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Parallel Velocity Extension for Level-Set-Based
Material Flow on Hierarchical Meshes

in Process TCAD
Michael Quell , Vasily Suvorov , Andreas Hössinger , and Josef Weinbub , Senior Member, IEEE

Abstract— The level-set method is widely used for
high-accuracy 3-D topography simulations in process tech-
nology computer-aided design (TCAD) because of its
robustness to topological changes introduced by the
involved complicated physical phenomena. Particularly
challenging are material flow processes, such as oxidation,
reflow, and silicidation, as these require the solution
of intricate physical models and the extension of the
model-dependent velocity fields to the entire simulation
domain at every time step to accurately compute the
advection. This velocity extension, thus, introduces yet
another computational burden at every time step, which
is significant when considering that high-accuracy mate-
rial flow simulations can easily require several hundred
time steps and are applied multiple times in cutting-edge
fabrication processes of integrated circuits. In this work,
a shared-memory parallel scalar and vector velocity exten-
sion algorithm for level-set-based material flow simulations
on hierarchical meshes is introduced, allowing to further
reduce the turnaround time of TCAD workflows. The per-
formance is evaluated by investigating a representative
material flow simulation of 3-D thermal oxidation of silicon.
A parallel speedup of 7.1 for the vector-valued extension
and 6.6 for the scalar-valued extension is achieved for ten
threads; the latter outperforms a previous approach by up
to 60%.

Index Terms— Hierarchical meshes, level-set method,
material flow process, parallel algorithm, process technol-
ogy computer-aided design (TCAD), shared-memory, ther-
mal oxidation, velocity extension.

I. INTRODUCTION

S INCE the first introduction of the level-set method [1],
it has rapidly evolved into one of the core methods for

implementing high-accuracy 3-D simulations in the field of
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process technology computer-aided design (TCAD) [2]–[7].
The key advantage is the ability to implicitly represent mate-
rials and describe their evolution without self-intersections
in three dimensions. In particular, etching, deposition, and
material flow processes (e.g., oxidation, reflow, and silici-
dation) benefit from the method’s inherent robustness with
respect to topological changes [8]–[15]. However, the latter
are particularly challenging as they require, aside from the
already computationally demanding solution procedures of the
physical models, the computation of physical model-specific
velocity fields for the entire simulation domain to correctly
describe the involved advection. Cutting-edge integrated cir-
cuits typically require hundreds of process steps of which
many necessary high-accuracy material flow steps can each
easily require several hundred time steps: a computationally
inefficient single advection step, thus, significantly increases
the overall turnaround time of entire TCAD workflows. Further
increasing the challenge is the fact that modern fabrication
processes involve intricate 3-D geometries and processing
conditions; both require high accuracies and, thus, in general,
introduce a significant computational burden on the simulation.

A key approach to balance the need for high accu-
racy with practical simulation run-times is to optimize
the data structure [16]. When considering finite-difference
discretization-based solution schemes (favorable for level-set
methods), a particularly attractive approach is the use of hierar-
chical meshes [17]–[19], which represents a stack of Cartesian
discretizations (meshes based on cuboid cells) with different
resolutions. Hierarchical meshes allow to locally increase the
mesh resolution (key to high simulation accuracy) in areas of
particular interest, such as corners and edges of the level-set
interfaces. However, more importantly and as previously indi-
cated, the involved algorithms of the level-set advection step
need to be efficiently parallelized, considering the broad
availability of shared-memory parallel computing platforms.
Recent advances focused on redistancing (for reviews see [16],
[20]), particularly considering hierarchical meshes [21]–[23]),
and the flux calculation step by, for instance, ray-tracing on
explicit interfaces [24], [25] or by importance sampling based
on machine learning [26].

In this work, a novel parallel velocity extension algorithm
for hierarchical meshes is presented to further accelerate the
turnaround time of material flow process TCAD simulations.
Contrary to previous work where the focus was solely on scalar
velocity fields and single Cartesian meshes [27], [28], here,
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Fig. 1. Example multilayer structure for three materials (colored areas).
The three level-set functions (outline of the colored areas) represent the
interfaces. The dashed boxes show regions of special interest (corners),
where meshes with a higher spatial resolution are required.

we introduce a new parallel algorithm for extending scalar
and vector velocity fields to hierarchical Cartesian meshes.

