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Abstract
Quantum electronics has significantly evolved over the last decades. Where initially the clear
focus was on light–matter interactions, nowadays approaches based on the electron’s wave
nature have solidified themselves as additional focus areas. This development is largely driven
by continuous advances in electron quantum optics, electron based quantum information
processing, electronic materials, and nanoelectronic devices and systems. The pace of research
in all of these areas is astonishing and is accompanied by substantial theoretical and
experimental advancements. What is particularly exciting is the fact that the computational
methods, together with broadly available large-scale computing resources, have matured to
such a degree so as to be essential enabling technologies themselves. These methods allow to
predict, analyze, and design not only individual physical processes but also entire devices and
systems, which would otherwise be very challenging or sometimes even out of reach with
conventional experimental capabilities. This review is thus a testament to the increasingly
towering importance of computational methods for advancing the expanding field of quantum
electronics. To that end, computational aspects of a representative selection of recent research
in quantum electronics are highlighted where a major focus is on the electron’s wave nature.
By categorizing the research into concrete technological applications, researchers and
engineers will be able to use this review as a source for inspiration regarding problem-specific
computational methods.
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1. Introduction

The field of quantum electronics was originally established
based on the developments of the microwave/light amplifica-
tion by stimulated emission of radiation (MASER/LASER)
principle3 [1, 2]. However, looking at the broader electronics
research today and considering that quantum is synonymous
with wave or wave nature, there is a wide variety of areas in
which electrons are treated as waves, e.g., [3–10]: we thus
conclude that quantum electronics has broadened its topical
coverage. This can be seen, in particular, in the confinement-
centric area of nanoelectronics, where quantum effects are to a
large degree detrimental, and in solid-state quantum informa-
tion processing approaches, where the wave nature of electrons
is the core property needed for realizing the desired opera-
tions. Let us look more closely at these two highlighted areas;
in-depth discussions are provided in the later sections.

The astonishing advances towards next generation elec-
tronic technologies continue to translate into miniaturization
to further increase integration densities. This can clearly be
seen by the staggering feature scale reductions over time and
the plethora of research efforts to advance nanoelectronic
devices and systems.4 Many new technologies are being inves-
tigated among which are novel device designs (e.g., gate-all-
around (GAA) nanosheet/nanoribbon field-effect transistors
(FETs)), operational conditions (e.g., cryogenics, supercon-
ducting approaches), logic approaches (e.g., charge or non-
charge), and materials (e.g., two-dimensional (2D) materials).
Owing to continued miniaturization, these developments go
hand in hand with highly confined device designs. Confine-
ment of course introduces quantum effects in the electron
transport owed to the wave nature of electrons. From a com-
putational perspective, quantum models are then required to
properly describe the electron behavior5.

Other efforts to develop next-generation electronic plat-
forms focused on advancing towards the single-electron
regime. First steps were made over 30 years ago with single-
electron electronics [12] which materialized along the single-
electron tunneling transistor [13] and the single-electron
source [14]. In 2007, yet another important step was made, the
realization of an on-demand coherent single-electron source
[15]: it was now possible to generate electrons with well-
defined wave-functions. This ability together with coherent
waveguides allowed to conduct wave-based experiments using
electrons. Naturally, at the forefront were interference exper-
iments, inspired by the optical world [16–19]. It is thus not
surprising that the surrounding research area was coined elec-
tron quantum optics. These fascinating achievements spawned
many other research avenues, among which are alterna-
tive solid-state quantum information processing approaches,
named flying charge qubits, where the electron charge (instead
of the normally considered electron spin) is used to encode
a qubit [6]. Contrary to the previously discussed quantum

3 https://nobelprize.org/prizes/physics/1964/summary/.
4 https://irds.ieee.org/editions/2020.
5 However, classical descriptions served us for a long time and to a consider-
able degree continue to do so [11].

effects in conventional nanoelectronic systems, where quan-
tum effects tend to be detrimental, here the wave nature and the
corresponding quantum effects are the core feature upon which
the entire system operation relies. Considering a computa-
tional perspective and as with nanoelectronics, again quantum
models are required to properly describe the electron behavior,
such as, transport dynamics.

