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A B S T R A C T   

Employing novel 2D materials with topologically protected current-carrying edge states is promising to boost the 
on-current in electronic devices. Using nanoribbons is essential to reduce the contribution of the 2D bulk states to 
the current. Making the nanoribbon widths narrower allows one to put more current-carrying edge states under 
the gate of a fixed width thus increasing the current. However, the edge states from opposite edges may start to 
interact in narrow nanoribbons. Based on an effective k∙p model, we analyze the topologically protected edge 
states and their conductance for several 2D materials as a function of the normal electric field. We compare the 
2D materials MoS2, MoSe2, WS2, and WSe2 in the topological 1T′ phase and find the largest electric field-induced 
conductance modulation in MoS2 nanoribbons.   

1. Introduction 

Exploiting novel materials with advanced properties is mandatory to 
continue with the device scaling for high performance applications at 
reduced power. Topological insulators (TIs) belong to a class of mate
rials which possess new properties not available in other materials: 
namely, highly conductive edge states with a nearly linear dispersion 
that are topologically protected and hence immune to backscattering. 
Therefore, it is highly attractive to use these conductive edge states to 
carry the on-current in novel devices. It is important that the edge states 
lie within the fundamental band gap of these new materials. Applying a 
gate voltage allows one to move the Fermi level from the gap in the 
conduction or the valence bands where there is strong scattering be
tween the edge and the bulk electron or hole states [1]. This leads to a 
substantial reduction of the current, resulting in an on/off current ratio 
suitable for device applications [1]. 

Recently, it was predicted by ab initio calculations that well-known 
monolayer-thin two-dimensional (2D) materials with high promise for 
future microelectronic devices [2] can also be found in a 1T′ TI phase 
[3]. The band gap is opened by the spin–orbit interaction at the in
tersections (degeneracy points) between the inverted electron and hole 

bands. As this is the gap between the inverted bands, the existence of 
very peculiar states lying in the gap is expected [3]. These states are 
localized at the edge and are characterized by a property that is very 
attractive for application: spin-momentum locking property: It turns out 
that the two otherwise degenerate edge states with opposite spin ori
entations propagate in opposite directions along the edges. Therefore, 
running the current along the edge through the edge states results in its 
almost perfect spin polarization. The spin-polarized currents are known 
to be the key to enable writing data in emerging magnetoresistive 
random access memories [4,5]. The edge states are predicted to be 
protected against backscattering [6] and are therefore expected to 
perfectly carry the current even at nonideal edges typical to 
experiments. 

The value of the gap can be modulated by an external electric field Ez 
applied normal to the 2D sheet. The band gap in the inverted band 
structure is reduced and can be completely closed upon increasing 
values of Ez [3]. By further increasing Ez the band gap reopens again; 
however, the traditional electron and hole band order is restored indi
cating a topological phase transition from a non-trivial topological to a 
trivial insulator. In contrast to the TI phase where the highly conductive 
edge states exist and can carry a large current, no current-carrying edge 
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states are allowed within the band gap of the trivial insulating phase, so 
there is no current due to the edge states. Therefore, the normal electric 
field induced topological phase transition between the TI and the trivial 
insulating phases offers a way alternative to the one in [1] to modulate 
the current by the gate voltage and to design new current switches. 

If the current is carried only through the edge states located at the 
edges of a 2D sheet, it is quite small regardless of the high conductance 
and the absence of backscattering of the edge states. To enhance the on- 
current due to the edge states it is mandatory to have many edges. One 
can achieve this by placing several narrower nanoribbons under the gate 
of the same width. The narrower the nanoribbon is, the more nano
ribbons one can assemble. At the same time, the contribution due to the 
2D bulk states capable to backscatter decreases due to the size quantized 
bandgap increase with shrinking nanoribbon width [7]. 

However, the behaviour of the edge states in a narrow nanoribbon 
can differ from that at the edge of an infinite 2D sheet. Indeed, a small 
gap in the gapless spectrum of the edge states opens due to an interaction 
between the topologically protected states from the opposite edges 
[8,9]. Because of this gap in the dispersion of the edge modes, their 
conductance was found to be slightly less than the ideal conductance 
G0 = 2e2/h. 

