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Abstract

The ability to simulate the processes required to fabricate advanced microelectronic structures, commonly referred to as
rocess technology computer aided design (TCAD), is essential for the semiconductor industry. It aids in the design and
evelopment of modern integrated circuits at low cost. Ongoing demands of high efficiency and simplicity lead to the
evelopment of process emulation techniques, which describe the effect of a fabrication step by using only the geometric
roperties gathered from experimental data or extracted from physical simulations. However, the accuracy of current emulation
odels is limited by their strong reliance on explicit surface representations, while traditional algorithms employing implicit

urfaces, such as the level set, can frequently suffer from numerical limitations. A novel geometric advection algorithm for
icroelectronic process emulation is presented, which advances a level set surface over large distances in a single simulation

tep. It combines the advantages of explicit surface representations, such as fast access to surface data and efficient sorting,
nd the robustness of implicit surface representations. Furthermore, calculations are performed directly in the level set avoiding
ostly conversions to explicit surfaces. The performance and applicability of the algorithm to modern processes is demonstrated
y emulating the fabrication of several high aspect ratio structures. Due to the almost universal applicability and computational
fficiency of the presented geometric advection algorithm, it provides an entirely new way of emulating microelectronic
abrication processes and presents a promising alternative to long-standing and commonly used techniques.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Level set; Process emulation; Geometric advection; Deep reactive ion etching; Design-technology-co-optimization

1. Introduction

The simulation of fabrication processes with process technology computer aided design (TCAD) has become an
mportant tool in the design technology co-optimization (DTCO) cycle used for developing modern microelectronic
evices. As these devices become smaller, more capable simulation methods and models are required in terms
f accuracy and performance [1,2]. Due to the complex deformations of material interfaces taking place during
abrication, the ability to describe such surfaces robustly and efficiently is essential. Hence, implicit surface
epresentations, such as the LS, are often used as they can robustly describe the separation and merger of material
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interfaces [3]. Unlike explicit surface representations, implicit methods do not require additional re-meshing steps,
making them computationally more efficient [4], which is one of the major concerns for simulations. Due to its
robustness and good performance, the LS method has become a standard practice in modern process TCAD to
describe the moving material interfaces during the fabrication of advanced microelectronic devices [5,6].

Physical process simulations are oftentimes highly complex and require considerable knowledge about the
nderlying physics of a process in order to describe the effect they have on the different materials and their
nterfaces [7]. However, frequently the effect of a process is sufficiently understood through empirical measurements,
hile the underlying mechanics and surface chemistry might not be fully resolved [8]. In these cases, simply

pplying the geometric effects of a process can sufficiently describe the resulting geometry with high accuracy.
uch models, based solely on geometric considerations found in experiments, are called process emulation models
s they do not fully simulate a real process in time, but rather only emulate its outcome [9]. Due to the nature
f process emulation models, it is more straight-forward to implement them using explicit surfaces, because these
llow for the movement of surfaces and interfaces over large distances. However, several properties of explicit
urfaces, such as the need for re-meshing [10] and the discretization of simulation space into voxels [11], make
hem undesirable for the emulation of many types of microelectronic fabrication processes. Therefore, a solution is
esired which can be applied over a broad range of geometric surface descriptions.

In this manuscript, a novel algorithm is presented, combining the advantages of implicit and explicit surface
epresentations to advance a LS surface over large distances in only a single simulation step. Therefore, process
mulation models can be applied highly efficiently and performed directly in the LS, without the need for
onversions to other surface representations. The presented algorithm can be included easily in workflows using
he most common process simulators, as they rely heavily on the LS method and no additional conversion is
ecessary. As a result, the presented algorithm can be used to generate process-aware initial surfaces for subsequent
ntricate physical process simulations using standard tools [5,6]. Furthermore, the implementation of this algorithm is
escribed, as provided in ViennaLS [12], an open-source sparse LS library tailored towards microelectronic process
imulation.

Several high-aspect ratio structures, which are fabricated using deep reactive ion etching (DRIE)-like processes,
re generated with this method. Especially the simulation of DRIE processes may require considerable computational
ffort using traditional methods, due to the large number of processing cycles which have to be simulated. Since
RIE processes consist of several deposition and etch cycles which are sensitive to small changes, numerical errors

temming from the iterative modeling of discrete time steps may have strong effects on the final geometry.
The presented algorithms avoid these numerical challenges altogether, by essentially drawing the final surface

sing only geometrical considerations. By describing the geometric effect a process has on a geometry in a
eneralized way using so-called geometric advection distributions, any modeled process may be applied to any initial
tructure, producing the expected final geometry with sub-grid accuracy and fast simulation times. The algorithm
herefore achieves the accurate modeling of process steps with a comparable computational efficiency as simply
rawing the resulting structure. Therefore, subsequent physical process simulations which are to be investigated on
omplex geometries, such as thin film deposition over the scalloped DRIE-generated sidewalls, can be carried out
hile avoiding the inclusion of numerical errors introduced in the creation of the scalloped structure.

. The level set method

The level set method for representing surfaces implicitly relies on storing the signed distance function (SDF)
(x⃗) on a regular grid. The SDF returns the distance of point x⃗ from the surface S of a material M with its sign
enoting whether x⃗ is inside or outside of M :

φ(x⃗) =

⎧⎨⎩−d, for x⃗ ∈ M
0, for x⃗ ∈ S
d, for x⃗ /∈ M

(1)

t is therefore straight-forward to identify whether a point x⃗ is inside or outside of M by examining the sign of
(x⃗), where the convention of negative values referring to x⃗ being inside of M is used here. From Eq. (1), it is
lear that all points which are part of the surface S must satisfy φ(x⃗) = 0. The set of these points is thus called the
ero LS of φ(x⃗) and represents the explicit location of S in the LS method.
2
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Numerically, φ(x⃗) is represented by storing its value at each point p⃗ of a regular grid. However, this requires
large amounts of memory, because the function needs to be defined everywhere in space and therefore, the memory
requirement scales with the volume of the simulation domain, rather than the area of the represented surface, which
would be the ideal case. This ideal scaling is only reached by explicit surface representations [13], but methods exist
which are able to reduce the memory footprint of implicit representations, such as the narrow band method [14].
The least memory-intensive method is the sparse field LS [15], which is implemented in ViennaLS as described in
the next section.

