate 
length of 12 nm as consisting of four vertically stacked nanosheets 
with a nanosheet thickness of 5 nm each78. In such a way, electro-
static gate control could be preserved while achieving acceptable 
on-current levels per footprint. The atomically thin nature of 2D 
materials enables low tier-to-tier signal delay and easier heat dis-
sipation, providing over 150% higher integration density compared 
to conventional monolithic 3D integration153. Such 2D materials 
also offer good electrostatic screening and high-frequency electric 
field screening, which are important for 3D integration. Hence, 3D 
integrated dual-gated WS2 FETs have demonstrated potential in 
meeting the requirement of a 3 nm FinFET node138. Similarly, high 
drive current has been achieved in 3D multi-channel MoS2 FETs154. 
Additionally, ring oscillator circuits based on a GAA MoS2 FET 
show potential in outperforming silicon GAA devices at the IMEC 
2-nm node155. Digital circuit components such as inverters, NAND 
and NOR components, as well as analogue components such as dif-
ferential amplifiers, common-source amplifiers and signal mixers, 
have been demonstrated using 3D monolithic integration of MoS2 
and WSe2 FETs156. Similarly, an all-WSe2 1T1R resistive RAM cell 
has demonstrated the potential of 2D materials for 3D embedded 
memory157. Note that monolithic 3D integration of memory and 
logic is a promising alternative to meet the growing demand for in- 
and near-memory computing for artificial intelligence and machine 
learning workloads. Three-dimensional integration can also be 
used to achieve multifunctional devices in the same chip. For exam-
ple, a MoS2 phototransistor array has been integrated on top of a 3D 
integrated circuit based on a poly-silicon nanowire FET for image 
sensing applications158. The fact that 2D materials can be used to 

build aggressively scaled transistors, dense memory cells and sens-
ing components provides diverse opportunities for their 3D integra-
tion. For these reasons, 2D materials are explicitly mentioned under 
the rubric ‘Technology anchors’ subsection of ‘Beyond-CMOS as 
complementary to mainstream CMOS’ in the IRDS roadmap.

Interconnect. Two-dimensional materials may also find potential 
applications in interconnect technology. Copper interconnects are 
required to become more and more compact at each technology 
node, inevitably causing an increase in the resistance–capacitance 
(RC) delay in silicon chips. This problem becomes even more severe 
at ultra-scaled dimensions, because the resistivity of copper rapidly 
increases with increasing side-wall and grain-boundary scatter-
ing159. Moreover, it is well known that copper can easily diffuse into 
the surrounding dielectrics, especially under large electric fields, 
which necessitates the use of diffusion barriers. A bilayer stack con-
sisting of a nitride (TiN or TaN)-based diffusion barrier and refrac-
tory metal (Ta or W)-based liner is usually employed. Because these 
materials are much more resistive than copper, their thicknesses 
need to be as thin as possible to achieve overall low line resistances. 
However, these barrier materials lose their ability to block copper 
diffusion when they are extremely scaled. Accordingly, a subnano-
metre barrier solution is urgently desired for ultra-scaled intercon-
nects in the near future. It has been shown by both experiments 
and simulations160–163 that 2D materials such as graphene, hBN 
and various TMDs can be effective diffusion barriers for copper. 
For example, inserting single-layer MoS2 between a copper elec-
trode and the underlying dielectric substrate substantially improves 
device reliability and performance161. To realize these 2D materi-
als as potential subnanometre thin barrier solutions for intercon-
nect technology, it is necessary to grow high-quality 2D barriers at 
BEOL-compatible temperatures. Recent studies have demonstrated 
the successful conversion of tantalum into a 2D TaS2 barrier layer at 
BEOL temperatures, serving as an excellent copper diffusion barrier 
and adhesion liner to boost the performance of copper intercon-
nects164,165. In addition to the diffusion barrier property, the resistiv-
ity of the copper/2D-barrier hybrid system has also been critically 
examined by directly growing graphene on copper nanowires160 or 
depositing ultrathin copper films on MoS2 (ref. 166) and TaS2 films164. 
Comparisons of copper resistivity with and without a 2D interface 
consistently show lower resistivity in scaled copper interconnect 
devices when 2D interfaces are introduced, which brings substan-
tial value to suppression of the increasing copper resistivity trend in 
scaled interconnects.