In all of the quantum electronics research areas experi-
ments are of course essential to drive research forward. How-
ever, experimental considerations can be challenging in the
quantum realm [20]. What is astonishing though, is the fact
that in addition to conventional experiments and fueled by
the prevalent ultra-confined systems in next-generation device
designs, advances in computational methods matured to a
degree where they exceeded their historical role as a side-
tool (in many cases only usable by a select few experts,
such as with electronic structure methods [10]) to support
development. In fact, there are nowadays many cases where
computational methods are the sole way to provide insights
into the fundamental governing physical processes. One man-
ifestation of this development is materials by design [21],
collectively describing efforts for computationally designing
materials ahead of potential realization in fabrication facili-
ties. Of course, software requires hardware to actually be exe-
cuted. Due to the tremendous advancements of microelectron-
ics large-scale computing resources are broadly available and
allow for computational experiments of astonishing scale and
scope.

Coming back to the computational methods, indeed many
different methods are available providing a wealth of investiga-
tive opportunities. By way of example and as will be discussed
later in more detail, consider electronic structure calculations
via density functional theory (DFT) or an electron quantum
transport simulation to compute the electron density within a
driven device, or a combination of both.

To that end, this review highlights a selection of recent
quantum electronics advances where computational methods
were essential for the findings. The focus is (i) on research
from the past roughly 3–4 years to provide an overview of
very recent applications, and (ii) on research where electrons
and their wave nature are at the center. We list for each contri-
bution at least one of the applied core computational methods.
This will allow researchers and engineers to quickly assess the
computational landscape for each area of application. This will
incentivise readers to consider new computational experiments
and alternative computational methods.

1.1. What this review covers

Section 2 provides a short overview of the key computa-
tional methods identified in the research reviewed in the later
sections. A particular focus is on the methods which are
applied the most, such as for calculating the electronic struc-
ture and the electron quantum transport. However, we also dis-
cuss other, alternative methods which see considerable use. We
do not express a preference of one method over the other but
merely reflect the extent of use in the research presented in this
work.
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Section 3 represents the first of the review sections and
covers the previously highlighted area of electron quantum
optics and the flying charge qubit systems. The section starts
off by discussing the principal enabling technology: single-
electron sources. In particular, mesoscopic capacitors, electron
pumps, surface acoustic waves (SAWs), levitons, and locally
modulated quantum Hall edge state sources are covered. This
is followed by a discussion of essential waveguides (which
enable one to build coherent quantum circuits) and of electron
transport dynamics. Finally, interferometers, a core focus of
electron quantum optics, and tomography, spectroscopy, and
detection methods are highlighted.

Section 4 provides an overview of computational research
into quantum dots and the predominant approach for realiz-
ing quantum information processing: spin qubits. Although
spin transport itself is not at the focus of this review, a few
selected works are presented where the electron wave nature
is of particular relevance.

Section 5 highlights research in superconducting junctions,
in particular normal-superconductor interfaces. These inter-
faces are particularly relevant for Josephson junctions and
superconducting qubits.

Section 6 delves into the particularly strong focus area of
2D materials and topological materials and systems. In addi-
tion, light–matter interaction effects in materials are high-
lighted as are combinations of materials in the form of het-
erostructures; the latter enable one to further tune material
properties. Finally, research into molecular junctions and sys-
tems is discussed, where typically a specific molecule (chain)
is considered between contacts.

Section 7 provides an overview into research on next-
generation FETs. The focus is of course on GAA designs,
such as, nanoribbon FETs and 2D FETs. The latter further
underlines the importance of 2D materials for nanoelectronic
devices. The section is concluded by research on tunneling
and other types of FETs, such as FinFETs and ultra-thin body
FETs.