2.1. The sparse field level set

In order to mitigate the large memory requirements of the LS method, it is possible to only store specific points
on the full grid, which are close to the surface. Since each grid point has a distance of unity to all of its neighbors, its
signed distance can be generated from its neighbor points. Therefore, only points close to S actually hold relevant
information about the surface location. These points are referred to as active points a⃗ and here the convention
that |φ(a⃗)| ≤ 0.5 is used. The number of active points scales with the surface area and is therefore close to the
optimal solution in terms of memory consumption. All other level set values can be generated from the values of
their neighboring points. However, common advection schemes described in the following [16], oftentimes require
several neighbor points to advect a LS. The presented algorithm does not have such requirements and, therefore, a
sparse field LS is sufficient, without the need for utilizing additional neighbor points.

2.2. Level set advection

In order to model fabrication processes in the semiconductor industry, the movement of surfaces over time due
to chemical reactions has to be modeled. Moving a surface described by a LS is called advection and the change
of the SDF over time is described by a Hamilton–Jacobi equation, called the LS equation:

∂φ(x⃗, t)
∂t

+ V (x⃗, t) |∇φ(x⃗, t)| = 0 (2)

V (x⃗, t) is a scalar velocity field, describing how the LS value of each point x⃗ changes over time. Many numerical
nite difference schemes are available to solve Eq. (2), differing in complexity and performance. Simple schemes,
uch as the Engquist–Osher scheme, require less computational effort, but introduce numerical errors [17]. This
ight lead to the introduction of unphysical geometries, such as flattened corner geometries during deposition [18].
ore complex schemes, such as the Lax–Friedrichs scheme [19], produce more accurate results, but are restricted to

ertain types of velocity functions V (x⃗, t) or data structures of the LS [20]. Due to these restrictions, they produce
ood results for one application, while introducing large numerical discrepancies in others with non-negligible
omputational overhead compared to simple schemes [21]. These problems also introduce a barrier for usage, as
etailed knowledge about the specific process and the mathematical nature of its velocity function is required to
hoose the most appropriate advection scheme.

However, no matter what scheme is chosen for the solution of the LS equation, the Courant–Friedrichs–Lewy
CFL) condition must be satisfied [22]. In the case of the LS, it governs how much a single LS value can be changed,
ithout first updating all other LS values as well. It therefore limits how far the surface can be moved with one

olution of Eq. (2). For a general LS, this maximum distance, according to the CFL condition, is given by [19]:

max |φ(x⃗, t + ∆t) − φ(x⃗, t)| ≤ 1 , (3)

here the left-hand side of this equation is equal to the second term of Eq. (2), the Hamiltonian of the LS equation.
t follows that the surface must not be moved more than one grid spacing in a single simulation step.

However, in the case of a sparse field LS, only grid points with absolute values lower than 0.5 are stored.
herefore, the maximum value an active point a⃗ may have after advection is 1.5, meaning that the surface is no

onger located between this active point and one of its neighbors. Hence, the new set of active points cannot be
enerated from the old set of active points. Thus, the maximum change applied to a single LS value should be
maller for sparse field level sets and is given by [23]:

| |
max φ(x⃗, t + ∆t) − φ(x⃗, t) ≤ 0.5 . (4)

3
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In practice, Eqs. (3) and (4) are satisfied by lowering the time increment ∆t . If a fabrication step moves the
urface by several grid spacings, several iterations must be performed in order to advance the simulation time
nough to correspond to the duration of the applied process. Each iteration requires that all LS values are updated
nd the LS equation is solved anew, resulting in increased computational effort. Additionally, numerical errors
ntroduced in an early step propagate and often result in large discrepancies after several iterations, even though the
umerical errors introduced by an advection scheme may have been small at first, creating the need for additional,
omputationally expensive error correction [24].

More complex advection schemes often need to satisfy even stronger restrictions than the CFL condition [25],
eaning that the LS equation must be solved more often. Therefore, the choice of the numerical scheme used to

olve Eq. (2) is usually a trade-off between accuracy and computational efficiency. Due to the lack of a universally
obust numerical scheme and the propagation of errors, this type of advection, referred to as iterative advection, is
ot commonly used in the emulation of fabrication processes [26].

. Geometric advection

Moving a surface described by a LS requires solving the LS equation numerous times, which leads to substantial
omputational effort and the introduction of numerical errors [27]. However, during process emulations, where the
nal result depends only on geometric considerations, the new surface can essentially be “drawn” and does not
eed to be generated by solving the LS equation. This method is referred to as geometric advection.

This approach has already been applied successfully with voxel-based material representations for several
ears [26,28]. Usually, voxels would be defined on a regular grid, just like the LS, and given a numerical identifier
o denote which material they represent. However, each voxel is usually only set to filled or empty without the
ossibility for partially filled voxels [29], as this would highly complicate the surface representation and lead to
ncreased computational effort [30]. A sample deposition process can be modeled using only the distances between
nitial voxels and empty voxels which might become part of the new material. A visual explanation of isotropic
eposition modeling is provided in Fig. 1. For each voxel which has a neighboring empty voxel, a circle is drawn.
ll empty voxels which are inside this circle are set to filled. After this is performed for all circles, a new material

s created which mimics an isotropically deposited layer. Fig. 1 already highlights some of the disadvantages of this
oxel approach. The resolution is limited by the size of the voxels, meaning that materials with sub-grid thicknesses
nd smooth corners cannot be represented appropriately [31]. Furthermore, if a voxel’s center is not inside any circle,
t will be marked as empty, even if most of its volume is inside the circles. Therefore, the surface of the new material
s not always advanced as far as it should have been and these errors, stemming from the limited accuracy of the
oxels, are propagated to the next processing step. These inaccuracies, while offering computational efficiency and
implicity, make the voxel approach unfavorable for many applications [32].

.1. Geometric distributions

In order to develop a model which can emulate a real process, the properties of this process must be expressed in
erms of the geometric effect it has on the initial surface to generate the final surface. The form in which this effect,
ndependent of the initial surface, is expressed is referred to as geometric distribution. One of the simplest processes
hich can be emulated this way is isotropic deposition of one material on top of another. The required geometric
istribution to model such a process has already been presented in Fig. 1 and is simply a circle or a sphere in
wo-dimensional (2D) or three-dimensional (3D) representations, respectively. A spherical distribution implies that
he material is growing equally in all spatial directions. The radius of the sphere gives the growth distance of the

aterial during the modeled process time. Therefore, every geometric distribution can be expressed as a function
f spherical angles θinc and φaz : D(θinc, φaz). In the case of isotropic deposition, this function is constant in all
irections.

