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A B S T R A C T   

A drift-diffusion approach to coupled spin and charge transport has been commonly applied to determine the 
spin-transfer torque acting on the magnetization in metallic valves. This approach, however, is not suitable to 
describe the predominant tunnel transport in magnetic tunnel junctions. In this work we present a coupled Finite 
Element solution to the spin and charge drift–diffusion equations. We demonstrate that by introducing a 
magnetization dependent resistivity one can successfully reproduce the resistance dependence on the magneti
zation orientation in the ferromagnetic layers. We then investigate the dependence of the resulting torques on 
system parameters, and show that the approach is able to reproduce the torque magnitude expected in a mag
netic tunnel junction. As a unique set of equations is used for the entire structure, this constitutes an efficient 
Finite Element based approach to describe the magnetization dynamics in emerging spin-transfer torque 
memories.   

1. Introduction 

In recent years, the outstanding improvements in the development of 
computer memories has been possible thanks to the scaling of semi
conductor devices. This, however, has increased stand-by power con
sumption of traditional volatile components, such as SRAM and DRAM, 
due to the presence of leakage currents [1]. Nonvolatile flash memories 
are also becoming increasingly complex and expensive to downscale for 
embedded application [2]. Moreover, the price for a gigabit of tradi
tional memories does not follow the technology node as it ceased to 
decrease. It prompts emerging memories entering the market to replace 
NOR flash, SRAM, and DRAM for stand-alone and embedded applica
tions. Emerging memories must be nonvolatile to avoid leakages. Spin- 
transfer torque magnetoresistive RAM (STT-MRAM) is a nonvolatile 
memory which possesses a simple structure and is compatible with 
CMOS technology. In contrast to flash memory, STT-MRAM is fast and 
has a high endurance. This makes it particularly suitable for both, stand- 
alone as well as embedded applications, for example, in Systems-on- 
Chip, where STT-MRAM is poised to replace SRAM and flash mem
ories [3–8]. 

The binary information in modern magnetic memories is stored in 
the magnetic layers of a magnetic tunnel junction (MTJ), cf. Fig. 1, 

where non-magnetic contacts (NM) are included. When the magnetiza
tion vectors are in a parallel state (P), the resistance is lower than in the 
anti-parallel state (AP). The switching between these two stable con
figurations can be achieved by an electric current passing through the 
structure. The electrons flowing through the fixed reference layer (RL) 
become spin-polarized, generating a spin current. When entering the 
free layer (FL), the spin current acts on the magnetization via the ex
change interaction. As the total spin angular momentum must be pre
served, if the magnetization in the layers is not aligned, the polarization 
is quickly absorbed, generating the spin-transfer torque [9]. If the cur
rent is sufficiently strong, the magnetization of the free layer can be 
switched between the two stable configurations, parallel or anti-parallel, 
relative to the reference layer. 

Modeling of STT switching, which allows to describe the writing 
process of an STT-MRAM cell, requires a solution of the time-dependent 
Landau-Lifshitz-Gilbert (LLG) equation with the inclusion of a term 
describing the torque acting on the magnetization. Such a task can be 
performed by assuming a Slonczewski-like torque approach [10]. This, 
however, allows to approximately simulate the magnetization dynamics 
of the free layer only. A more complete description of the process can be 
obtained by computing the non-equilibrium spin accumulation across 
the whole structure. In a spin-valve structure with a non-magnetic 
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spacer layer, this has been successfully accomplished by solving the spin 
and charge drift–diffusion equations [11,12]. Modern STT-MRAM cells, 
however, employ a Magnetic Tunnel Junction (MTJ) for the memory bit. 
In this paper we focus on the computation of the torque based on the 
drift–diffusion formalism. We employ an Open Source Finite Element 
(FE) library [13] to solve the spin and charge drift–diffusion equations. 
The implementation is tested against known analytical results. We then 
propose a method to apply these equations to an MTJ. The resistance of 
the oxide layer defines the current through an MTJ, as it is much larger 
than the resistances of the ferromagnetic layers. The main feature 
observed in MTJs is the strong dependence of the resistance on the 
relative orientation of the magnetization vectors in the RL and FL, which 
can also vary with the position along the interface. In order to reproduce 
these properties, we model the oxide layer as a (poor) conductor whose 
(large) resistivity depends on the relative orientation of the magneti
zation to obtain the current density. The current can then be used to 
compute the spin accumulation and extract the torque acting on the 
magnetization. Knowing the torque in all ferromagnetic layers opens up 
the possibility of including it in the LLG equation to perform simulations 
of the writing process in STT-MRAM and describe the switching 
behavior in complex multi-layered structures. This paper represents an 
extension of results previously presented in [14]. 