Section 8 discusses research on one of the core topics
of quantum electronics, quantum cascade LASER (QCL)
devices. To this day, research on QCL devices is a highly active
field, particularly focusing on THz operation.

Finally, section 9 highlights research where electron trans-
port is extended to include heat transfer into the electron
transport modeling picture. Focus areas include illuminating
fundamental transfer processes but also thermoelectric effects.

2. Computational methods

In this section we give an overview of computational meth-
ods typically used in computational quantum electronics and
which were applied in the research presented in this review
(see sections 3–9). To set the stage, we first discuss general
issues concerning types of simulations and general theoret-
ical considerations. We note that the method of many-body
Green’s functions can be used for both quantum transport
and electronic structure simulations (i.e., in the form of the
GW method, see section 2.4.2), which is why it is widely
applied and we thus devote a separate section for an extended

overview. We then summarize methods for electronic structure
and quantum transport respectively as well as other, less used
but still important methods.

This section is not meant to provide a detailed analysis
of each method including a comparison but rather as a top-
level overview of the methodological landscape. We refer to
the individual extensive literature provided in the respective
subsections for more details.

2.1. Simulation types

Simulations in quantum electronics can be broadly divided
into simulations of electronic structures and quantum trans-
port simulations. As indicated before, sometimes these simu-
lations are combined, for instance, in an electronic structure
simulation (e.g., using DFT) which is followed by a transport
simulation (e.g., non-equilibrium Green’s function (NEGF)
approach). Many examples of such combinations are available
and are discussed in the technological sections below.

Looking at the underlying simulation models, specifica-
tion of models for quantum transport is complex, especially
for realistic devices [22, 23]. The quantum mechanical states
are coupled with the environment. The system is driven out
of equilibrium by an applied bias. States get filled through
the contact regions and through scattering interactions. Elec-
trons interact with phonons over long distances. Some systems
are highly inhomogeneous due to different materials used for
active layers. Typically, parts of the nanosystem have reduced
dimensionality. Proper open boundary conditions have to be
applied and non-normalizable states have to be treated numer-
ically. Because of the thus resulting modeling complexity,
practical transport simulations often contain semi-empirical
approximations. A typical system which is regularly consid-
ered in quantum electron transport consists in a nanosystem
between electrodes.

2.2. Many-body interaction

Full inclusion of many-body interactions in the simulation
is in general computationally intractable. To formulate com-
putationally tractable models a closure problem has to be
solved, which is discussed in the following after covering
computational complexity.

2.2.1. Computational complexity. Models in computational
quantum electronics are based in many-body quantum physics.
We discuss computational costs using the example of a
many-body model Hamiltonian describing electrons interact-
ing through Coulomb force which is given in first quantization
(in atomic units) as

H =

N∑
i=1

− 1
2
∇2

i +

N∑
i=1

N∑
j=i+1

1
|ri − r j|

. (1)

Because the Coulomb interaction involves two electrons
this problem cannot be reduced to a single-body problem. The
electron wave-functions have domain R

3N . If the problem is
discretized using K grid points in R

3 the number of unknowns
scales as KN . A direct solution becomes computationally
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intractable already for low numbers N ∼ 10. However, often
the system of interest consists of a large number of electrons
or even worse one is interested in a limit N →∞. Many com-
putational methods work by effectively reducing the problem
in some way to the case of independent particles.

2.2.2. The closure problem. On the highest level, models
for quantum electronics are formulated in second quantiza-
tion (Fock space) where spin and antisymmetry of the wave
function are naturally included. If the underlying one-particle
Hilbert space is modelled by a finite-dimensional Hilbert space
with dimension K then the corresponding fermionic Fock
space has dimension 2K . In realistic applications this is not
numerically tractable and full knowledge of the many-body
wave function is in general not possible.