In this work we improve and generalize our numerical approach [10] 
to handle a broad range of 2D materials. We evaluate the edge states and 
their corresponding ballistic Landauer conductances in nanoribbons of 
several 2D materials in the 1T′ TI phase. In addition to MoS2 we consider 
MoSe2, WS2, and WSe2 and critically compare the results. The work was 
presented at the 7th Joint International EuroSOI Workshop and Inter
national Conference on Ultimate Integration on Silicon (EuroSOI- 
ULIS’2021) [11]. 

2. Method 

The subbands in a nanoribbon of a topological 2D material are found 
numerically following the approach described in [10]. The unknown 
vector x = (k1, k2, k3, k4,E)T which includes the subband energy E is 
found by solving a nonlinear equation system of the form. 

F(x) = 0. (1) 

The vector-valued function F is composed of the following 
components: 

F1 = k1k2k3k4 − a0
F2 = k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4 + a1

F3 = k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4 − a2
F4 = k1 + k2 + k3 + k4

F5 = det(M)

(2) 

The first four equations, Fi = 0, i = 1,2, 3,4, represent Vieta’s re
lations between the four roots k1,⋯, k4 of a quartic equation 

k4
y + a2k2

y + a1ky + a0 = 0 . (3) 

The coefficients am,m = 0,1, 2 in (3) are determined from the char
acteristic equation [10] 

det(H(k) − EI ) = 0 (4) 

with I being the 2 × 2 unit matrix and 
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HereH(k), k =
(
kx, ky

)
is the spin-up Hamiltonian determining the 

bulk bands dispersion in an infinite 2D sheet in a topological 1T′ ma
terial. For convenience (4) is written in dimensionless units: All energies 
are measured in units of the separation δ between the electron and hole 
bulk bands at the Γ-point, while the components of the wave vectors k =

(
kx, ky

)
are in units k0 =

(

2δ
ℏ2

md
ymp

y
md

y+mp
y

)1/2

. In (5) md(p)
y(x) are the effective 

masses, m =
md

ymp
y

md
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y
, ν1(2) are the dimensionless velocities characterizing 

the strength of the spin–orbit interaction and Ez is the electric field 
normal to the sheet of a 2D material. 

Solved with respect to E dependent on k =
(
kx, ky

)
, (3) determines 

the energy bands’ dispersion in an infinite sheet of a 2D material. The 
bulk dispersion is characterized by the inverted band structure such that 
the electron-like band lies below the hole like one at the Γ -point as 
illustrated in Fig. 1 for MoS2 and kx = 0. Without the spin–orbit inter
action (v1 = v2 = 0) the electron and hole bulk bands are intersecting at 
ky = ±k0 explaining the choice of k0 to measure the wave vectors in (4). 
The finite spin–orbit interaction opens the fundamental gap at ky around 
k0. The dispersion relations and the wave functions for the spin-down 
states are obtained from the spin-up solutions by applying the time 
reversal symmetry operation which inverts the spin orientation and the 
momentum k direction simultaneously [5]. 

It then follows that the first four equations in (2) guarantee that 
ky = k1,⋯, k4 and E satisfy the bulk dispersion relations at a fixed kx. 
The last equation in (1), F5 = 0, serves to select only the pairs (ky, E) 
which also satisfy the infinite square well potential boundary conditions 
for the wave function in a nanoribbon of the width d [10]: 

Ψ(y = (d/2 ± d/2)) = 0. (6) 

In (2) the matrix M = (m1,m2,m3,m4) is composed of the four col
umns mj defined as 

mj =

⎛

⎜
⎜
⎝

ξ

η

ξexp
(
ikjd
)

ηexp
(
ikjd
)

⎞

⎟
⎟
⎠ . (7) 

The pair (ξ, η)T in (7) is an eigenvector of the Hamiltonian matrix (5) 
at an energy E [10]. 

While solving (1) numerically, special care must be taken of cross
ings of the solution as a function of a parameter. In addition, special 
attention must be paid to eliminate spurious solutions of (1) that are not 
related to edge states or subbands in a nanoribbon [10]. These solutions 
stem from the extrema of the bulk dispersion relations shown by the 
dashed line in Fig. 1. At these particular points (1) is automatically 
satisfied. Indeed, as the extrema belong to the bulk dispersion, they 
fulfill Fi = 0, i = 1, 2,3, 4. Because at the extremum shown in Fig. 1, two 

Fig. 1. Bulk bands k∙∙p dispersion in a 1T’ MoS2 2D sheet at Ez = α− 1ν2/2 
andkx = 0. Dashed line touches an extremum of dispersions discussed later in 
the text. 
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roots of (3) are equal, k3 = k4 , and thus two columns (7) in the matrix M 
become identical, such that F5 = det(M) = 0 is automatically satisfied. 
Although the extrema of the bulk dispersions are the formal solutions of 
(1), they do not depend on the nanoribbon’s width. The related wave
functions are identically zero and the E-k pairs must be disregarded. 