Diso(θinc, φaz) = Rdepo (5)

Rdepo is the growth distance of the isotropic deposition process. If the growth distance is not the same in every
irection, the geometric distribution will have a non-spherical shape. There are no limitations to the shape of a
eometric distribution other than it being single-valued in every direction. This must be the case since D(θinc, φaz)

describes by which distance the initial surface is advected in each direction, which can only be one single value. For
4
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Fig. 1. Geometric advection in a voxel-based material representation: (a) For a voxel on the surface of the initial material (blue), a circle is
drawn. All previously empty voxels inside this circle are filled with new material (red). (c) Circles are drawn for all voxels along the initial
surface and a new material (red) is created. (c) After all circles have been filled, the new material (red) resembles the result of isotropic
deposition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

some distributions it might be more natural to express the geometric distribution in terms of Cartesian coordinates.
However, spherical coordinates were used here, because they are the most natural choice for a spherical distribution.

The voxel approach of drawing the geometric distribution centered at each surface point, shown in Fig. 1, can
lso be applied to the LS method, as we have shown in [33]. A LS describing the geometric distribution could
e created for each surface point and their union applied to the initial surface using Boolean operations, which
re easily applied using SDFs [34]. However, creating and combining many LSs would be inefficient, as it is also
ossible to compute the resulting LS values directly.

The computation of the signed distance ds of a possible new surface point P⃗cand , called candidate point, is
independent of all other possible new surface points. Therefore, Fig. 2 shows what the ds of P⃗cand would be, if
only one point on the initial surface P⃗cont , called contribute point, is considered, similarly to only using one voxel
o draw each circle in Fig. 1. In this case, there is only one geometric distribution centered at P⃗cont .

The distance vector v⃗ from P⃗cont to P⃗cand is then computed and used to find the growth distance D(v⃗) in that
irection:

D(v⃗) = D (θinc(v⃗), φaz(v⃗)) (6)

or simplicity, the dependence of v⃗ on P⃗cont and P⃗cand is not written explicitly. The difference between this growth
istance and the length of v⃗ gives the new signed distance value ds for the point P⃗cand :

ds (v⃗, D(v⃗)) = |v⃗| − D(v⃗) (7)

herefore, ds only depends on the distance and direction from the original surface, but not on the absolute position.
ince the LS value φ(x⃗) is always normalized to the grid spacing ∆x , the new LS value at the grid point P⃗cand ,
enerated from the initial surface point P⃗cont , is given by

φ
(

P⃗cand , P⃗cont

)
=

ds (v⃗, D(v⃗))
. (8)
∆x
5
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Fig. 2. Calculation of the signed distance ds for one candidate point P⃗cand (blue) of the set of candidate points (orange) from one point on
the original surface P⃗cont (red). The isotropic geometric distribution with growth distance Rdepo is shown as a dashed red line and the grid
spacing is ∆x . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In case of isotropic deposition, the LS value is thus

φiso

(
P⃗cand , P⃗cont

)
=

ds,iso(v⃗, Diso)
∆x

=
|v⃗| − Rdepo

∆x
, (9)

which depends only on the distance from the original surface |v⃗|, as one would obviously expect for isotropic
growth.

3.2. The geometric advection algorithm

The purpose of the presented algorithm is to find the smallest signed distance using Eq. (7) for a specific grid
point P⃗cand and one P⃗cont out of the set of all initial surface points. This signed distance is then used to compute the

ew LS value φ(P⃗cand ) for this grid point. Once the LS values for all relevant grid points have been computed, they
utomatically form a robust and complete LS, describing the final surface based on the given geometric distribution.
he most important steps are depicted in the flowchart in Fig. 3.

The following listing describes these steps in detail, referring to Fig. 4 as a visual guide.

1. Generate explicit points on the initial surface. As shown in Fig. 4a, this is achieved by shifting active points
(green) along the direction of the surface normal by their signed distance value [35]. The resulting point
cloud (black) consists of points directly on the explicit surface, each separated from its neighbors by roughly
one grid spacing. Therefore, a geometric distribution can be centered on each of them with the union of
distributions robustly forming the final surface.

2. Identify which grid points are likely to be active LS points of the final surface, highlighted as orange and blue
points in Fig. 4a. The smaller the number of these candidate points, the fewer time-consuming calculations
of ds have to be performed. Therefore, identifying the minimum number of candidate points is key to a
performant algorithm.

3. Repeat the following for each candidate point:

(a) Similarly to the number of candidate points, the number of contribute points should be small to avoid
unnecessary calculations of d . Therefore, the grid points which lie within the bounding box of the
s

6
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Fig. 3. Flowchart of the full geometric advection algorithm for a deposition process.

geometric distribution are chosen as the set of contribute points. The bounding box is defined as the
Cartesian extent of the geometric distribution and is represented with a dashed blue line in Fig. 4b.
Although this set of contribute points is not minimal, this approach can be applied using any geometric
distribution and is nevertheless computationally highly efficient, as grid points can be identified solely
by checking their coordinates without any further calculations.

(b) As shown in Fig. 4c, each contribute point and the current candidate point are used to find
ds(P⃗cand , P⃗cont ) with Eq. (7). Then, the lowest of these values is selected as the final LS value for
the current P⃗cand , because the lowest value represents a point which is closest to the final surface. If
|ds(P⃗cand )| > ∆x , the candidate point is discarded, as it will not form a part of the final sparse field
LS.

4. The final values of all not discarded candidate points already form a valid LS. This LS still includes values
larger than 0.5, as shown in Fig. 4d. However, values above 0.5 are not strictly required for sparse field
LSs and are used in the presented framework only to minimize numerical errors in areas of high surface
curvature. Therefore, a valid LS could also be constructed only from the new active points φ(a⃗) ≤ 0.5, albeit
a potentially less robust one.

.2.1. Differences between deposition and etching
As presented, the algorithm only applies to deposition, as the criterion for choosing the correct final ds in Item 3b

f the algorithm is only correct for outwards movements of the surface, because outwards movement of a LS means,
hat all LS values become smaller. Hence, choosing the smallest ds leads to the correct result. However, when moving
he surface inwards, as is the case during etching, all LS values become larger, which means the largest ds must be
hosen in Item 3b to yield the correct result. Therefore, it must be defined in advance, whether the emulated process
s entirely a deposition process or entirely an etching process. In the presented implementation, this is indicated
y the sign of the supplied geometric distribution, where a negative sign indicates etching. Therefore, a process
hich includes both etching and deposition cannot be modeled in a single geometric advection step. However, such
process can still be emulated using two separate geometric advection steps, one to describe etching followed by
second one to describe deposition.