A natural idea to extract information about the system is to
solve for correlation functionals from which the observables of
interest can be calculated. Physical observables are calculated
as ensemble averages over the density operator ρ̂

O(t) = Tr[ρ̂ÔH(t)] = 〈ÔH(t)〉. (2)

Here the subscript H denotes the Heisenberg picture where the
state is time-independent and the time dependence is carried by
the operators. A striking example is charge density n(r) which
is the basic quantity in DFT.

If two or more operators at (possibly) different times are
involved the operator trace defines a correlation functional

CAB(t, t′) = Tr[ρ̂ÂH(t)B̂H(t′)] = 〈ÂH(t)B̂H(t′)〉. (3)

However, formulating equations in terms of a few selected
correlation functionals leads to a closure problem. Due to the
interaction between particles the equations for a given fixed
finite set of functionals will in general contain other function-
als outside the fixed set and the resulting system is underdeter-
mined (not closed). Closure problems emerge in many places
in theoretical physics. We mention the closure problem for the
BBGKY-hierarchy and solution methods for the Boltzmann
equation, which try to reduce the distribution to a few of its
moments. Hence, a useful way to classify models used in com-
putational quantum electronics is the set of basic quantities
(functionals) in which the theory is formulated together with a
method of closure (see discussion of NEGF below).

For the sake of completeness, we note that in selected cases,
such as the jellium model, an essentially exact calculation (i.e.,
without a closure) of specific ground-state functionals may be
possible using quantum Monte Carlo methods [24, 25]. How-
ever, these methods are computationally far too expensive to
use in all but the simplest cases [26].

2.3. Green’s function methods

Green’s functions are a general mathematical technique to
derive explicit solutions to differential equations, see [27, 28]
and especially [29]. Many-body Green’s functions provide
a powerful formalism as basically all models can be spec-
ified in terms of many-body Green’s functions and second
quantization.

Several of the calculation techniques in use for many-body
Green’s functions have been originally developed in quantum
field theory [30, 31]. The classical text book by Kadanoff and
Baym from 1962 [32] on Green’s functions in and out of equi-
librium has recently been republished in an annotated edition
[33] which is highly recommended. Other early texts devoted
especially to the application of Green’s functions in solid state
physics include [34, 35].

We want to mention that the full power of Green’s
functions is not always used, even if the method might be
superficially denoted as NEGF. For example, the quantum
transmitting boundary method (theoretically corresponding to
a single-particle Schrödinger equation) [36] can be specified
using a self-energy for the open boundary conditions in NEGF.
Put differently, a simple model may still be specified in a
powerful formalism.

2.3.1. One-particle Green’s functions. A central role in sec-
ond quantization is played by the field operators ψ̂(r), ψ̂†(r)
which annihilate/create a particle at location r. The Green’s
functions in statistical quantum mechanics are a linear combi-
nation of a small set of basic correlation functions involving
the field operators. The simplest example is the single particle
lesser Green’s function

G<(r, t; r′, t′) =
i
h̄
〈ψ̂†

H(r′, t′)ψ̂H(r, t)〉 (4)

from which the electron density is calculated as [37, p 153]

n(r, t) = −ih̄G<(r, t; r, t). (5)

Most expectation values of interest can be calculated from the
knowledge of the basic Green’s functions. Under steady-state
conditions, the Green’s functions depend only on the time dif-
ference τ = t − t′. The two-times Green’s functions allow the
study of time-dependent and time-nonlocal phenomena such
as retarded interactions and memory.

2.3.2. Higher-order Green’s functions. To illustrate the pre-
viously mentioned closure problem (section 2.2.2) in the case
of Green’s functions we discuss the equation of motion for
the one-particle Green’s function with Coulomb interaction
v(r − r′).