In our numerical approach to solve (1) we carefully identify and 
exclude the spurious solutions based on the following requirement. 
These solutions correspond to the extrema of the bulk dispersion E(kx,

ky) and therefore satisfy 

∂E(kx, ky)

∂ky
= 0 . (8) 

In the present paper we extend our study [10] and solve the 
nonlinear system (1) numerically for a broad range of parameters. In 
addition to MoS2 discussed in [10] (but with different material param
eters set from [3]), we also study MoSe2, WS2, and WSe2. The parameters 
used in the calculations as well as the values of k0 are listed in Table 1. 
The dimensionless parameters v1,2 and the parameter α in (5) are related 
the physical material parameters in Table 1 as v1,2 = V1,2k0/δ,α = α’/δ. 

3. Results 

3.1. Subbands dispersions 

To evaluate the subband dispersions at a particular value of the 
electric field, the system (1) is solved numerically as a function of the 
dimensionless momentumkx. We begin with the evaluation of subbands 
in a 1T′ MoS2 nanoribbon of the width 20 nm cleaved along the OX axis. 

In contrast to [10], we employ the material parameters [9] (Table 1). In 
addition to [10], we explicitly show the spurious bands. Moreover, we 
significantly improved the accuracy of the iteration procedure in order 
to clearly resolve and distinguish the crossings in the subband disper
sions not performed in [10]. 

Fig. 2 shows the subbands without the normal electric field (Ez = 0). 

The energies are offset by ΔE = δ
2

md
y − mp

y

md
y+mp

y 
for convenience. The topmost 

hole-like and the lowest electron-like subbands with almost linear dis
persions correspond to the edge states [9,10]. The positions of the 
extrema of the electron- and hole-like bands close to k0 (Fig. 1) depend 
on kx and are also shown in Fig. 2 with dashed lines. The bulk bandgap is 
defined by the minimum energy separating the extrema. Clearly, the 
edge modes dispersion lies within the bulk bandgap (Fig. 2). A small gap 
of about 10 meV in an otherwise linear spectrum of the edge modes is 
due to an interaction of the edge modes localized at opposite edges in a 
narrow nanoribbon. 

In the absence of a normal electric field the roots k1,⋯, k4 of (3) 
corresponding to the edge modes are in the formkj = ±a ± ib. However, 
in the Newton algorithm we do not constrain kj while solving (1) and 
vary all four kj and the energyE, for a fixed kx, to evaluate |det(M)| and 
bring it below a tolerance of 10− 10. Simultaneously we ensure that (3) is 
fulfilled. Therefore, the degree of asymmetry of the roots kj obtained 
numerically is a good measure of the solver’s accuracy. It turns out that 
for a Newton scheme tolerance of 10− 10 the relative asymmetry error of 
the roots kj is less than 10− 13. 

Higher electron and lower hole subbands lie within the bulk con
duction or the valence bands. Both, electron and hole subbands, can be 
separated into two groups with distinct curvatures at small kx or to 
different effective masses. To number the subbands, one can introduce 
an index within each group of electron and hole subbands. Our nu
merical analysis demonstrates that there exist simple dispersions 
crossings between the subbands with the same index from different 
groups, while anti-crossings appear if the subbands indexes are different. 

To differentiate a subband crossing from an anti-crossing, a careful 
choice of an initial guess for the solution is critical. A poor initial guess 
may lead to the solution jumping on a different subband nearby, which 
mistakenly results in an uneven subband dispersion [10]. For the 
Newton’s method to stay on the same solution, we first choose a suitable 
value for E at kx = 0 and solve (1) numerically until a desired accuracy is 
achieved. For the next kx the new starting value E is obtained by 
extrapolating the solution vectorx. Close to the crossing or anti-crossing, 
a quadratic extrapolation to obtain the next initial guess is required. For 
results shown in Fig. 2 about 100 linearly spaced kx points were used to 

Table 1 
Parameters [9] used in the model. me is the electron mass, e is the electron 
charge.  