2. STT-MRAM 

The key element in modern MRAM cells is the MTJ. It is composed of 
a sandwich of two ferromagnetic layers, usually made of CoFeB, and an 
oxide layer, usually MgO. The MTJ is characterized by the tunneling 
magnetoresistance ratio (TMR), defined as 

TMR =
GP − GAP

GAP
, (1)  

where GP (GAP) is the conductance in the P (AP) state. A high TMR is 
important to be able to distinguish between the two different configu
rations. Modern devices can reach a ratio of about 200% and higher 
[15]. Thin layers of CoFeB on MgO are perpendicularly magnetized, due 
to the interface-induced perpendicular anisotropy. The switching cur
rents in a perpendicularly magnetized structure are lower than the ones 
in structures with in-plane magnetization, as the current-driven and 
thermally assisted switching go over the same energy barrier. The 
magnetization in the so-called free layer can switch, while the 

magnetization in the so-called reference layer is fixed, usually by anti
ferromagnetic exchange coupling to a pinned layer [16]. 

Accurate simulation of STT-MRAM demands a solution of the 
Landau-Lifshitz-Gilbert (LLG) equation describing the unit vector 
magnetization m, defined as M/MS, where M is the magnetization and 
MS is the saturation magnetization, subject to the spin-transfer torque. 
The equation reads 

∂m
∂t

= − γμ0m × Heff + αm ×
∂m
∂t

+
1

MS
TS, (2)  

where γ is the gyromagnetic ratio, μ0 is the magnetic permeability, α is 
the Gilbert damping constant, MS is the saturation magnetization, and 
Heff includes various contributions, mainly the external field, the ex
change interaction, and the demagnetizing field. In order to predict the 
magnetization behavior during switching, it is necessary to properly 
compute the STT term, TS. This torque is generated by a non-equilibrium 
spin accumulation S acting on the magnetization via the exchange 
interaction and can be expressed as [12] 

TS = −
De

λ2
J

m × S −
De

λ2
φ

m × (m × S), (3)  

where λJ is the spin exchange length, λφ is the spin dephasing length, and 
De is the electron diffusion constant. S is created when an electric current 
passes through the structure and gets polarized by the magnetic layers. 
In order to obtain S, the coupled spin and charge transport must be 
solved. 

3. Spin drift-diffusion 

The drift–diffusion equations for spin current and spin accumulation 
are [11,12,18] 

JS =
μB

e
βσm ⊗

(

JC + βDDe
e

μB

[
(∇S)T m

]
)

− De∇S, (4a)  

− ∇⋅JS − De
S
λ2

sf
− TS = 0,

(4b)  

where μB is the Bohr magneton, e is the electron charge, βσ and βD are 
polarization parameters, λsf is the spin-flip length, ⊗ is the outer prod
uct, and TS is defined in (3). JC is the charge current density, JS is the 
spin current tensor, where the components JS,ij indicate the flow of the i- 
th component of spin polarization in the j-th direction, ∇⋅JS is the 

divergence of JS with components 
(
∇⋅JS

)

i
=

∑
j
∂JS,ij
∂xj

, and ∇S is the 

vector gradient of S, with components (∇S)ij = ∂Si
∂xj

. The term (∇S)Tm is a 

vector with components 
(
(∇S)Tm

)

i
=

∑
j
∂Sj
∂xi

mj. 

The computation of the spin accumulation permits to straightfor
wardly describe the magnetization dynamics of complex, multi-layered 
systems, such as modern MRAM devices. The task of solving the equa
tions for the spin accumulation in such an environment can be well 
handled by employing the FE Method. We used the open library MFEM 
[13] to build an in–house solver for the spin accumulation. The FE 
formulation employed is taken after [11], and is reported in the 
Appendix. 