.2.2. Masked geometric advection
Lithography and etching are the corner stones of complementary metal oxide semiconductor (CMOS) fabrication

rocesses [36]. It is imperative to be able to etch defined regions of a surface, not covered by a mask, and to model
7
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Fig. 4. Visualization of how the algorithm generates a complete LS from the old surface points: (a) Generate surface points (black) using
active grid points (green). Identify candidate points (orange) and pick one for which the signed distance has not yet been calculated (blue).
(b) Identify points which could contribute (pink) to the current candidate point (blue) using a bounding box (dashed blue). (c) Calculate ds
(see Eq. (7)) for all contribute points (pink) and choose the lowest value for the candidate point (blue). (d) After ds has been calculated for
all candidate points (orange), the new LS surface is complete. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

such processes accordingly. The presented algorithm does not have to be adjusted to produce correct results with
masks. An additional LS which describes the mask material is simply passed to the algorithm. If this mask covers a
certain area of the initial LS, the contribute points under the mask are simply ignored and never used for the signed
distance calculation. Since some initial surface points are ignored during the algorithm, gaps left by discarded
contribute points may appear in the final surface. These gaps are closed by including all grid points describing the
mask material as already accepted candidate points in the final surface.

In order to guarantee numerical stability, the mask LS must be wrapped by the initial level set, meaning that the
latter must in fact be a Boolean union of the initial surface and the mask material. The LS representation would
otherwise produce unphysical voids or numerical discrepancies, especially at points where three different materials
meet [37]. The initial surface passed to the algorithm must thus satisfy:

Minitial = Minitial ∪ Mmask (10)

nternally, the geometric advection algorithm will then extract the correct contribute points of the initial surface and
erform the geometric advection. Since the mask must be included in the final surface as described above, the final
S also satisfies the layer wrapping approach leading to a robust multi-material description.

.2.3. Limitations
The only limitation of this algorithm stems from the logic of choosing the correct ds as the final value for a
andidate point. Since the criterion for choosing the correct value is different for etching and deposition, only one

8
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can be performed at a time. Therefore, processes which etch a material, but also deposit material in other areas,
such as certain types of ion-enhanced plasma etching processes [38], cannot be modeled in one step. However, it
is possible to split the emulation of those processes into two geometric advection steps, where the first is used for
etching and the second for deposition, leading to the expected result.

3.2.4. Future improvements
In the described implementation, the entire simulation domain is considered for the identification of candidate

oints. Therefore, the entire dense grid must be checked to find all candidate points. This is a generic approach
hich is applicable to all processes and geometries. However, since the geometric relationship between the initial

nd final surface is known, a more efficient approach could be envisaged. If a single point of the final surface can
e identified, it can be used to march along the final surface since the entire zero LS must be connected via grid
oints. Starting from one final surface candidate point, the ds values of its neighboring grid points are calculated

and the neighbors discarded, if they satisfy |ds | > ∆x . Non-discarded neighbor points are then used to find the next
eighbors and the process is repeated. Once no neighbor grid points remain, all final surface points will have been
isited and their final LS values will have been set.

. Deep reactive ion etching

Since the introduction of the cyclic Bosch-Process in 1994 [39], DRIE has steadily gained importance and
as now become crucial in the fields of 3D integration [40,41], high bandwidth memory [42,43], and even on-
hip wireless communication [44], in addition to remaining a backbone of its original field of development,
icroelectromechanical systems (MEMS) [45,46]. DRIE is predominantly performed using cyclic processes, where

idewall passivation and etching are separated and applied many times to achieve higher aspect ratios than attainable
y conventional plasma etching approaches [47]. Due to the isotropic nature of the etch step, these cyclic processes
esult in scallops on the sidewall, one for each etch cycle, which heavily influence the final geometry.

Next, the general modeling approach for this type of process will be discussed. Thereafter, several models for
he description of modern DRIE processes are presented.

.1. Modeling approach

In order to model this type of cyclic process using the geometric advection algorithm, the entire process including
ll cycles is split into two steps: First, a smooth profile of the final geometry is created, and in a second geometric
dvection step, the scallops are introduced. In process emulation, there is no need to account for the entire process
ncluding the deposition step over time. Therefore, these two steps suffice to generate the final structure. If there is

need to also represent the leftover polymer still present from the deposition steps, a subsequent deposition step
an be added to generate this additional material.

.1.1. Generation of the smooth profile
In order to generate an outline of the final profile, a directional geometric distribution is used, which will mimic

perfectly anisotropic etch. This can be achieved by using a rectangular distribution with the vertical edge length
L equal to the final depth. The horizontal edge lengths must at least be equal to the grid spacing, since there might
therwise be some grid points of the final surface, which are not part of any distribution and might thus lead to
nphysical voids in the final geometry. For minimal lateral etching, the horizontal edge lengths of the directional
istribution are thus set equal to the grid spacing. Therefore, unmasked areas of the initial surface will simply be
oved downward by the specified vertical edge length L , which is given by the product of the etch depth per cycle

c and the number of cycles Nc for an ideal process:

L = Ncdc (11)

owever, the final profile may also include tapering, due to a decreasing etch rate. Here, tapering is modeled by
educing L depending on the lateral proximity to the mask. Therefore, L(x⃗) depends on the coordinate of the
ontribute point around which it is centered. The specific dependence varies for different processes. We focus on
ositive tapering, as it is one of the predominant undesirable effects in DRIE. However, negative tapering can also
e modeled [48]. Positive tapering means that the sidewalls are etched less and less with etch depth and L(x⃗) is

maller closer to the masked regions, i.e. closer to the sidewalls.

9



X. Klemenschits, S. Selberherr and L. Filipovic Computer Methods in Applied Mechanics and Engineering 386 (2021) 114196

w
e
s
t
v

Fig. 5. Scallops for different values of ft : (a) ft = 1 corresponding to perfect free molecular transport, (b) ft = 2 corresponding to perfect
diffusion-limited etching, and (c) ft = 1.5 corresponding to a combination of both transport phenomena.