Variable MoS2 MoSe2 WS2 WSe2 

δ [eV]  0.55  0.76  0.17  0.69 
V1 [m/s]  3.38 105  3.42 105  2.93 105  3.54 105 

V2[m/s]  0.23 105  0.23 105  0.85 105  0.38 105 

mp
x/me  0.48  0.28  0.53  0.36 

mp
y/me  0.29  0.17  0.28  0.16 

md
x/me  2.32  2.65  3.2  3.28 

md
y/me  0.92  3.14  8.2  8.4 

α′/e [nm]  0.016  0.027  0.017  0.024 
k0 [nm− 1]  1.8  1.9  1.08  1.7  

Fig. 2. Subband structure in a MoS2 nanoribbon of width d = 20 nm atEz = 0. 
The subbands with a nearly linear dispersion and a small gap at kx = 0 corre
spond to the edge modes. Dashed lines correspond to the extrema of the bulk 
dispersion satisfying (1,2) and (8). 

Fig. 3. Subband structure in a MoS2 nanoribbon of width d = 20 nm at the 
fieldEz = α− 1ν2/2. The gap between the electron- and hole-like subbands in
creases. Dashed lines: extrema of the bulk dispersion. 
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preserve the dispersions smooth and to resolve the crossings and anti- 
crossings of the subbands. 

Fig. 3 demonstrates the subbands in a 20 nm 1T′ MoS2 nanoribbon 
and the positions of the bulk dispersion extrema at the electric fieldEz =

α− 1ν2/2. If the normal field is present, the bulk dispersion becomes 
asymmetric as seen in Fig. 1 displaying two minima and two maxima 
around ±k0 with different energies. The dependences of the four 
extrema as function of kx are shown with dashed lines in Fig. 3. 

Because of the asymmetry of the bulk dispersion (Fig. 1), the sub
band crossings in the bulk conduction or valence bands transform to 
anti-crossings as shown in Fig. 3. The edge modes dispersion at Ez =

α− 1ν2/2 is still laying within the bulk dispersion gap, however, the 
separation between the electron- and hole-like edge modes at kx = 0 
becomes larger than at Ez = 0. 

Fig. 4 shows the subband structure at the normal field Ez = Ec =

α− 1ν2. This field value is critical for the bulk band structure in an infinite 
sheet of a 2D material as at this electric field the fundamental band gap 

closes (dashed lines). However, the gap separating the lowest electron- 
like and highest hole-like subbands at kx = 0 remains finite and in
creases even further as compared to the gap at Ez = α− 1ν2/2. As there is 
no fundamental gap in the bulk at Ez = α− 1ν2, all subband dispersions 
are in the bulk conduction or valence band. This leads to a qualitatively 
different behavior of the edge states wave functions discussed later. 

Fig. 5 shows the subbands and the spurious solutions corresponding 
to the bulk bands extrema in a WSe2 nanoribbon of the width of 10 nm 
atEz = 0. The edge modes’ dispersions remain almost linear in a broad 
range of kx, with an exception of a very narrow region around kx = 0 
where a small gap of about 1 meV between the edge dispersions opens. 
Two types of hole subbands with different effective masses are observed. 
In contrast to the MoS2 case, due to a much heavier md

y effective mass in 
WSe2, the valence band maxima close to ky = ±k0 are very shallow as 
the valence band minimum at the Γ-point ky = 0 is only a few milli
electronvolts away as shown in Inset, Fig. 5. We only detected three 
hole-like subbands, for a nanoribbon of the width of 10 nm, with their 
maxima located between the bulk valence band minimum and maxima. 
The lowest hole-like subband lies at the energies below the minimum at 
the Γ-point ky = 0, which explains a steeper dispersion with a smaller 
effective mass. 

At the critical value of the electric field Ec = α− 1ν2 the band gap in 
the bulk dispersion closes at ky = k0. The edge modes dispersions are in 
the bulk conduction and valence bands (Fig. 6). Fig. 6 indicates that, 
similar to the case of MoS2 nanoribbons, the gap between the lowest 
electron-like and topmost hole-like subbands increases, while the 
fundamental gap is zero. We systematically investigate the dependencies 
of the edge states energies as a function of the normal field in 1T’ MoS2, 
MoSe2, WS2, and WSe2 nanoribbons. 