In order to test our solver, we used the analytical solution reported in 
[17] to compute the spin accumulation and spin torques in the FL, 
magnetized along the z-direction, with a fully spin-polarized current 
coming from the left interface at x = 0 nm. Such a current could be 
generated by a half metallic thick RL in a spin-valve. The magnetization 
in the RL is m = cosθez − sinθey. For this simulation, the term containing 
λφ is not considered, and a fixed current JC = 1011 A/m2 in the x-di
rection is applied. The parameters employed in the simulation are re
ported in Table 1. In Fig. 2 the analytical solution is compared to the one 

Fig. 1. MTJ structure with non-uniform magnetization configuration. The 
structure is composed of a reference layer (RL), a tunnel barrier (TB), a free 
layer (FL), and two non-magnetic contacts (NM). 
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computed with our solver. For this kind of simulation, the lateral 
dimension of the structure does not have any impact on the solution. The 
expected behavior of the spin accumulation is optimally reproduced by 
the numerical results. 

Eq. (3) for the torque acting on the magnetization comes from the 
conservation of spin angular momentum. When one neglects spin-flip 
scattering, the torque can be also computed from the relation 

TS = − ∇⋅JS. (5)  

These two equations for the computation of the torque should provide 
compatible results, provided that λJ and λφ are shorter than λsf , as is the 
case for spin-valves and MTJs, where the transverse components of the 
spin accumulation and spin current are absorbed near the interface 
between the ferromagnetic layer and the middle layer. We computed the 
torques with both approaches to check the validity of these assumptions. 
First, the spin current is computed from the spin accumulation solution 
using (4a), and is reported in Fig. 3. It can be noted, that near the 
interface the spin current is fully polarized along the direction of the 
magnetization in the RL. This component is quickly absorbed by the 
magnetization in the FL. Precession of the spin around the magnetiza
tion direction creates a component in the x-direction, perpendicular to 
the common plane of the magnetization vectors in the RL and the FL. 
This component is also absorbed on the length scale dictated by λJ. The 
spin current gets then polarized in the direction of the magnetization in 
the FL. 

The comparison of the torques computed using (3) and (5) is re
ported in Fig. 4, where the former is labeled as T1, while the latter is 
labeled as T2. The adiabatic component of the torque is the one lying in 
the plane formed by the magnetization vectors in the RL and the FL, and 
tends to align them in the parallel or anti-parallel configuration, 
depending on the sign of the electric current. The non-adiabatic 
component is perpendicular to the plane, and creates precession in a 
field-like manner. The torques computed from both methods are in very 
good agreement, justifying the use of (5) for computing the torques 
directly from the spin current. 

After testing the accuracy of the finite element implementation in 
computing the spin accumulation and torques, we can employ it to 
describe the magnetization dynamics of a multi-layered structure. The 
spin and charge drift–diffusion formalism has been already successfully 
applied to the computation of the torques acting in a spin-valve structure 
with a metallic spacer layer [11,12,19]. However, the cell of an STT- 
MRAM is composed of a magnetic tunnel junction. It is then necessary 
to find a way to incorporate the tunnel junction properties when solving 
the drift–diffusion equations. 

Table 1 
Parameters used in the simulations.  

Parameter Value 

Charge polarization, βσ  0.9 
Spin polarization, βD  0.8 
Electron diffusion coefficient in NM, De,NM  2.0× 10− 3 m2/s  
Electron diffusion coefficient in FL and RL, De,FM  2.0× 10− 3 m2/s  
Spin flip length, λsf  10 nm 
Spin exchange length, λJ  2 nm 
Spin dephasing length, λφ  5 nm 
Voltage applied, V0  3.34 V 
Middle layer conductivity, σ0  29.76 S/m 
Tunneling magnetoresistance, TMR 200 %  

Fig. 2. Comparison between the spin accumulation computed analytically 
(dotted lines) and using our FE solver (solid lines). The analytical solution [17] 
is properly reproduced. 

Fig. 3. Spin current computed from the spin accumulation in Fig. 2. The 
orthogonal components get absorbed near the interface, and the spin current 
gets polarized along the magnetization direction. 