The developed algorithm is evaluated by investigating a
material flow process simulation of 3-D thermal oxidation
of silicon [29]. This is a representative application case as
it jointly involves a scalar and a vector velocity field. Other
material flow process simulations only require either of those:
thermal oxidation of silicon, thus, represents the most chal-
lenging scenario from a computational point of view and is,
therefore, perfectly suited to evaluate the performance of our
parallel velocity extension algorithm.

This work is organized as follows. Section II provides a
short overview of the material handling and the relation to
the velocity field. To provide context, Section III summarizes
the modeling aspects of thermal silicon oxidation, whereas the
actual evaluation benchmark is specified in Section IV. The
main contribution of this work, the parallel velocity extension
algorithm for hierarchical meshes, is introduced in Section V
and evaluated with respect to parallel performance and the
silicon oxidation benchmark in Section VI.

II. MATERIAL DESCRIPTION AND VELOCITY FIELD

Materials (e.g., silicon and silicon oxide) are represented
in a multilayer structure in level-set process TCAD (see
Fig. 1). The multilayer structure consists of a set of orientable
interfaces �i represented by level-set functions

φi(�x, t)

⎧⎨⎨
⎨⎩

< 0, �x inside

= 0, �x on �i

> 0, �x outside.

(1)

Typically, materials are enclosed by two level-set functions. If
a level-set function fulfills φ(�x, t) = ±dist(�x, �), the level-set
function has the signed-distance property. The signed-distance
property normalizes the gradient of φ, which is beneficial for
numerical stability. The materials are evolved by advecting
each φ driven by a velocity field, which is determined by
a physical model, describing the involved physical processes
(e.g., etching, deposition, and material flow). The velocity field

Fig. 2. Simulation flow of a typical level-set-based thermal oxidation
simulation. The focus of this work is on the two velocity extension steps
shown in red.

may either be a scalar field, a vector field, or a combination
of both, depending on the underlying physical model.

III. THERMAL OXIDATION SIMULATION

A typical thermal process simulation, which is considered
as evaluation target in this work, consists of three main parts:
1) the physical model; 2) the level-set advection; and 3) the
remeshing, as discussed in detail in the following sections.
The simulation flow-graph with the different steps is depicted
in Fig. 2.

A. Physical Model

This section provides a brief summary of the involved mod-
eling aspects for describing thermal oxidation to establish a
relation between the physical models and the level-set required
velocity field. An extended description of the modeling is
provided, for instance, in [10].

The thermal oxidation simulation deals with two physical
problems: 1) transport and reaction of the oxygen (diffusion)
and 2) volume expansion due to the chemical conversion
(e.g., silicon to silicon dioxide) accompanied by material
flow (displacement) of all materials above the reactive material
(reaction).

Problem 1, the oxidant diffusion through the oxide, is math-
ematically described by a Poisson equation

∂

∂xi

�
D

∂C

∂xi

�
= 0 (2)

−D
∂C

∂ �n
����
Si/SiO2

= kC, −D
∂C

∂ �n
����
SiO2/Si

= h(C0 − C) (3)

with C being the oxidant concentration, D the diffusion
coefficient, k the reaction rate, h the gas-phase mass-transfer
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coefficient, C0 the equilibrium concentration in the oxide,
and �n the normal to the corresponding interface. This gives
a reaction rate at the silicon interface, which is ultimately
transformed to a scalar velocity field v at the gas interface.

Problem 2, the volume expansion from the chemical reac-
tion, causes a displacement of materials, which is mathemati-
cally described by a creeping flow

∂Si j

∂xi
= 0 (4)

with Si j = −p · δi j + σi j denoting the Cauchy stress tensor, p
the pressure, and δi j the Kronecker delta. The shear tensor σi j

uses the Maxwell viscoelastic fluid model. Further simplifica-
tions (detailed in [10]) yield the systems of Stokes equations

μ��v = ∇ p (5)

∇ · �v = 0 (6)

with �v being the desired vector velocity field and μ the
dynamic viscosity.