3.2. Edge states as a function of the normal electric field 

To evaluate the dependencies the energies of the electron-like and 
hole-like edge modes with the normal field, we now solve (1) numeri
cally at kx = 0 as a function ofEz. The difficulty we encountered was to 
numerically separate the edge states close to the spurious bands (8) to 
exclude [10] the spurious solutions. To do so we begin the Newton it
erations and obtain results at Ez = 0. We then keep Ez increasing. A 
suitable initial guess for the next Ez step is obtained by a quadratic 
extrapolation of energies obtained at the previous steps. The procedure 
works well until we reach a vicinity of the edge modes dispersions 
crossing with spurious solutions. The spurious solutions turn to be so 

Fig. 4. Subband structure in a MoS2 nanoribbon of width d = 20 nm at the 
critical field Ez = α− 1ν2 at which the fundamental gap in a 2D sheet closes. In 
contrast, the gap in the nanoribbon increases. Dashed lines: extrema of the 
bulk dispersion. 

Fig. 5. Subband structure in a WSe2 nanoribbon of width d = 10 nm atEz = 0. 
The subbands with the linear dispersion and a small gap at kx = 0 correspond to 
the edge modes. Dashed lines: extrema of the bulk dispersion. The lowest 
dashed line is due to the minimum of the bulk dispersion at the Γ-pointky = 0. 
Inset: bulk dispersion in WSe2 at Ez = 0 andkx = 0. 

Fig. 6. Subband structure in a WSe2 nanoribbon of width d = 10 nm atEz =

α− 1ν2. The subband gap remains finite and keeps increasing with the normal 
field, in contrast to the bulk bandgap. Dashed lines: extrema of the 
bulk dispersion. 
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“attractive” that even refining the electric field stepping does not help, 
and we end on a spurious branch. 

To find the lowest electron- and topmost hole-like states at higher Ez 
beyond the crossing with the spurious bands, we have chosen a new 
strategy: we begin at high Ez = Ec = α− 1ν2 and proceed by stepping Ez 
downward until we reach the crossing with the spurious bands. By 
stitching the solutions continuously across the spurious band, we 
determine the lowest electron- and topmost hole-like modes as a func
tion of the normal electric field Ez. 

The separation between the lowest electron-like and topmost hole- 
like edge states and the subband gap increases with the normal elec
tric field for MoS2 as shown in Fig. 7, for all widths of nanoribbons. The 
spurious bands are also shown by dashed lines for convenience. The 
spurious solutions must be excluded [10] as they lead to ambiguous 
conclusions [9] regarding the subband gap and ballistic conductance. 
Fig. 8,9 and 10 show the dependencies of the lowest electron-like and 
the topmost hole-like energies at kx = 0 as a function of the normal 

electric field in nanoribbons of MoSe2, WS2, and WSe2, respectively, for 
three different widths of 10 nm, 20 nm, and 30 nm. Although the de
pendencies are varying for different materials, they display three com
mon features, namely: 1) The gap between the edge dispersions 
increases with the increase of the normal field; 2) the subband spectrum 
remains gapped even at the critical electricEz = α− 1ν2; and 3) the gap 
value is larger for narrower nanoribbons. These results will later be 
employed to compare the edge mode ballistic conductances in different 
materials. 

3.3. Topological phase transition in a nanoribbon 

2D topological insulators are characterized by a non-trivial topo
logical order which results in the existence of symmetry protected edge 
Dirac modes with linear dispersion lying in the fundamental band gap of 
the insulator. Closing the fundamental gap in the bulk 2D by increasing 
the normal electric field and reopening it again at higher fields, with the 
normal noninverted band order restored, represents the transition 

Fig. 7. Subband gap dependence in a MoS2 nanoribbon of width 10 nm 
(crosses), 20 nm (circles) and 30 nm (squares). The subband gap is larger in 
narrow nanoribbons and increases with the normal electric field. Dashed lines: 
spurious solutions [10] due to the extrema of the bulk dispersion. 

Fig. 8. Subband gap dependence in a MoSe2 nanoribbon of width 10 nm 
(crosses), 20 nm (circles) and 30 nm (squares) with the normal electric field. 