4.1.2. Generation of scallops
The smooth profile obtained from the described procedure is used as the starting geometry to generate the final

profile. The scallops characteristic for a Bosch Process are created by spherical geometric distributions, like the
one shown in Fig. 2. To form such scallops, the radii of all distributions are set to zero, except those which are
at a height, where a scallop is formed by the process. Therefore, the radii of the geometric distributions will vary
with height, but are constant in all other directions. If there is no tapering, the vertical coordinate at which the nth
scallop should be formed is therefore simply at:

zn = dc(n + 1/2) f or n ∈ Z . (12)

The diameter of a circular geometric distribution centered at any of the points zn will be set to the isotropic etch
depth of one etch cycle diso. diso can be measured by examining the depth and shape of the under etch of one
scallop and is closely related to dc. For simplicity, diso may be expressed as a fraction of dc as

diso = ft dc , (13)

where 1 ≤ ft ≤ 2.
As shown in Fig. 5, a value of ft of 1 corresponds to perfect free molecular transport, meaning that etchant

molecules react with the surface instantly on impact without any movement on the surface. A value of 2 corresponds
to perfect diffusion-limited transport to the etching site, meaning that particles first adsorb onto the surface and move
along it freely to later react potentially far away of the initial point of impact. In reality, a combination of both
phenomena is active, where molecules can move on the surface before reacting, but only for a short period of time.
Therefore, ft ≈ 1.5 is a common value used for modern plasma etching processes [49,50].

In the given description, the different methods of particle transport to the etching site are discussed, but it has
been assumed that the etching is indeed perfectly isotropic. Therefore, a spherical advection distribution could be
used to describe each scallop. However, in modern SF6 plasma chemistries lateral etching is likely slower than
vertical etching. Again, it is useful to express this property as a fraction of the two etch rates

fl =
Rl

Rv

, (14)

here Rl is the lateral etch rate and Rv is the vertical etch rate. In order to include slower lateral than vertical
tching in the model, the spherical geometric advection distribution used for isotropic etching must be altered to a
pherical cap shape resembling a convex lens, as shown in Fig. 6. This is performed by adjusting Eq. (9) so that
he center section of the isotropic distribution is removed. This can be achieved most robustly by translating the
ector v⃗ by the width of the removed center part of the sphere, as indicated in Fig. 6

φlens(v⃗, fl) =
|v⃗ + (1 − fl)rlens

−→sgn(v⃗i )| − rlens
, (15)
∆x
10
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Fig. 6. (a) Starting from a spherical distribution, a lens distribution can be created by removing the center part. The vector v⃗ is translated to
the remaining parts. (b) Using this lens distribution, a difference in vertical and lateral etch rate can be modeled for ft = 1.5 and fl = 0.5.

where i is either 2 or 3 for a two- or three-dimensional description, respectively, with the Cartesian vector v⃗i being
either v⃗2 = (vx , 0), or v⃗3 = (vx , vy, 0). −→sgn(x⃗) is the element-wise sign function of x⃗ which returns a vector where
each element is given by the signum function of the corresponding element in x⃗ .

rlens is the adjusted radius of the distribution, which normalizes the width of the spherical cap, so that the ratio
of lateral to vertical extent of the final distribution is equal to fl . The value of rlens is given by:

rlens =
diso

2

⎧⎪⎨⎪⎩
1 i f fl ≥ 1(
1 − f 2

l

)−1/2 i f 0 ≤ fl < 1
unde f ined i f fl < 0

(16)

Graphically, this adjustment can be visualized as two spherical caps, which are obtained by simply removing the
enter section of a unit sphere in both x- and y-direction between −(1 − fl) and (1 − fl), moving the slices back

to the origin, and scaling by rlens , as shown in Fig. 6.

4.2. DEM sequence

The original Bosch Process employed this sequence, which consists of one deposition step and one plasma
etch step and is therefore referred to as the Deposit-Etch-Multiple-Times (DEM) sequence. This results in
calloped sidewalls, while good sidewall protection and very straight profiles can be achieved, reducing the tapering
ignificantly compared to plasma etching processes. However, for aspect ratios above 50, the simple 2-step process
uffers from reactive ion etching (RIE) lag [51,52], which means that the etch rate decreases with increasing etch
epth, until no more etching is feasible at the trench bottom. At the final feature depth, the etch step perfectly
alances the deposition step and therefore no additional material is removed thereafter. This effect can be balanced
y increasing etch times for later cycles, but due to prolonged etch times and comparably low mask selectivity, the
ask can be worn away quickly [53].

.2.1. Smooth profile
As described in [54], the DEM process leads to decreasing etch rates for large aspect ratios, due the depletion

f etchant at the feature bottom [55]. Therefore, the sidewall will be slanted outwards. For simplicity, we assume
hat the decrease in etch rate is linear down the feature. In order to generate the smooth profile, one must consider
he number of cycles affected by the reduced etch rate. The number of cycles influenced by the reduced etch rate
Nt is defined as

Nt = Nc − Ns = Nc −
L t

dc
, (17)

here Nc is the total number of cycles, Ns is the number of scallops in the straight profile and L t is the depth at

hich the tapering starts.

11



X. Klemenschits, S. Selberherr and L. Filipovic Computer Methods in Applied Mechanics and Engineering 386 (2021) 114196

w
t
t
e
s

w
d
n
t

t
i
t

t
j

a
w

w

T

The positive tapering can then be modeled by reducing the vertical edge length L(x⃗) for contribute points closer
to the mask, according to

L(x⃗) = min
(

L t +
|x⃗ − m⃗|

wt
(L0 − L t ), Lb

)
. (18)

here wt is the tapering width at the bottom of the feature and m⃗ is the point on the mask surface, which is nearest
o x⃗ . If the process is carried out for a long time, the depth at which etching would stop due to the etch rate going
o zero is given by L0. It is therefore a property of the etch process, because this specific depth depends on the
xact materials and etch chemistry used. Lb is the depth of the trench after the final etch cycle is carried out in the
pecific experiment to be simulated and is calculated using

Lb = L t + zNt (dc, D) , (19)

here zNt is the distance of the final scallop from the start of tapering which only depends on dc and D which is the
istance along which the etch depth per cycle decreases from its initial value to zero. The value of D is computed
umerically (see SI Appendix) and depends only on the number of tapered cycles Nt and re, which is the ratio of
he etch depth of the last cycle dNc and the etch depth of the first cycle d1.

re =
dNc

d1
= 1 −

wt

wtot
(20)

The tapering width at the bottom of trench wt is effectively the lateral distance between the tapered sidewall and
he straight sidewall at the bottom of the structure. wtot is the final tapering width which would result from applying
nfinitely many cycles, i.e. the tapering width, when the etch rate reaches zero. The value of wtot is a property of
he specific process and must be tuned to the etch chemistry being modeled [56].