For the one-particle Green’s function g(x, x′) we get the
equation [29, p 255]
(

ih̄
∂

∂t
+

h̄2

2m
∇2

r

)
g(x, x′) (6)

= δ(x − x′) − ih̄
∫

d4x1v(r − r1)g2(x, x1; x′, x+1 )|t1=t

where we used the shorthand x = (r, t) etc. Here, x+1 denotes
(r1, t1 + s) as s → 0+. The two-particle Green’s function g2
entering above is defined as

g2(x1, x2; x′1, x′2) = − 1

h̄2 〈T[ψ̂(x1)ψ̂(x2); ψ̂†(x′2)ψ̂†(x′1)]〉 (7)

with T the (fermionic) time-ordering operator. Therefore, in
the presence of a pairwise interaction the equation of motion
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for the one-particle Green’s function g involves the two-
particle Green’s function g2. The equation for the two-particle
Green’s function involves the three-particle Green’s function
and so on.

If an infinite number of higher-order Green’s functions is
included we see that the Green’s function formalism refor-
mulates the full problem. However, the attractiveness of the
method is based on the fact that perturbative methods (Feyn-
man diagrams [38]) can be used which allow the problem to
be attacked in a systematic approximative way. We remark
that the properties of the perturbation expansion are mostly
unknown. The series might diverge or the convergence is only
asymptotic [39].

2.3.3. Equilibrium Green’s functions (Matsubara formalism).
At finite temperature under thermodynamic equilibrium the
density operator ρ̂ is given as

ρ̂ =
e−βK̂

Tr[e−βK̂]
(8)

where we defined K̂ = Ĥ − EFN̂ with the number operator N̂
and β = 1/kBT.

Time dependency is described by the operator e−iĤt while
an operator e−βĤ for real β is contained in the density oper-
ator. This observation motivates the study of the analytic
continuation of Green’s functions for imaginary time.

Important quantities, which can be calculated from the
knowledge of the equilibrium one-particle Green’s function,
are the spectral density function, the density of states func-
tion, conductivity, and dielectricity (linear response functions).
Peaks in the analytic continuation of the spectral function give
rise to an interpretation as quasiparticles.

2.3.4. Nonequilibrium Green’s functions (Keldysh formalism).
For the study of non-equilibrium phenomena the time-ordered
Green’s function formalism used in equilibrium is extended to
the formalism of contour-ordered Green’s functions.

The many-particle information about the system must
be cast into various forms of self-energies which enter the
equations of motion for the Green’s functions. The interaction
with the environment (e.g., scattering, open boundary condi-
tions) is also included through self-energies and dissipative
effects can be modeled.

The self-energy is rarely exactly known and in this way
the closure problem emerges in NEGF quantum transport
modelling. A valid approximation has to conserve macro-
scopic conservation laws. Typical approximations to the
self-energy from electron–electron interaction like Hartree,
Hartree–Fock, Born, T-matrix and the random phase approx-
imation yield the conservation laws [40].

The reader is referred to text books for further informa-
tion on applying the NEGF formalism to quantum electronics
[4, 5, 24, 37, 41–43]. Furthermore, a pedagogical introduction
to the theory of Green’s functions in and out of equilibrium
is provided in [44]. A mathematical account of Green’s func-
tions is presented in [45]. A review of NEGF for transient
simulation is contained in [46]. Self-energy approximations
are discussed in [47] which provides an overview on recent

progress in the theory of NEGF. A critical view on using NEGF
for nanoelectronic devices is given in [48]. Some representa-
tive examples of NEGF simulation tools are, e.g., Omen [49],
NEMO5 [50], NESS [51], Atomistix [52], NanoTCAD ViDES
[53], and Victory Atomistic [54].

2.4. Electronic structure methods

Electronic structure methods stem from the field of quantum
chemistry and are used to calculate the ground-state proper-
ties of condensed systems, e.g., exact ground state density and
energy. In the following, we provide a short overview of the
key methods in this area. For a recent review of electronic
structure methods see [10].