Fig. 9. Subband gap dependence in a WS2 nanoribbon of width 10 nm 
(crosses), 20 nm (circles) and 30 nm (squares) with the normal electric field. 

Fig. 10. Subband gap dependence in a WSe2 nanoribbon of width 10 nm 
(crosses), 20 nm (circles) and 30 nm (squares) with the normal electric field. 
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between the TI and trivial insulator phases [3,9]. 
We found that in a nanoribbon the behavior of the subband gap with 

the electric field is opposite to that of the fundamental gap in an infinite 
2D sheet of the same material. The question arises if and how one can 
define a phase transition between the TI and a trivial insulator phase in a 
nanoribbon. 

It is convenient to define a topological transition in a confined 
nanoribbon geometry based on the properties of the edge states wave 
function [9,10] 

Ψ(y) =
∑4

j=1
Cj

(
ξ
η

)

exp
(
ikjy
)
. (9) 

Using a MoS2 nanoribbon as an example, we demonstrate how this 
definition works and what its physical consequences are. 

If the edge states energies lie within the fundamental gap of a TI (i.e. 
between the dashed lines in Fig. 7), all k1,⋯, k4 in (9) are complex and 
possess imaginary parts. The inverses of these imaginary parts define the 
localization length of the wave function at the edges within a nano
ribbon [9,10]. Therefore, the states with energies within the funda
mental gap are localized at the edge. 

With the electric field increasing, the subbands’ energies approach 
the fundamental band gap boundaries (Fig. 7, dashed lines). Fig. 11 
demonstrates that while the imaginary part b1 of k1,2 = − a1 ± ib1 in
creases, the imaginary part b3 of k3,4 = a3 ± ib3 decreases and becomes 
zero exactly at the electric field corresponding to the crossing of the edge 
mode dispersion and the bulk bands. As the localization of the wave 
function qualitatively changes at this value of the electric field, one can 
define this point as a topological transition in a condoned geometry 
[12]. 

The electric field at which the character of the wave function (9) 
changes is not the same for the edge states with the electron- and hole- 
like dispersions. The values of the electric field at which the transition 
occurs also depend on the width of nanoribbon: with the nanoribbon 

width increasing, the electric field value also increases. However, 
following this definition the correct value of the critical field Ez = Ec =

α− 1ν2 for an infinitely wide 2D sheet is recovered. 
Although the wave function with real k3, k4 cannot be considered as 

localized at the edges, it is not easy to visually distinguish [12] a weak 
exponential decay from a difference between the two sine functions with 
close frequencies in nanoribbons narrower than 50 nm. Fig. 12 dem
onstrates the wave functions at two electric field values before and after 
the topological transition in a MoS2 nanoribbon of the width 50 nm: 
While at Ez = 0.4α− 1ν2 the wave function is clearly localized at the right 

Fig. 11. Imaginary part of k1,2 (dashed) and k3,4 (solid) as a function of the normal electric field in a MoS2 nanoribbon of width 10 nm (crosses), 20 nm (circles) and 
30 nm (squares), for hole-like (left panel) and electron-like edge states (right panel). 

Fig. 12. The wave function of the electron-like edge states in a MoS2 nano
ribbon of the width 50 nm, at Ez = 0.4α− 1ν2 (line with crosses, still localized at 
the edge) and Ez = 0.9α− 1ν2 (solid line, substantially delocalized),kx = 0. 1k0. 
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edge and displays an exponential decay superimposed on oscillations, 
the state at Ez = 0.9α− 1ν2 shows a clear increase of the electron density 
in the middle of the nanoribbon away from the edges. 

The lowest electron- and topmost hole-like subbands do not abruptly 
terminate at Ez = α− 1ν2 and continue to higher values of the normal 
electric field [10]. However, being delocalized, the states at higher fields 
become prone to backscattering [12], and do not contribute to the 
ballistic conductance considered next. 

3.4. Ballistic conductance due to edge modes 

The intriguing property of the edge modes is their symmetry pro
tection against backscattering. The transport due to the edge modes is 

therefore ballistic. The conductance G due to the edge modes can be 
computed by employing the Landauer expression 

G =
2e2

h

[(

exp
{

Ee
0 − EF

kBT

}

+ 1
)− 1

+

(

exp
{

EF − Eh
0

kBT

}

+ 1
)− 1 ]

, (10) 

where Ee
0 and Eh

0 are the energies of the bottom of the electron-like 
and the top of the hole-like edge modes, respectively, T is the temper
ature and EF is the Fermi energy. 

