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Abstract. An accurate self-consistent solution of the coupled Wigner
and Poisson equations is of high importance in the analysis of semicon-
ductor devices. The proposed solver has two main components: a Wigner
equation solver which treats the Wigner potential as a generating mech-
anism and is responsible for the generation and annihilation of signed
particles used in the Monte Carlo method, and a Poisson equation solver
which uses an efficient multigrid approach to take the electron distribu-
tion into account, and update the value of the potential in each time step.
Results for the electron distribution, the electrostatic potential, and the
electrostatic force calculated as the gradient of the potential energy are
presented for a Cartesian xy-region which is not charged by any external
doping or other sources of fixed charge in the beginning of the simula-
tion. However, wavepackets representing electrons are constantly injected
from one edge every femtosecond. Comparing the electron distribution
in two cases, namely, obtained without taking the Poisson equation into
account and with self-consistently solving the Poisson equation with the
Wigner equation, demonstrates the repulsion of the injected wavepackets
in the latter using the vector visualization of the force.

1 Introduction

Although some level of understanding can be achieved by considering indepen-
dent carriers while analyzing nano-scale transport, a more accurate description
requires the use of self-consistent models, where carrier-carrier interactions are
also taken into account [1].

In this work, the Poisson equation is self-consistently solved with the Wigner
equation. The solver provides the possibility of calculating physical quantities
such as carrier concentration and current. Initial and boundary conditions are
carefully analyzed so that a consistent and compatible set is used in order to
obtain accurate and reliable results. There is also the option to select a position-
dependent relative permittivity in the Poisson equation, which enables the sim-
ulation of devices consisting of materials with different properties.
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A simulation using the self-consistent solver starts with an initialization step
in which geometrical aspects and physical quantities such as initial concentration
and potential are given by input files or external functions, see Fig. 1. Some
additional simulation parameters as well as the boundary conditions are set and
the properties of the particles to be injected in the region are decided. The
particles are then injected through the use of an injection zone at the bottom of
the actual region. The Wigner potential is calculated, which in turn determines
the statistics of the generation mechanisms in the actual time step. The Poisson
equation solver is then called with the obtained value of the carrier concentration
in order to update the value of the electrostatic potential for the next time step.

A charge redistribution scheme is used after the Poisson solution step to map
charges among the neighboring cells in a more efficient way for the next iteration.
The evolution of the particles is then performed using the signed-particle Monte
Carlo approach, explained in Sect. 2. This loop is repeated at each time step.

Fig. 1. Flowchart for the self-consistent solution of Poisson and Wigner equations

The solver for the Poisson equation, presented in more details in Sect. 3,
receives the updated value of the carrier distribution in each time step and
utilizes a multigrid approach to compute the updated value of the electrostatic
potential, which is then used to calculate the new Wigner potential, and hence
the new statistics for the generation of new pairs of particles [2].
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2 Wigner Monte Carlo Solver

For an accurate description of carrier transport processes in nanometer sized elec-
tronic devices, the effects of quantum mechanics have to be taken into account
[3]. In order to maintain the closest resemblence to the classical concepts, the
Wigner formalism presents a well-established choice as it bridges the gap between
purely quantum (ballistic) evolution and the classical (diffusive) transport by the
relatively convenient use of functions and variables defined in the phase space.

The Wigner equation, which is the governing equation in the Wigner formal-
ism, is written in the semi-discrete form as:(
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where r and qΔk are the discrete vectors for position and momentum, respec-
tively, and fw is the Wigner function. The semi-discrete Wigner potential, which
appears on the RHS of Eq. (1) and plays a central role in the signed-particle
method as it dictates the particle generation statistics, is defined as:
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Interpreting the Wigner Potential in the semi-discrete form as a generation mech-
anism, from each original particle, two additional particles can be created with
wavevector ±k0 and signs ±1, through an algorithm to propagate numerical
particles along trajectories and scatter them to different wavevectors [4].

The Monte Carlo procedure in Fig. 1 consists of evolution and annihilation
steps. In the evolution step, classical drift and consecutive generation/scattering
processes are repeated iteratively for all particles in the (growing) ensemble, until
the end of the time-step is reached. However, since all the particles within a given
cell of the phase space have the same probabilistic future and thus contribute in
a similar fashion in the averaging process used to calculate physical quantities,
two particles of opposite sign within a cell cancel out (annihilate) each other and
cease to exist. Therefore the annihilation step is utilized to control the particle
ensemble growth.

3 Poisson Equation Solver (Multigrid Approach)

Starting from the differential form of Gauss’s law, ∇·E = ρ
ε and using E = −∇V ,

we obtain:

∇ · E = −∇ · (∇V ) = −∇2 V, (3)

where E and V are the electric field vector and the scalar electrostatic potential,
respectively. Following from Eq. (3), in a homogeneous dielectric domain, the
Poisson equation can be written in its general form in three dimensions as:
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with ρ being the space charge density:

ρ = q(p − n + C),

where q is the elementary charge of an electron, p and n are the hole and elec-
tron concentrations, respectively, and C is the concentration of additional fixed
charges. Note that in Eq. (4), ε = εrε0, where εr is the relative permittivity
(dielectric) for the material, and it is considered to be constant (εr = εSi = 11.7)
in the simulations discussed in this paper. However, the Poisson equation
solver can treat also a position-dependent εr to model materials with different
properties.

The Poisson equation accounts for Coulomb carrier-carrier interactions and
therefore has to be frequently solved during the simulation in order to properly
model the electric field driving the carriers. There are many ways to numerically
solve this equation, ranging from direct methods like Gaussian elimination to
iterative ones, such as the Jacobi, Gauss-Seidel, or successive over-relaxation
method (SOR). The method utilized in this paper is a matrix method known as
Multigrid (MG).