B. Level-Set Advection

In general, the level-set advection handles the evolution of
interfaces (representing multiple materials) based on the solu-
tions of both (in the here considered case) physical problems,
i.e., the scalar and vector velocity fields. As the first step,
the velocities from the physical models are transferred to cross
points (i.e., points1 where a line connecting two neighboring
points of the mesh intersects an interface) for each interface.
The cross points itself are not part of a mesh; their sole
purpose is data exchange with the physical model (see Fig. 2:
CalculateRates).

Based on the calculated cross point velocities, the
velocities of both physical problems are extended from
all the cross points to the interface points (i.e., points
of the mesh, which have a neighboring point on the
other side of the interface)2 In a final velocity exten-
sion step (and the focus of this work), the velocities are
extended from the interface points to the entire hierarchi-
cal mesh (see Fig. 2: ScalarVelocityExtension and
VectorVelocityExtension). The details of the velocity
extension step are discussed in Section V.

After the velocity extensions, the level-set
equations for the scalar velocity case (see Fig. 2:
ScalarVelocityAdvection)

∂

∂ t
φ(�x, t) = |∇φ(�x, t)|v (7)

and for the vector velocity case (see Fig. 2:
VectorVelocityAdvection)

∂

∂ t
φ(�x, t) = ∇φ(�x, t) · �v (8)

are solved.

1We consider points to be cell-centered.
2The extension from the cross point velocities to the interface point

velocities is straightforward [30] and negligible with respect to computational
effort and, thus, not further considered in this work.

Fig. 3. 2-D schematic example of a mesh hierarchy: the coarsest
mesh (green) covers the entire computational domain, and its ghost
points (dots in empty cells) are determined by the domain boundary
conditions. On the finer level, three exemplary meshes with arbitrary
sizes and positions (depicting a remeshing outcome; see Section III-C),
offering a four-times increased spatial resolution than the base mesh,
are shown (blue, red, and yellow). The respective ghost points (in
empty cells) are set by interpolation from the coarser mesh, and the
background-colored ghost points are part of overlapping areas between
meshes and, thus, have to be synchronized (see Section V-B).

During the advection of the level-set equations, the
signed-distance property of the level-set functions is
distorted [31] and, thus, must be restored by a redistancing
step (see Fig. 2: Redistancing) [21]–[23].

C. Remeshing
The remeshing part (see Fig. 2: Remeshing) identifies

interface regions, which requires a higher spatial resolution
and places the meshes within the mesh hierarchy accordingly.
As previously indicated, hierarchical meshes consist of levels
of different spatial resolutions (see Fig. 3). In this work,
we consider a mesh to represent a 3-D Cartesian-discretized
rectangular domain with surrounding ghost points (ghost
layer). The ghost points are used to set the boundary conditions
or to exchange data with neighboring meshes. On the coarsest
level (Level 0), a single mesh covers the entire computational
domain. A finer level, such as Level 1, has, e.g., four times
the spatial resolution than its corresponding coarser level. This
scheme is extendable to several levels, depending on the need
to balance accuracy with performance. Meshes on the same
level must not overlap (except for their ghost points). In this
work, the remeshing is automatically handled by the used sim-
ulation tool, Silvaco’s Victory Process [18] (see Section VI),
and the therein implemented remeshing algorithm [10].

IV. THERMAL OXIDATION BENCHMARK

The computational domain has a length of 1.6 μm and a
width of 0.8 μm (see Fig. 4). The domain boundary conditions
are symmetric.

The structure is vertically organized as follows (from bot-
tom to top): 0.3-μm bulk silicon (silicon), L-shape 0.02-μm
padding silicon dioxide (SiO2), 0.1-μm buffer poly silicon
(polysilicon), and 0.15-μm hard mask silicon nitride (Si3N4).
A 15-min thermal oxidation process at a temperature of
1000 ◦C is considered. Fig. 4 shows the topography before
and Fig. 5 after the oxidation process.
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Fig. 4. Device structure before the considered thermal oxidation
benchmark process.