Fig. 4. Comparison between the torque computed using (3) (T1) and (5) (T2). 
The results are in very good agreement and justify the use of (5) for computing 
the torques. 
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4. MTJ model 

The main feature of an MTJ is the strong dependence of the resis
tance of the structure on the relative magnetization orientation in the 
free and reference layers. The amount of current flowing through the 
structure is also mainly determined by the tunneling resistance, as it is 
much larger than the resistances of the ferromagnetic layers. In order to 
reproduce these properties, as we are not interested in their precise 
physical origin, we model the oxide layer as a poor conductor whose low 
conductivity depends on the relative magnetization vectors orientation 
as [10,20] 

σ(θ) = σ0

(

1 +

(
TMR

2 + TMR

)

cosθ
)

, (6)  

where σ0 is the average between the conductivities in the P and AP state, 
and θ is the local angle between the magnetic vectors in the free and 
reference layer. With this approach, we want to capture the fact that, in a 
micromagnetic scenario, the current flowing at a particular point can be 
position dependent, and that the difference between the parallel and 
anti-parallel values of the conductance of the structure depends on the 
TMR. We also obtain a voltage drop localized mainly in the middle layer, 
while the effects of spin on the electrical voltage and current are 
included in the second term of (4a). To obtain the current, we solve 

∇⋅(σ(θ)∇V ) = 0, (7a)  

JC = σ(θ)∇V, (7b)  

where σ is the conductivity, V is the electrical potential and JC is the 
current density. In the FE setting, the angle θ is computed as follows: for 
every point of the middle layer, a point with the same y- and z-coordi
nate and the closest x-coordinate is found for both, the free and the 
reference layer. The scalar product of the magnetization vectors in these 
two points is computed to obtain the cosine of the angle between them. 
The equation is solved in the structure schematized in Fig. 1. The 
magnetization distribution is taken to be parallel in the center of the 
structure, and anti-parallel on the sides, to showcase the possible range 
of variation of the current density. The potential is fixed with Dirichlet 
conditions on the left and right boundaries. The conductivity is constant 
in the ferromagnetic layers and in the non-magnetic leads, while it is 
described by (6) in the tunneling layer. For non-uniform magnetization, 
characteristic to switching, the conductivity in an MTJ depends strongly 
on the position. The current density solution for this scenario is 
computed via the FE Method and is reported in Fig. 5. The resulting 
current flowing through the structure is highly non-uniform, with the 

difference between highest and lowest values of its perpendicular 
component determined by the high TMR, which was not previously 
addressed in the drift–diffusion FE formulation [11,19]. The absolute 
values of the in-plane current density are redistributed in order to 
accommodate for the varying conductivity in the middle layer. Once the 
current density JC is known, the spin current density JS and the spin 
accumulation S are computed using (4). The torques can then be ob
tained through (3), and are displayed in Fig. 6 for the parameters of 
Table 1. 

We then investigate the dependence of the torques on the parameters 
entering Eq. (4), in order to calibrate our model and to understand, if 
realistic parameters reproduce the STT torque predicted by Slonczewski 
[10]. We set the magnetization in the RL pointing in the x-direction, and 
the magnetization in the FL pointing in the z-direction. We use the 
structure depicted in Fig. 1, with ferromagnetic layers of 2 nm thickness, 
a middle layer of 1 nm thickness, and non-magnetic leads of 30 nm 
thickness. In Fig. 7, the dependencies on different system parameters are 
reported. The non-varying parameters are taken from Table 1, unless 
differently stated. We note that, when solving (4) with the FE approach, 
the simulation domain is bounded with homogeneous Neumann 

Fig. 5. Current density distribution through a square MTJ with a non-uniform magnetization. The left panel shows the x-component (perpendicular) of the current 
density, with black lines representing the streamlines of the current density vector field, while the right panel shows the modulus of the y- and z- (in-plane) 
components. The x-component flow is higher for aligned magnetizations because of the lower resistance. Due to conservation of the current flow, it is redistributed in 
the yz-plane in the metal contacts. 

Fig. 6. Torque computed from the spin accumulation, with the magnetization 
in the RL pointing in the x-direction and the one in the FL pointing in the z- 
direction. The spin drift–diffusion approach permits to compute the torques 
acting on both layers, FL and RL. 
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Fig. 7. Dependence of the average torques acting on the free layer on various system parameters. Details are reported in the main text.  
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conditions, ∂S
∂n = 0. This can lead to a non-physical behavior, if the 