The ballistic conductances due to the edge states at room temper
atureT = 300 K in MoS2, MoSe2, WS2, and WSe2 2D nanoribbons in 1T′

topological phase as a function of the normal electric field are shown in 
Fig. 13 for the widths of 10 nm, 20 nm (Fig. 14), and in 30 nm (Fig. 15), 
EF=0. The conductance decreases with the normal electric field increase 
for all nanoribbons’ widths and all nanoribbons’ materials considered. 
This agrees with Figs. 7-10 demonstrating an increase of the electron- 
and hole-like edge states energies (Ee,h

0 − EF) relative to the Fermi levelEF 

= 0 with the electric fields, for all nanoribbons. For all widths consid
ered, the largest conductance modulation is obtained in MoS2 nano
ribbons. The conductance modulations in nanoribbons of other 
materials is about 10% or less if the field is increased up to the critical 
value Ec corresponding to the transition to the trivial phase in an infinite 
2D sheet. 

The energies of the electron and hole subbands originating from the 
edge states continue to increase beyond the critical field Ec value [10] 
resulting in a continuous decrease of the ballistic conductance with the 
electric field. As the wave functions (9) of the electron and hole states at 
Ez > Ec gets delocalized from the edges, the states become prone to 
backscattering [12]. The backscattering will further suppress the 
conductance and increase the on–off ratio. 

The higher electron and lower hole subbands dispersions are lying in 
the bulk conduction or valence bands. Their wave functions are not 
protected against backscattering, and their contribution into the ballistic 
conductance at is small, atEF = 0 and room temperatures. A viable op
tion to suppress the conductance in the off-state is to push the Fermi 
level into the bulk conduction or valence bands by applying a gate 
voltage [1] as intensive intra- and intersubband scattering may result in 
an on–off ratio of a few orders of magnitude on–off ratio. However, a 
careful analysis of higher subbands and scattering mechanisms is 
beyond the scope of the current work. 

As the value of the conductance G is determined by the separations 

Fig. 13. Ballistic conductance (10) as a function of the normal electric field atT 
= 300 K, EF=0 in nanoribbons of the widths 10 nm, for several materials: MoS2 
(crosses), MoSe2 (circles), WS2 (squares), and WSe2 (diamonds). 

Fig. 14. Ballistic conductance (10) as a function of the normal electric field atT 
= 300 K, EF=0 in nanoribbons of the width 20 nm, for several materials: MoS2 
(crosses), MoSe2 (circles), WS2 (squares), and WSe2 (diamonds). 

Fig. 15. Ballistic conductance (10) as a function of the normal electric field atT 
= 300 K, EF=0 in nanoribbons of the widths 30 nm, for several materials: MoS2 
(crosses), MoSe2 (circles), WS2 (squares), and WSe2 (diamonds). 
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(Ee,h
0 − EF) relative to kBT, a larger subband gap in MoS2 compared to 

other results in a lower conductance if EF = 0, especially in narrow MoS2 
nanoribbons. The conductance at Ez = 0 can be increased by moving the 
Fermi level above the bottom of the electron-like/below the top of the 
hole-like edge mode by a few kBT. In order to benefit from the absence of 
the backscattering, the Fermi level must still lie in the fundamental TI 
gap. To achieve a high on–off ratio solely due to the edge states, a rapid 
subband gap increase (Ee

0 − Eh
0) with the normal field to several kBT is 

required atEz < Ec. Fig. 16 demonstrates the ballistic conductance 
behavior in a MoS2 nanoribbon with the width of 30 nm andEF = 1.7 
meV at room, liquid nitrogen, and liquid helium temperatures. The 
conductance at 300 K is not affected by a change of EF of 1.7 meV as it is 
much smaller than kBT ≈ 25 meV. Finally, the conductance at 4.2 K 
displays an excellent on–off ratio as both requirements to have large 
conductance at Ez = 0 and a large subband gap compared to kBT at Ez <

Ec are satisfied in a MoS2 nanoribbon at a cryogenic temperature. 