Fig. 5. Device structure after the considered thermal oxidation bench-
mark process.

Fig. 6. Serial run-time contributions according to Fig. 2 for all time steps
of the considered thermal oxidation benchmark process.

A. Serial Run-Time Analysis
As reference, the total run-time for a serial simulation shown

for individual time steps is presented in Fig. 6. The main
contributions to the run-time are (ordered): 1) Expansion
(see Section III-A); 2) Level-Set Advection (see
Section III-B); and 3) Diffusion (see Section III-A).
Remeshing (see Section III-C) has negligible impact on the
overall run-time of the thermal oxidation simulation. Indeed,
the results show that the majority of computational time is
spent in solving the physical models (in this case, primarily
Expansion). Dedicated acceleration methods for solving
the physical models have already been developed but are
not the topic of this work. Instead, this work focuses on
further increasing the efficiency of the level-set advection
step, in particular, the velocity extension. As discussed before

Fig. 7. Serial run-time contributions according to Fig. 2 for all time steps
of the individual Level-Set Advection steps representing the status
quo.

(see Section I), the fact that a typical high-accuracy material
flow process is applied multiple times during cutting-edge
fabrication processes and each material flow process itself
can easily require several hundred time steps necessitates
increasing the efficiency of all involved algorithms.

As Level-Set Advection consists of several
algorithmic steps (see Fig. 2), Fig. 7 shows a detailed
overview of the individual run-time contributions. Vector
VelocityExtension is placed third and uses the original
serial algorithm presented in [30] based on the fast marching
method (FMM), using a single global heap covering all
meshes on the same level. ScalarVelocityExtension
is considerable faster than its vector counterpart as its
implementation is based on the improvements to the velocity
extension on a single mesh from [27].

The depicted results show that there is considerable potential
for further performance improvements, as discussed in the
remainder of this work.

V. PARALLEL VELOCITY EXTENSION ON

HIERARCHICAL MESHES

This section introduces the main contribution of this work,
i.e., a parallel velocity extension algorithm for hierarchical
meshes. The velocity extension is performed according to the
partial differential equation

∇φ(�x, t) · ∇v(�x, t) = 0 (9)

which minimizes the distortions of the signed-distance prop-
erty [30]. In the case of a vector-valued velocity, (9) is solved
for each component of the vector as in the scalar case. This
extension is equivalent to a constant extension of the velocity
along with interface normal vectors. Equation (9) is discretized
using a first order upwind scheme, as proposed in [30].

Higher order schemes, as presented in [32] and [33], are
not considered because of their higher computational cost and
due to the fact that the overall simulation accuracy is typically
limited by the solution of the physical model and not from the
accuracy of the velocity extension. Alternatively, an approach
based on the fast sweeping method has been developed [34],
which, however, requires 2d iterations (with d referring to the
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Algorithm 1 ExtensionHierarchical
1: setBoundaryConditionsOnLevel 0
2: for all Levels do � From coarsest to finest
3: for all Meshes on Level do � Parallel region
4: WQ ← InitialPoints � Create task
5: ExtensionMesh(Mesh,WQ)
6: Synchronization � Barrier
7: � Red lines are removed in the proposed algorithm,

as data exchange is now handled in Algorithm 2.
8: WQ ← Exchanged ghost points
9: while WQ �= ∅ do

10: for all Meshes on Level do � Parallel region
11: ExtensionMesh(Mesh,WQ) � Create task
12: Synchronization � Barrier
13: WQ ← Exchanged ghost points

14: setBoundaryConditionsOnNextLevel

number of spatial dimensions) per point: in comparison, our
approach processes each point at most d times.