contacts included in the model are not long enough to allow spin 
accumulation and current to relax to zero [12,19]. Fig. 7(a) reports the 
dependence on the length of the non-magnetic contacts. For our choice 
of parameters, a contact thickness of at least 30 nm is required to let S 
decay to 0 and obtain a torque value independent of the contacts’ 
lengths. Fig. 7(b) reports the dependence on the magnitude of the 
diffusion coefficient in the non-magnetic contacts, showing that, even if 
the exchange between the magnetization and the spin accumulation 
happens in the ferromagnetic layers, this parameter still has an effect on 
the torque magnitude, due to the continuous nature of the spin accu
mulation in the FE setting. Fig. 7(c) then reports the dependence on the 
value of the exchange length. Lower values of λJ imply a stronger ex
change coupling, and produce an increased adiabatic torque. They also 
change the relative importance of the non-adiabatic component coming 
from the drift–diffusion formalism. A shorter λJ also implies a faster 
absorption of the transverse components of S, so that values below 1 nm 
bring these components to almost 0 in the space of the FL. We also 
investigated the influence of the usually neglected [11,17] spin 
dephasing length λφ on the computation of the torque. Results are re
ported in Fig. 7(d). For values of λφ less than 3 nm, its contribution to the 
torque is substantial. This suggests that, when the value of λφ is close to 
λJ, the effects of the former has to be taken into consideration for 
accurately describing the magnetization dynamics. In Fig. 7(e) we show 
the dependence on the diffusion parameter in the middle layer, labeled 
DS. In this layer, where m = 0, Eq. (4b) reduces to 

DS∇
2S − DS

S
λ2

sf
= 0. (8)  

The spin-flip length is assumed infinite inside the barrier. The value of 
DS can then be used as an additional tuning parameter for the torques. 
The results reported in the figure show that the torques increase with the 
diffusion coefficient, becoming constant at a value DS = 2.5 × 10− 1 m2/ 
s, which is the one employed for the simulations reported in this paper. 
For this value of DS, the slope of S in the middle layer is reduced to the 
point where the spin accumulation is practically preserved from the RL 
to the FL. Finally, Fig. 7(f) reports the dependence of the torque on the 
diffusion coefficient of the ferromagnetic layers. For this plot, we 
employed an exchange length λJ = 0.5 nm, which lets the torques be 
entirely absorbed in the ferromagnetic layers. The results show that a 
lower value of De,FM increases the magnitude of the adiabatic torque, as 
the first term in Eq. (4a), describing the magnetization dependent po
larization of the electric current, becomes dominant over diffusive 
effects. 

The adiabatic torque acting on the FL of an MTJ predicted by 
Slonczewski [10] is of the form 

TS = −
gμB PRL JC

2ed(1 + PFL PRL cosθ)
(mFL × (mFL × mRL) ), (9)  

where g is the g-factor, PFL, PRL,mFL and mRL are the polarizing factors 
and magnetization vectors of the FL and RL, respectively, d is the 
thickness of the FL, and θ is the angle between the magnetization vec
tors. With θ = 90◦ and PRL = PFL = 0.7, this produces a torque in the FL 
of |TS| = 2.03⋅1015 A

m s. We can use the previous analysis to calibrate the 
torque produced by our solver on the one predicted by Slonczewski. In 
Fig. 8 we report the spin accumulation solution for the modified set of 
parameters reported in Table 2. The lower exchange length allows the 
transverse components of S to be completely absorbed inside the FL, 
while the lower value of the diffusion coefficient in the ferromagnetic 
layers can be justified by a lower conductivity value of CoFeB when 
compared to normal metals [21]. The torque acting on both ferromag
netic layers is reported in Fig. 9. By integrating the x-component of this 
torque over the whole free layer, we obtain a value of |TS| = 2.02⋅1015 

A
m s, which is compatible with the value computed using (9). Fig. 10 

shows the dependence of the average torque acting on both the FL and 
RL, as computed by the FE solver, on the polarization parameter of the 
RL, βσ,RL. The torque on the FL shows a linear dependence on this 
parameter, while the torque on the RL is almost independent of it. This 
behavior is compatible with the dependence on PRL expected from (9). 

Finally, we show a solution for the spin accumulation, computed 

Fig. 8. Spin accumulation computed with the modified parameters reported in 
Table 2. The transverse components of the spin accumulation get absorbed 
inside the free layer. 

Table 2 
Modified parameters used to reproduce the Slonczewski torque magnitude.  