Non-von Neumann computing. Two-dimensional materials also 
demonstrate potential for post von Neumann computing, such as 
neuromorphic and biomimetic computing. The physical separation 
of memory and logic, a key bottleneck of von Neumann computing, 
can be circumvented through in-memory computing using mem-
ristive cross-bar architectures and artificial neural networks167,168. 
In this context, the recent discoveries of 2D memristive devices 
that exploit phase-transition169, vacancy or ion migration170, move-
ments of grain boundaries171 and dipolar interaction with adsorbed 
species172 are promising. Additionally, bio-inspired and biomi-
metic devices and computing primitives have been demonstrated 
based on 2D FETs. For example, the auditory cortex of a barn owl 
can be mimicked using split-gated MoS2 FETs25, the visual cortex 
of the human brain can be emulated using a coplanar multi-gate 
MoS2 FET173 and the escape response of the lobula giant movement 
detector neuron found in locusts for collision detection can be 
mimicked using a programmable MoS2 FET174. Furthermore, opti-
cally active 2D materials allow for the realization of optoelectronic 
synapses and smart sensors167,174,175. Other neural functionalities 
such as neurotransmitter release, short- and long-term plastic-
ity, spike-time-dependent plasticity, neural encoding, probabilistic 
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computing and so on have also been achieved using 2D artificial 
synapses with substantial energy efficiency66,170,176,177.

Sensors. Two-dimensional materials, by virtue of their high 
surface-to-volume ratio, are excellent candidates for sensor applica-
tions that exploit surface interactions178. For example, a MoS2-based 
pH sensor179, metal-ion pollutant sensors180 and glucose sensors181 
are some examples of 2D chemical sensors where the target mol-
ecules are typically physiosorbed by a van der Waals interaction or 
chemisorbed into defect sites. Two-dimensional materials can also 
be decorated with nanoparticles to ensure better electrochemical 
properties, selectivity and sensitivity180,181. Biomolecules such as 
dopamine, ascorbic acid, uric acid, nucleic acids (DNA and RNA) 
and various antigens can also be sensed using 2D materials182. Such 
materials are also widely used as gas sensors, which work on the 
principle of charge transfer between the target molecule and 2D 
material77. These 2D materials also offer potential in thermoelectric 
applications, where waste heat generated can be converted to elec-
tric power to support Internet of things devices183.

Conclusions
We have examined advances in the growth, fabrication and process-
ing of 2D materials, and outlined the key device parameters that 
should be used to benchmark the performance of 2D FETs, particu-
larly at scaled device dimensions. We have also identified contact 
resistance, doping, high-κ dielectric integration and device reli-
ability as the major challenges for scaled 2D FETs. We believe that 
the direct growth of highly crystalline and defect-free 2D TMDs 
on existing silicon platforms as well as clean and damage-free 
wafer-scale transfer from growth substrates are important areas 
for further investigation to aid the incorporation of 2D FETs into 
future VLSI technologies. FEOL replacement and/or augmenta-
tion requires high-performance 2D FETs, but BEOL integration 
has relaxed requirements, although it still requires low-temperature 
growth of 2D materials. Another alternative approach is 3D hetero-
geneous integration. We have highlighted potential applications of 
2D FETs in conventional digital, analogue and RF electronics, as 
well as non-traditional computing, sensing and various forms of 
volatile and non-volatile memory. We have also highlighted that 2D 
materials may be useful as diffusion barriers in aggressively scaled 
copper interconnects.’
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