Extensions using the biharmonic method, as presented
in [35], are not possible in the here considered case. Such
a method requires the velocity to be fully available on one
side of the interface, whereas we consider the case of the
velocity being only available at the interface. Approaches
based on projecting points directly onto the interface, as in [36]
and [37] for redistancing, are embarrassingly parallel (i.e., par-
allelizable with little or no effort: straightforward independent
computations and very low communication needed [38]), but
suffer from inaccuracies, especially at sharp corners.

In what follows, the three involved algorithmic steps of
the developed parallel velocity extension are discussed in
detail: Algorithm 1: extension on the hierarchical levels
(ExtensionHierarchical); and Algorithm 2: extension
on a single mesh (ExtensionMesh) and extension on a
single point (ExtensionPoint). The latter has been intro-
duced in detail in [27] and is, thus, not further discussed here.

A. Extension on the Hierarchical Levels

Algorithm 1 processes the levels of the hierarchical mesh in
top-down order, starting from the coarsest mesh covering the
full computational domain, down to the finest level covering
only regions with the highest interest (e.g., corners). This order
is necessary as, on the finer levels, the boundary conditions are
defined by the solutions on the coarser levels via interpolation
(see Fig. 3).

For every mesh on a level, a parallel task is created
(line 4), which, in our case, represents an independent set
of computations, along with a dedicated work queue (WQ):
WQ is a first-in–first-out queue that tracks the points from
which the velocity has to be extended. A WQ is initial-
ized with InitialPoints of the given mesh, consisting
of points for which the velocity is known either because
they are interface points (see Section III-B) or because they
belong to a part of a ghost layer, which is interpolated
from a coarser level. In the second step, ExtensionMesh

Algorithm 2 ExtensionMesh(Mesh, WQ)
1: while WQ not empty do
2: � Blue lines are added in the proposed algorithm
3: if WQ.length > limit then
4: WQ1,WQ2 ← Split WQ
5: ExtensionMesh(Mesh, WQ1) � Create Task
6: WQ ← WQ2

7: for all neighboring points [np] of WQ.front do
8: if ExtensionPoint(np) then
9: WQ.push(np)

10: if Overlap(np) then
11: EQ.push(neighboring mesh, np) � EQ gathers

overlapping points in one local queue per neighboring mesh

12: for all neighboring meshes [nm] of Mesh do
13: ExtensionMesh(nm, EQ(nm)) � Create Task

(see Section V-B) is executed (line 5), which processes its
WQ until it is empty. Global synchronization is necessary
before continuing to ensure proper computation (line 6). The
original implementation based on the FMM (see Section IV-A)
performs the steps highlighted in red (lines 7–13), which are
not required anymore as data exchange is now handled in
Algorithm 2 to avoid global synchronizations, which allows
higher parallel efficiency. Points that have been computed in
overlap areas (ghost points) are exchanged between the meshes
on the same level and added to the WQs of the neighboring
meshes. Next, ExtensionMesh is restarted again for all
meshes in parallel. The process of restarting, synchronizing,
and exchanging is concluded when all WQs is empty. Finally,
the boundary conditions are set on the next finer level via
interpolation; this step is also required in the new algorithm
(line 14).

B. Extension On a Single Mesh

The velocity extension operating on a single mesh (see
Algorithm 2) is the key contribution of this work. The main
advantages over the previous approach [27] (changes indicated
by the blue colored lines in Algorithm 2) are the integrated
support to directly exchange data with neighboring meshes
without the necessity of global synchronization and splitting
the WQ to enable higher parallel efficiency.

The algorithm receives a WQ of points for which the
velocities are known. If the queue contains more than limit
elements, the WQ is split into two WQs pushing the first half
into a new WQ named WQ1 (lines 3 and 4). The newly created
WQ1 is then processed in a recursive call to Algorithm 2
(line 5). The recursive call is put into a new task, which is
executed by the next available thread, allowing for parallelism.
The second half WQ2 is renamed to WQ and the algorithm
continues (line 6). Splitting the WQ in the proposed manner
preserves the spatial locality of the WQs as points closely
positioned within a WQ are typically also close in space:
newly inserted points most likely have a common neighbor
with the previously inserted point as their insertion is triggered
by the same point. Setting the limit with a central processing
unit’s (CPU’s) core cache size in mind allows for performance
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optimizations. In locally concave regions, the WQ typically
grows in size, while, in locally convex regions, the WQ
shrinks.