Parameter Value 

Charge polarization, βσ  0.7 
Electron diffusion coefficient in NM, De,NM  1.0× 10− 2 m2/s  

Electron diffusion coefficient in FL and RL, De,FM  1.0× 10− 4 m2/s  
Spin exchange length, λJ  0.5 nm  

Fig. 9. Torque computed with the parameters reported in Table 2. The average 
value of the adiabatic torque is compatible with what predicted by Slonczewski 
for an MTJ. 
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using the parameters in Table 2, with the non-uniform magnetization 
configuration reported in Fig. 1 and the electrical current reported in 
Fig. 5. The results for the three components of S are reported in Fig. 11. 
The spin accumulation is redistributed, in both layers, in response to 
both the magnetization configuration and the current density distribu
tion. This solution, computed using (4), (6) and (7), can be employed for 
computing the torque (3) acting in (2) and calculating the magnetization 
dynamics. 

These results show that we compute the spin accumulation with the 
right sign and magnitude to reproduce typical values of the STT torque 
expected in an MTJ. The FE approach to the drift–diffusion formalism 
gives the possibility of computing the torques in all the ferromagnetic 
layers of the structure for a variety of three-dimensional meshes. We 
note, however, that the torques computed by our approach pose a 
strictly linear dependence on the bias voltage, coming from the first term 
of Eq. (4a) and from the linear dependence of JC on V from Eq. (7). 
Theoretical calculations employing the non-equilibrium Green function 
technique (NEGF) [22,23] have shown that, at high bias voltage, the 
adiabatic component shows a nonlinear behavior, while the non- 
adiabatic component has a symmetric and quadratic dependence. A 
possible way of solving these limitations of our approach is to lift the 
constraint of the continuity of S at the tunneling interface, and to employ 
boundary conditions to include the spin polarization effects of the bar
rier itself, which is beyond the scope of the presented investigations and 

Fig. 10. Dependence of the average torque acting on the FL and RL on the 
polarization parameter of the RL, βσ,RL. 

Fig. 11. Spin accumulation computed with non-uniform magnetization configuration. The top left panel reports the x-component, the top-right panel reports the y- 
component, and the bottom panel reports the z-component. The values are reported for 4 planes, located in the middle of the RL, at the left interface of the TB, at the 
right interface of the TB and in the middle of the FL, respectively. 
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results. 

5. Conclusion 

We tested a Finite Element implementation of a setup for the solution 
of the spin drift–diffusion equations against known analytical results 
which where adequately reproduced. We then showed a method of 
applying the same spin drift–diffusion simulation approach to an MTJ 
structure. The current can be successfully simulated by modeling the 
tunnel barrier as a poor conductor with an electrical conductivity locally 
depending on the relative magnetization orientation in the ferromag
netic layers. We then investigated the dependence of the torque 
magnitude on various parameters entering the drift–diffusion 
formalism, such as the exchange and spin-dephasing lengths, the diffu
sion coefficient of the ferromagnetic, non-magnetic and tunneling 
layers, and the length of the contacts. We showed that, with a proper set 

of parameters, the spin torque magnitude matches the one expected in 
an MTJ structure. Our generalized spin and charge drift–diffusion 
approach can be successfully applied to determine the torques acting on 
the magnetization in modern STT-MRAM devices. 
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Appendix 

The weak formulation of Eq. (4b) employed by the FE solver is 

De

∫

Ω
∇S : ∇vdx − DeβσβD

∫

Ω

[
m ⊗

(
(∇S)Tm

) ]
: ∇vdx +

De

λ2
sf

∫

Ω
S⋅vdx +

De

λ2
J

∫

Ω
(S × m)⋅vdx +

De

λ2
φ

∫

Ω
(m × (S × m) )⋅vdx =

μB

e
βσ

∫

ω
[m ⊗ Je]

: ∇vdx −
μB

e
βσ

∫

∂Ω∩∂ω
(Je⋅n)(m⋅v)dx (10)  

where v is a vector test function, Ω is the whole volume of the structure, ω is the volume of the magnetized regions, and n is the boundary outer normal. 
∇a : ∇b =

∑
ij(∇a)ij(∇b)ij is the Frobenius inner product of two matrices. Such a formulation produces continuity of both S and JS n at internal in

terfaces, while the condition ∂S
∂n = 0 is assumed for external boundaries. 

The weak formulation of Eq. (7a) is 
∫

Ω
σ(θ)∇V⋅∇vdx = 0 (11)  

with voltage fixed with Dirichlet conditions at the left and right boundaries of the structure. v is a scalar test function. 
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