In order to include aspect ratio dependent etching (ARDE) [57], wtot and L t can be modified in accordance with
he size of each etched feature. However, in the present model all features were the same size, meaning wtot could
ust be treated as a constant.

Therefore, only the total number of cycles Nc, the etch rate per cycle dc, and the tapering width wt are required
s inputs to the model which will create the smooth etch profile for a linearly decreasing etch rate. The tapering
idth, when the etch rate reaches zero (wtot ), and the depth at which tapering starts (L t ) are used to calibrate the

model to a desired chemistry.

4.2.2. Generation of scallops
If tapering is included in the emulation, the coordinates zn are equally spaced, until tapering starts. From this

point onward, the etch depth per cycle dc is assumed to decrease linearly, meaning the distance between the centers
of two neighboring scallops decreases according to a linear progression, as detailed in the SI Appendix. The values
of zn are calculated using

zn =

{
dcn i f n ≤ Ns

dc Ns + a 1−bn−Ns

1−b i f n > Ns,
(21)

here a and b are defined as:

a =
dc

1 +
dc
2D

(22)

b =
1 −

dc
2D

1 +
dc
2D

(23)

he radii of the geometric distributions should also be adjusted accordingly, meaning that diso will also linearly
decrease. The diameter of the nth geometric distribution is therefore given by:

dn = diso

{
1 i f n ≤ Ns

1 − (zn − L t ) /D i f n > Ns
(24)
12
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4.3. DREM sequence

An improvement of the DEM sequence, which separates the plasma etching step into two independent processes,
as proposed in [58]. First, an etching step at low pressure and high bias is carried out to remove the protective
assivation at the bottom of the feature [47]. The second step subsequently etches the unprotected substrate at the
ottom isotropically. Therefore, this sequence is referred to as Deposit-Remove-Etch-Multiple-Times (DREM). This
eparation leads to shorter etch times at high bias and therefore higher mask selectivity [59]. The problem of RIE
ag still remains, but due to the higher mask selectivity, it can be solved by increasing only the isotropic etch times
n later cycles. This so-called time ramping can therefore produce uniform scallops all the way down the etched
eature, when tuned correctly [60].

For high aspect ratios, one problem still remains from the deposition of the protective layer. Due to the pileup
f the polymer at the top of the feature, the top opening starts to close off, reducing the number of high energy
ons which are able to enter the feature and remove the protective film at the bottom [59]. Therefore, the opening
t the bottom of the feature also decreases in size, while the etch depth of the isotropic etch remains the same due
o time ramping. This results in positively tapered sidewalls and scallops which are constant in size.

.3.1. Smooth profile
The tapering in this process is modeled similarly to the tapering in the DEM sequence. The vertical edge length

f the box distribution used to form the smooth profile is the same as for the DEM sequence and given by Eq. (18).
owever, the definition of the parameters L0 and Lb changes due to the different mechanisms leading to tapering.
ince the scallops themselves do not change in size, the bottom of the trench Lb is expressed as

Lb = L t + dc Nt = dc Nc , (25)

hile L0 is given by

L0 = L t + D = L t +
dc Nt

wt/wtot
. (26)

wt therefore determines how strongly the closing of the top of the feature affects the removal of protective
polymer at the bottom of the trench. If wt = 0, there is no effect at all, and if wt ≥ wtot the feature is pinched off
ntirely.

.3.2. Generation of scallops
Since the scallops are constant in size down the feature, they all have the same diameter diso. However, if the

ime ramping of the isotropic etch is not tuned properly, the DEM model must be used to include decreasing scallop
izes.

.4. DREAM sequence

Although the pileup of polymer at the top of the feature in the DREM sequence can be avoided by carefully
uning the deposition and remove steps, it is time consuming and therefore impractical. To overcome this problem, an
dditional ashing step is introduced, which selectively removes the protective polymer and thus prevents the closing
f the feature top opening [61], leading to the Deposit-Remove-Etch-Ash-Multiple-Times (DREAM) sequence.
mploying this sequence, tapering can be avoided entirely and good scallop uniformity can be achieved. The tapering
idth therefore only depends on the ash step [49]. If this step is not effective, for example by being too short, the

eature is not cleaned properly. In this case, the time ramping of the isotropic etch step is not tuned properly to
he closing top of the structure any more. Therefore, tapering occurs in a manner similar to the DEM sequence. In
rder to build a model describing this behavior, the ratio of final to initial etch depth per cycle re can be related
irectly to the duration of the ash step.

From the experimental data in [49] and [61], a simple model describing the change of re with ash time was
eveloped. Assuming Nc and L t remain constant with changing ash time, re can be related to ashing time by

re(ta) = p0 −
p1

, (27)

p2 + ta
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Fig. 7. Three-dimensional geometric DEM Process with Nc = 19 and other parameters listed in Table 1. The process was emulated using
32 threads and the simulation time was 44.6 s. Volume meshes for the mask and substrate are shown in red and blue, respectively. The
white line is a slice of the final surface extracted from the LS. The final sparse-field LS surface is represented by 277,684 LS values. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where ta is the ashing time in seconds. Fitting this model to the experimental data, the model parameters were found
to be p0 = 1.17, p1 = 0.59, p2 = −0.44. Since re is bound by [0, 1], negative values are treated as 0 and values
larger than unity are treated as 1. Therefore, ashing only has an effect if the ash time is longer than t0 = p1/p0 − p2.

imilarly, if the ash time exceeds the maximum value of tm = p1/(p0 − 1) − p2, no additional benefit is achieved.

. Results and discussions

All simulations were performed using the minimal resolution necessary for the LS to correctly represent all
eatures, because there is no resolution limitation of the geometric advection algorithm itself. Therefore, comparably
igh resolutions (finer grids) might be necessary to resolve smaller and smaller scallops, while lower resolutions
coarser grids) were used for processes with almost uniform scallop sizes.