For all neighboring points of the current front point (the
point that just has been extracted from the queue) of the
WQ, ExtensionPoint is executed to compute the extended
velocity (line 8). The ExtensionPoint may fail (i.e.,
return false) if, e.g., another task was faster in computing
the velocity, or an upwind neighboring point of the considered
neighboring point has not been computed yet. The extended
discussion on the conditions for success or failure is given
in [27]. In the case of success, the neighboring point is pushed
onto the WQ (line 9). In addition, we added a check if the
neighboring point is in an overlap area with a neighboring
mesh. Considering a 3-D domain, a point can be assigned to
up to three overlap areas. If so, the neighboring point is also
pushed to an exchange queue (EQ; lines 10 and 11): The EQ
collects all points to be exchanged with a specific neighboring
mesh. Once the WQ is empty, for each nonempty EQ, a recur-
sive call to Algorithm 2 with the EQ’s corresponding mesh
is created in a new task, allowing further parallel execution
(lines 12 and 13).

The collection of points of the overlap areas in an EQ
and using them in a single recursive call per neighboring
mesh reduces the task creation overhead by avoiding scenarios
where a task with a WQ consisting only of a single point is
encountered. This strategy allows the algorithm to propagate
the solution to all meshes without the necessity of mesh
activation strategies used, e.g., in [39] and [40] or global
synchronization (see Section V-A).

VI. PARALLEL PERFORMANCE RESULTS AND ANALYSIS

The performance is measured on a workstation equipped
with an Intel Xeon E5-2680 v2 CPU offering ten physical
cores (2.8–3.6 GHz) and 226 GB of the main memory. The
CPU offers a 32-kB instruction and data L1-cache and 256-kB
L2-cache on each core, and a 25.6-MB L3-cache is shared
between the cores. To evaluate the impact of the accelerated
algorithm on an entire simulation, the developed velocity
extension algorithm has been integrated into Silvaco’s Victory
Process [18] (a 3-D process TCAD simulator) using C++ and
OpenMP for shared-memory parallelization. The developed
algorithm has been devised with a parallel task concept in
mind, which, thus, maps directly to the task mechanism
provided by OpenMP. OpenMP tasks allow implementing
dynamic load-balancing by using a thread pool. However,
the load-balancing is limited if the number of tasks is in the
order of the used number of threads. Therefore, a large number
of tasks are desired for high parallel efficiency.

The mesh hierarchy of the considered benchmark case
consists of a single Level 0 mesh with 40 × 80 × 40 =̂ 128 000
points, which does not change during the simulation. On
Level 1, there are initially 18 meshes with a total of 536 704
points. The Remeshing procedure adapts the hierarchical
meshes every third time step (empirically chosen, shown to
offer a practical balance between accuracy and performance).
The number of meshes on Level 1 nearly doubles during the
simulation to 34, and the total number of points increases to

TABLE I
EVOLUTION OF NUMBER OF MESHES AND TOTAL NUMBER OF POINTS

ON LEVEL 1 OVER ALL TIME STEPS

Fig. 8. Serial run-time contributions for all time steps of the individual
Level-Set Advection steps considering the proposed changes.

969 536 (see Table I) due to an overall increase in complexity
of the geometry. However, temporary reductions in mesh
numbers are caused by Victory Process’ internal remeshing
logic (see Section III-C), as evolved topographies allow for
remeshing optimizations (e.g., mesh merges). Comparing the
number of points to the serial run-time of the different time
steps (see Fig. 8) shows that the run-time linearly depends on
the number of points.