4. Conclusion 

Edge states in narrow nanoribbons of several transition metal 
dichalcogenide monolayers in a 1T′ topological phase including MoS2, 
MoSe2, WS2, and WSe2 are analyzed based on a numerical solution of the 
dispersion equation obtained with an effective k∙∙p Hamiltonian. It is 
found that, although a particular value of the subband gap separating 
the electron- and hole-like edge states depends on the nanoribbon’s 
width and on the material, the subband gap keeps increasing with the 
value of the normal electric field applied to the nanoribbon. 

The increase of the subband gap with the field has got a profound 
impact on the ballistic transport due to topologically protected edge 
states. Namely, the ballistic conductance decreases all the way to the 
critical field when the bulk fundamental gap closes and beyond, 

provided the band structure can still be described by an effective k∙∙p 
Hamiltonian. Among all transition metal dichalcogenide monolayers 
considered, MoS2 nanoribbons demonstrate the largest subband gap 
increase with the normal field and the electric field-induced conduc
tance modulation which can be considered for potential application in 
ultra-scaled devices at room and cryogenic temperatures. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

Financial support by the Austrian Federal Ministry for Digital and 
Economic Affairs, the National Foundation for Research, Technology 
and Development and the Christian Doppler Research Association is 
gratefully acknowledged. The authors acknowledge TU Wien Bibliothek 
for financial support through its Open Access Funding Program. 

References 

[1] Vandenberghe WG, Fischetti MV. Imperfect two-dimensional topological insulator 
field-effect transistors. Nat Commun 2017;8:1–8. https://doi.org/10.1038/ 
ncomms14184. 

[2] Illarionov YY, Banshchikov AG, Polyushkin DK, Wachter S, Knobloch T, 
Thesberg M, et al. Ultrathin calcium fluoride insulators for two-dimensional field- 
effect transistors. Nat Electron 2019;2:230–5. https://doi.org/10.1038/s41928- 
019-0256-8. 

[3] Qian X, Liu J, Fu L, Li Ju. Quantum spin Hall effect in two-dimensional transition 
metal dichalcogenides. Science 2014;346(6215):1344–7. https://doi.org/10.1126/ 
science.1256815. 

[4] Apalkov D, Dieny B, Slaughter JM. Magnetoresistive random access memory. Proc 
IEEE 2016;104:1796–830. https://doi.org/10.1109/JPROC.2016.2590142. 

[5] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, et al. Roadmap of Spin–Orbit 
Torques. IEEE Trans Magn 2021;57(7):1–39. 

[6] Hasan MZ, Kane CL. Colloquium: Topological insulators. RevModPhys 2010;82: 
3045–67. https://doi.org/10.1103/RevModPhys.82.3045. 

[7] Gilbert MJ. Topological electronics. Commun Phys 2021;4(1). 
[8] Zhou B, Lu H-Z, Chu R-L, Shen S-Q, Niu Q. Finite size effects on helical edge states 

in a quantum spin-Hall system. Phys Rev Lett 2008;101:1–4. https://doi.org/ 
10.1103/PhysRevLett.101.246807. 

[9] Das B, Sen D, Mahapatra S. Tuneable quantum spin Hall states in confined 1T’ 
transition metal dichalcogenides. Sci Rep 2020;10(1). 

[10] Sverdlov V, El-Sayed A-M, Seiler H, Kosina H, Selberher S. Subbands in a 
nanoribbon of topologically insulating MoS2 in the 1T′ phase. Solid-State Electron 
2021;184(1). https://doi.org/10.1016/j.sse.2021.108081. 

[11] Sverdlov V, Seiler H, El-Sayed A-M, Kosina H. Conductance due to the edge modes 
in nanoribbons of 2D materials in a topological phase. In: Proc of 2021 Joint 
International EUROSOI Workshop and International Conference on Ultimate 
Integration on Silicon (EuroSOI-ULIS); 2021. p. 1–4. https://doi.org/10.1109/ 
EuroSOI-ULIS53016.2021.9560173. 
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Fig. 16. Ballistic conductance (10) as a function of the normal electric field in a 
MoS2 nanoribbon of the widths 30 nm, EF=1.7 meV, for several temperatures: 
300 K (squares), 77 K (circles), 4.2 K (crosses). Subband gap dependence in a 
MoS2 nanoribbon of width 10 nm (yellow), 20 nm (red) and 30 nm (blue). The 
subband gap is larger in narrow nanoribbons and increases with the normal 
field. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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