.1. DEM sequence

In order to demonstrate the capabilities of the DEM model and the geometric advection in general, a Bosch
rocess was emulated, including sidewall tapering as well as decreasing scallop sizes. As can be seen in Fig. 7, all
eatures are generated as expected. Although the resolution of the LS itself is just enough to represent the smaller
callops, there are no numerical issues introduced by the algorithm, as opposed to commonly encountered problems
ith iterative schemes discussed earlier [24].
The applicability of the DEM model to state of the art processes is demonstrated by reproducing a structure

rom [59], including the observed reduction in scallop size. The experimental observation and the emulated structure
re shown in Fig. 8. Although a simple linear decrease in scallop size was assumed, a good match to the observed
ore complex depletion behavior has been achieved. The fitting parameters and their values of the DEM model are

isted in Table 1. The model produces robust and predictable structures for any initial surface and any number of
ycles. Therefore, once the model has been fitted to a process, the process specific effects on different geometries
an be straightforwardly investigated. Additionally, the effect of changing the number of etch cycles on different
tructures, such as additional tapering, decrease in etch rate, etc. can be investigated providing that the etch chemistry

emains unchanged.
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Fig. 8. (a) DEM process without tapering (reprinted from [59]), but a decrease in scallop sizes down the feature. (b) Emulation of the same
process with Nc = 50.

Fig. 9. (a) Emulation of sausage-chain like structures using several DREM sequences, as well as longer intermittent isotropic etch steps.
b) SEM image of the sausage-chain pillars generated by the DREM process, reprinted from [59]. The emulation was performed using 32
hreads and took 14 min and 52 s. 80 cycles of the DREM model were performed without tapering using the fitting parameters given in
able 1. In order to generate the isotropic etch parts, every 10th scallop’s isotropic etch depth was increased to diso = −1.0.

.2. DREM sequence

As an example of the ability to emulate the fabrication of large structures efficiently, the sausage-chain-like pillars
rom [59] were emulated. This structure is generated by performing 8 cycles of a DREM sequence followed by an
sotropic etch step. In the emulation, these steps were repeated 8 times to generate pillars with a sausage-chain-like
ppearance. The final three-dimensional structure shown in Fig. 9 consists of 72 pillars described by 3,827,322
S points. The ability to generate such process-aware structures enables TCAD to fully model process-induced
roperties and their influence on final device performance. Furthermore, the modeling of such complex processes
or large structures opens the possibility for the process-aware simulation of entire MEMS actuators [62] or photonic
rystals [63], and therefore provides a strong basis for progress in several scientific fields.
15
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Fig. 10. DREAM Sequence simulations for Nc = 100 with different ash step times compared to SEM data, reprinted from [49]. Only the
ash time was varied as input for the DREAM model, all other parameters were fixed with values shown in Table 1.

Table 1
Fitting parameters of all presented process emulations.

L t [µm] dc [µm] ft fl re

DEM 3D −10.00 −1.86 1.15 0.50 0.70
DEM 2D 0.00 −0.98 1.20 0.75 0.30
DREM – −0.25 1.20 0.50 1.00
DREAM −24.96 −0.37 1.20 0.50 re(ta) (see Eq. (27))

5.3. DREAM sequence

When the ash time in the model of the DREAM process approaches zero, the DEM model is recovered. As the ash
ime reaches its maximum value, the DREAM model approaches the results of the DREM model. Therefore, model
arameters can be related directly to the ash time to generate a full description of the DREAM sequence. In order
o confirm the robustness of the model, a sequence of structures was emulated with ash times ranging from zero to
he maximum ash time, shown in Fig. 10. Even though the model is quite simple, it produces accurate structures

atching the experimental data well. This model highlights how powerful the geometric advection algorithm is for
he quick development of compact models which can be used for subsequent device simulations. Additionally, the
lgorithm is as accurate as the LS itself and does not introduce additional numerical errors common to iterative
rocesses. It can therefore be executed at lower resolutions, saving time, and computational effort, compared to
terative advection schemes, while avoiding undesirable effects, such as stepped surfaces, compared to voxel-based
pproaches. Furthermore, due to the small resolution requirements, it is possible to simulate large structures and
ven entire integrated circuit cells quickly without the loss of process specific features, such as changing scallop
izes and sidewall tapering.
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Fig. 11. Speed-up of the parallelized geometric advection algorithm emulating the DEM process shown in Fig. 7 compared to speed-up of
the same emulation carried out using an iterative advection scheme.

5.4. Parallel performance

As the geometric advection algorithm offers new possibilities for the simulation of large structures, the scaling
behavior was investigated and compared to the commonly used iterative Engquist–Osher scheme [17]. This was
carried out by comparing the run time speed-up of the DEM sequence emulation shown in Fig. 7 for the different
schemes. Since every point of the advected surface can be treated completely independently of all others, the
geometric advection algorithm scales very well, especially compared to the iterative scheme, as shown in Fig. 11.
The loss in performance of iterative schemes stems from the fact that the independently advected parts of the LS
must be joined again. This involves additional computational effort which cannot be parallelized. The geometric
advection, however, is complete once all points have been computed and no additional joining step is necessary,
leading to almost ideal scaling behavior.

6. Conclusion

In order to develop devices and integrated circuits with ever smaller dimensions and higher overall performance,
designers rely heavily on simulations. However, the inclusion of process specific properties of devices has remained a
challenge due to the involved computational effort required by TCAD. Process emulations are one promising way to
reduce computing times and still provide insights into the effects of process specific geometries which affect electric
properties. Currently available methods for emulations are predominantly based on explicit surface representations
less robust than implicit methods. Our algorithm is a new take on process emulation and combines the computational
efficiency of explicit surface representations and the robustness of implicit surfaces, thereby avoiding stepped
interfaces as encountered with the commonly used voxel-based emulation approach. It therefore provides an entirely
new platform upon which to build more efficient and more accurate process emulation models. Additionally, as the
algorithm is executed entirely in the LS, it can be integrated easily into common process simulation tools which
predominantly rely on LS surface descriptions. Hence, complex process-aware initial structures for intricate physical
simulations can be generated quickly. Therefore, the presented algorithm enables the investigation of fundamental
physical principles of fabrication processes carried out on complex process-aware initial structures.