A comparison between Fig. 7 (conventional velocity
extension; see Section IV) and Fig. 8 (proposed algorithm;
see Section V) shows that the run-time spent on the vector
velocity extension is significantly reduced in the case of serial
execution. The improvement is due to using a mesh-local
WQ instead of using a global heap of the FMM-based
implementation and, thereby, reducing the computational
complexity from O(N log N) to O(N). The complexity
reduction comes from replacing the heap (priority queue)
with a first-in–first-out queue [27]. In addition, the mesh-local
approach simplifies the neighboring point computations as
only those from the same mesh are considered, yielding better
cache locality. The serial run-time attributed to the scalar
velocity extension is barely affected as its implementation
already uses a mesh-local queue.

Increasing the number of threads to ten (fully allocat-
ing the CPU’s physical cores) yields the run-times per
time step shown in Fig. 9, which, aside from the acceler-
ation of the velocity extension, also shows the paralleliza-
tion impact of the other involved algorithms (although not
the focus of this work) to provide an overview of the
entire workflow. The total run-time of the Level-Set
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Fig. 9. Parallel run-time contributions using ten threads for all time
steps of the individual Level-Set Advection steps considering the
proposed changes.

Fig. 10. Average run-time of the velocity extensions. The dashed lines
show data from the original implementation of the scalar and vector
velocity extensions.

Advection is reduced by a factor of 2.4. In this parallel sce-
nario, VectorVelocityAdvection dominates the overall
run-time per time step.

For a detailed analysis of the parallelization efficiency of the
proposed algorithm for the velocity extension, the run-time has
been averaged over all time steps and plotted over the number
of threads (see Fig. 10).

The run-time of the original VectorVelocity-
Extension does not change with the number of threads
because it is not parallelized. The still visible minor variations
of the run-time for different thread numbers are caused by
measurement noise. More interestingly, the run-time of the
original ScalarVelocityExtension algorithm for a
single thread is 4% faster than our proposed algorithm.

This slowdown is due to a compromise. There is an
additional check if a point is in an overlap area after its
velocity has been computed. This check is performed on all
points, while the original algorithm would only iterate over
points in the overlap area once its computation on a mesh
is finished. Sticking with the original algorithm’s approach
would require every thread working on the same mesh to
iterate over all points in the overlap area creating an even
bigger slowdown. This shortcoming is easily compensated by
better parallelization.

Fig. 11 shows the parallel speedup, which, for Scalar
VelocityExtension, reaches 6.6 for ten threads, com-
pared to 4.1 of the original implementation, corresponding to a
60% increase. The original ScalarVelocityExtension
parallel speedup flattens beginning with four threads, as the
implicit load-balancing from the thread pool deteriorates due

Fig. 11. Average parallel speedup of the velocity extensions. The dashed
lines show data from the original implementation of the scalar and vector
velocity extensions.

to insufficiently available tasks. The number of tasks created
between two global synchronizations in the original algorithm
equals the number of meshes, thus ranging from 17 to 34 and,
therefore, limiting performance. The workload per mesh dif-
fers as they are not equally sized. A naive estimation of the
workload per mesh from the mesh size is not feasible, as single
points in the ghost layer can have a large influence on how
many points are potentially to be computed before the next
synchronization. Depending on the time step and the total
number of threads, a thread may receive merely a single task,
e.g., there are 18 meshes in the first step (see Table I), but
ten threads are available in the thread pool, and two threads
would only have a single task.

The VectorVelocityExtension achieves a parallel
speedup of 7.1 for ten threads. The improved parallel speedup
for the vector velocity extension over the scalar case is caused
by the three times higher computational load for each point
due to the considered 3-D problem. While doing three times as
many computations for each point, the serial run-times for the
scalar and vector extensions differ only by 34%. This shows
that most of the run-time is spent on the checks and ordering
of the points, instead of actual computations.

VII. CONCLUSION

We introduced a shared-memory parallel scalar and vector
velocity extension algorithm for level-set-based material flow
simulations on hierarchical meshes. The performance was
evaluated by investigating a representative simulation of 3-D
thermal oxidation of silicon. A parallel speedup of 7.1 and
6.6 is achieved for the vector and scalar velocity extension
using ten threads, respectively. The parallel speedup of the
scalar velocity is a 60% improvement compared to the original
implementation.
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