After pre-smoothing Gauss-Seidel iteration steps, a fine-to-coarse relaxation
process is used to initialize the correction potential on a coarser grid. As illus-
trated in the example in Fig. 2, from all the nodes on the initial fine grid on the
left, a coarser mesh (only the blue dots) are chosen in the first round, and then
an even coarser grid (only the red dots), and so on. For the prolongation scheme,
however, a coarse-to-fine approach is used to transfer the calculated error from
a coarser grid to the corresponding finer grid using interpolation [5].

Fig. 2. Multigrid fine-to-coarse relaxation (left to right) and coarse-to-fine prolongation
(right to left) schemes

The criteria for convergence is that on all the nodes in the initial fine grid,
the absolute value of the potential update is smaller than a selected threshold
value.
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4 Boundary Conditions

Boundary conditions are of crucial importance whenever solving a partial differ-
ential equation. In the case of incorporating a Poisson equation solver into our
main Wigner Ensemble Monte Carlo (WEMC) approach, we must make sure
that the boundary conditions for both equations are compatible and consistent.

For the Wigner equation solver we can basically assign absorbing or reflecting
boundary conditions to any of the edges of the simulation domain. Referring to
a boundary as absorbing means it is reflection-less and all particles leave and
cease to exist at the boundary, which does not influence the evolution of the
particles and corresponds to a Neumann boundary condition for the Poisson
equation. A reflecting boundary, on the other hand, represents the case where the
particles are reflected from the boundary, and no particles are injected from the
boundary, which approximates it to an infinite potential step. Such a boundary,
which corresponds to a Dirichlet boundary condition in the Poisson equation, is
useful to approximate interfaces between semiconductors and oxide, where the
wavefunction rapidly decays towards zero [4].

The self-consistent solver provides the option to incorporate any combination
of Dirichlet (a boundary condition on the potential) and Neumann (a boundary
condition on the derivative of the potential, i.e. the electric field) conditions on
each side of the simulation domain, provided that there is at least one segment
with a Dirichlet boundary condition specified on it.

5 Results

In this section the results of the simulations for two scenarios are presented,
namely without solving the Poisson equation, and with self-consistently solving
the Poisson equation with the Wigner equation. The results are obtained for
a Cartesian xy-region of 64 nm ×64 nm, where the x and y dimensions are of
numerical importance and all physical quantities remain constant in z-direction,
and it basically contributes only in calculating the cell volume and the carrier
concentration. It is important to note that the simulation region is very small,
and even small values of charge result in high values of density on the RHS of
Poisson equation.

The simulation region is not charged by any external doping or other sources
of fixed charge in the beginning of the simulation. However, wavepackets rep-
resenting electrons are constantly injected into the region every femtosecond.
The wavepackets are distributed in a Gaussian shape in space, but all have the
same initial momentum. The x-component of momentum is set to zero in order
to make the analysis of the spreading of particles more straightforward. Each
wavepacket represents one electron and thus carries the charge −e, where e is
the elementary charge.

The top and bottom boundary conditions are set to “reflecting” in the Wigner
equation which is compatible with the zero Dirichlet boundary condition in the
Poisson equation. The left and right boundaries are set to “absorbing”, which
corresponds to a Neumann boundary condition in the Poisson equation.
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As illustrated in Fig. 3, when the Poisson equation is not solved and the
initial potential is not updated, the injected particles do not repulse each other
and continue their evolution with their initial momentum. Without solving the
Poisson equation, the initial potential is zero, and as it is not updated, the
electrostatic potential and the electric field remain zero throughout the whole
simulation.

Fig. 3. The electron distribution (in 1019×m−3) for three different time steps (t = 20 fs
left, t = 50 fs middle, t = 80 fs right) without solving the Poisson equation

However, when the Poisson equation is solved in each time step, see Fig.
4, the electron concentration and thus the potential values are updated and the
expected repulsion between the particles occurs. The spreading increases as more
particles are injected into the region and the repulsive forces between particles
become more dominant.

Fig. 4. The electron distribution (in 1019 × m−3) for three different time steps (t =
50 fs left, t = 80 fs middle, t = 110 fs right) with solving the Poisson equation every
femtosecond
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The corresponding results for the electrostatic potential are shown in Fig. 5:

Fig. 5. The potential values (in eV) for three different time steps (t = 50 fs left, t = 80 fs
middle, t = 110 fs right)

The corresponding values for the force are shown in Fig. 6:

Fig. 6. The force vector field for three different time steps (t = 50 fs left, t = 80 fs
middle, t = 110 fs right). For better visualization purposes, the force vectors are half
the actual size in eV

m
.

The general shape of the electrostatic potential remains the same, as the
particles are mainly accumulated in the central line. In each time step, the
distribution of the electrons changes due to the injection of the new wavepackets
and also the interactions between the already present particles. The ensemble
of particles moves from bottom to top, and similarly evolves the electrostatic
potential and the resulting force vector. The particles reflected from the top
and bottom boundaries also contribute in the calculation of the electrostatic
potential.

6 Conclusion

A self-consistent solution of the coupled Wigner and Poisson equation has been
presented. A multigrid approach is used to solve the Poisson equation, which
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results in an updated value of the electrostatic potential, and hence new particle
generation statistics in each time step. Results for the electron distribution, the
electrostatic potential, and the electrostatic force were illustrated for a Carte-
sian xy-region. Comparing the electron distribution, when the Poisson equation
is solved and when it is not solved, shows the expected repulsion of the injected
wavepackets (representing particles) in the former case.
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