The applicability of the geometric advection algorithm to modern fabrication processes was demonstrated by
providing several DRIE process emulation models. Emulating recent DRIE sequences using only simple models,
already shows good agreement with experimental data, providing accurate descriptions of the process’ effects with
considerably less computational effort than traditional methods. Due to the algorithms’ performance, it is also
possible to emulate large structures at high accuracies with reasonable runtimes. This was shown by creating a
sausage-chain like pillar structure using a DREM sequence with intermittent isotropic etch steps. Due to the large

size of this particular structure, it was shown that even entire devices can be emulated within reasonable time frames,
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providing a better description of their structure and thus their electrical and physical properties. The presented
algorithm therefore provides a strong basis for the future of process emulations, helping device engineers to create
improved integrated circuits by incorporating process-aware variations and parasitics when simulating and designing
devices.
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ppendix. Derivations behind the equations used in the DRIE models

erivation of scallop circle centers and etch depth

As discussed in [51,52], the etch depth per cycle dc decreases with trench or via depth from a certain distance
own the feature, which we define as L t . For simplicity, we assume that this decrease is linear. Scallops are modeled
s spheres spaced out along the feature sidewalls. These spheres must touch each other at the extremes and, since
heir radii are linearly decreasing, the spacing between the centers of two circles must also decrease linearly. The
epth at which the circle radii are zero is L0. Therefore, the distance along which the circle radii change from the
nitial value dc to zero is:

D = L0 − L t (A.1)

or simplicity, the origin of z is defined at L t , so the first tapered circle is centered at z0 = 0. Therefore, the distance
etween the nth and (n+1)th circle center is given by:

zn+1 − zn =

(
1 −

zn+1

D

) dc

2
+

(
1 −

zn

D

) dc

2
(A.2)

Hence, the centers of all circles are defined by the recursive relation

zn+1 =
dc

1 +
dc
2D

+ zn
1 −

dc
2D

1 +
dc
2D

= a + bzn , (A.3)

ith the initial condition

z0 = 0 . (A.4)

ince each zn+1 is defined by a geometric progression, zn can also be expressed in terms of a, b and n only:

zn = a
1 − bn

1 − b
(A.5)

If the last scallop should have an etch rate of zero, the depth L0 could just be specified and the radii of the circles
used as geometric distributions would just decrease until they reach zero at L0. However, it is possible that not
enough etch cycles are performed to actually reach an etch rate of zero, since each cycle achieves less and less
depth. Therefore, it is useful to only specify the number of cycles and the etch depth of the first and last cycle. We
define the ratio of final etch depth to starting etch depth as:

re =
d f

dc
= 1 −

wt

wtot
, (A.6)

where d f is the final etch depth per cycle and dc the initial etch depth per cycle. If the data stems from the physical
understanding of a process or a physics-based model, re is the ratio of the etch rates at the top and bottom of
the feature. If data is acquired from experimental measurements, this ratio can also be defined using the ratio of
18
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measured tapering width wt and the tapering width created if an infinite number of cycles were performed wtot . In
the case of a trench or via, wtot can go up to half of the trench width or the radius of the via. If the number of
tapered etch cycles Nt is known, re can be used to calculate D, defined by the expression:

1 − re =

⎛⎝1 −

(
1 −

dc
2D

1 +
dc
2D

)Nt
⎞⎠(1 +

dc

2D

)
(A.7)

A solution for D is found numerically using a root-finding algorithm. The presented implementation uses the
bisection method as it is very robust and a solution has to be found only once, so performance was not a major
concern.

The value of D is then used in Eq. (A.3) to find a and b, which are then used in Eq. (A.5) to find the circle
centers. The deepest point of the final feature Lb can therefore be calculated using:

Lb = L t + zNt = L t + a
1 − bNt

1 − b
(A.8)

DREAM sequence model

The ashing step of the DREAM Sequence avoids the closing of the cavity at the top of the feature during the
deposition cycles. The closing would lead to the inaccessibility of etchant to the bottom of the feature, thereby
halting the etch process. As the diameter of the top opening decreases, the etchant concentration at the bottom of
the trench decreases drastically, leading to retarded etch rates. As described in [64], the ratio of etchant concentration
at the bottom to the top of a deep via is given by:

nr =
2e−hT

1 + e−2hT
, (A.9)

where hT is the Thiele modulus which describes how conformal a process is. Small values of hT mean that a process
is conformal, while large values mean that the etchant concentration varies down the feature. For a cylindrical via,
hT depends only on the via diameter d, the sticking probability of the etchant β and the current etch depth z:

hT =
√

3β
z
d

. (A.10)

At around hT = 1, the process transitions away from being conformal to decreasing etchant concentrations down
he feature, which is exactly what happens when tapering starts. Approximating Eq. (A.9) around this value leads
o:

nr ≈ sech(1) (1 − tanh(1)(hT − 1)) (A.11)

Since the etch rate at the bottom is directly proportional to the etchant concentration, the etch ratio re of a
DREAM sequence with changing top opening diameter can be related directly to d:

re = nr ∝ −
1
d

(A.12)

The diameter of the top opening decreases during the process, if the ash step is not effective and too much passivating
material is left after each cycle. As the pileup on the top opening is the same each cycle, d decreases linearly with the
number of cycles. Assuming the removal of passivation through ashing proceeds with a constant rate, the diameter
of the top opening d is directly proportional to the ash time ta . Therefore, the final model for the etch ratio at the
bottom of the feature based on the ash time is given by:

re(ta) = p0 −
p1

p2 + ta
, (A.13)

here p0, p1, and p2 are fitting parameters. They encompass all unknowns of the systems, such as the sticking
robability of the etchant β, the constant of proportionality between the passivation removal and the ash time, or

he initial time it takes for the ash process to actually start removing passivating material.
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Fig. A.12. Fit of the DREAM Sequence model to experimental values of the etch depth ratio generate from trench depths for different ash
times of the DREAM sequence presented in [61]. Experimental values are shown as blue error bars and the fitted model is shown as an
orange line going from re = 0 to re = 1.

DREAM sequence model fitting

The model presented above was fit to experimental data for 100 cycles of the DREAM process in [61]. The first
step in fitting the model was to determine after how many cycles the tapering starts, in order to identify L t and
thus Nt . L t is found by considering where re starts decreasing, i.e. for which hT the approximation in Eq. (A.11)
returns values smaller than 1. The actual description in Eq. (A.9) is evaluated at this hT and yields 0.96. Therefore,
the tapering in the simple model in Eq. (A.11) should start at the depth where re = 0.96 in order to yield the best
fit. This is the depth at which the via diameter is only 0.96 times the original width. From the data in [61] this
depth was found to be L t = 24.96 µm from the top of the first scallop, meaning that the first L t/dc = 67 cycles
are not influenced by the tapering and the following Nt = 33 are. Subsequently, measurements of the etch depths

ere taken to find experimental values of D, which can be used to numerically solve Eq. (A.7) for the experimental
alues of re for each of the shown ash times ta . These experimental values are shown in Fig. A.12 with the error

bars indicating the error from the resolution of the images the measurements were taken from. The least squares fit
is shown in orange and presents the final DREAM sequence model used for the presented emulations. The extracted
model parameters were p0 = 1.17, p1 = 0.59, and p2 = −0.44.
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