2.4.1. Density functional theory. DFT is a method to calculate
the electronic structure of atoms, molecules, and solids. The
method is highly popular as it appears to occupy a sweet spot in
terms of trade off between quality of results and computational
costs.

The basic unknown quantity in DFT is the one-particle
observable n(r). Conceptually, DFT is a mean-field many-body
theory of the ground state. The potential used in DFT is the
sum of external potentials (determined by the elemental com-
position of the system) and an effective potential which repre-
sents the exchange–correlation energy (i.e., electron–electron
interaction beyond mean-field; respecting the Pauli exclusion
principle). Here, the closure problem (section 2.2.2) emerges
in the form of the exchange–correlation potential VXC whose
exact form is unknown. The effective single-particle potential
can be written as

Vs(r) = Vext(r) +
∫

d3r′
n(r′)

|r − r′| + VXC[n(r)]. (9)

The ground state of this system has to be calculated in a
self-consistent way which results in a non-linear system of
equations coupling the one-particle wave functions.

DFT is sometimes referred to as the standard model for peri-
odic solids [55]. Considering time-dependent DFT, there DFT
is used for simulating electronic excitation processes [56]. Due
to the popularity of the method the literature on DFT is exten-
sive and without a claim of completeness, the reader is referred
to textbooks, e.g., [57–62], and to reviews, e.g., [10, 63, 64].
Some examples for DFT simulation tools are, e.g., VASP [65],
QuantumATK [66], DFTB+ [67], CP2K [68], Atomistix [52].

2.4.2. GW method. The letter ‘G’ in the name of the method
denotes the Green’s function formalism, whereas the let-
ter ‘W’ denotes the screened Coulomb interaction. The GW
method can systematically improve upon certain shortcom-
ings of DFT-estimates [69]. The GW method requires an ini-
tial ground state solution which is usually calculated by the
DFT method. The unknown exchange–correlation potential is
replaced by a self-energy based on the random phase approxi-
mation [70]. However, the final GW result also depends on the
exchange–correlation function chosen for the initial solution.
For reviews of the GW method see [69–71].

5



J. Phys.: Condens. Matter 34 (2022) 163001 Topical Review

2.4.3. Tight-binding. The tight-binding model is a semi-
empirical approach used for calculating the electronic band
structure. This approach assumes that interactions between
atoms are localized and die off quickly with distance. Hence
the kinetics can be modelled by a hopping process, where an
electron can hop to one of its nearest neighbors [72]. The elec-
tronic wave function is a superposition of localized atomic
orbitals [62]. The tight-binding model is closely related to
the LCAO (linear combination of atomic orbitals) method
commonly used in chemistry.

The tight-binding model is a non-sophisticated, one-
electron model which can be routinely solved for even a very
large number of atoms. As computational costs are much lower
than for DFT it is preferentially used in conjunction with
NEGF provided it is sufficiently accurate. A machine learning
method for the parameterization of tight-binding Hamiltonians
is presented in [73]. Exemplary simulation tools are KWANT
[74], TKWANT [75], and NanoNET [76].

2.5. Transport methods

We consider here quantum transport methods which solve a
transport equation to describe the electron transport within
any kind of electronic device or system. Particularly chal-
lenging yet realistic scenarios include interactions with the
environment via, for instance, contacts, phonons, or electro-
magnetic fields. In the following, we give an overview of
the key full quantum transport methods which are capable of
describing the wave nature of electrons. We thus omit semi-
classical approaches. For in-depth discussions of quantum
transport we refer the reader to standard text books, such as
[3, 22, 23, 77–79] in addition to the text books mentioned in
section 2.3.4. We remind the reader that the NEGF formalism
is also used to describe electron transport. The corresponding
discussion is provided in section 2.3 and thus NEGF is not
further mentioned here.

2.5.1. Scattering matrix. The scattering-matrix (sometimes
referred to as S-matrix) relates incoming and outgoing waves
in a region. It enters quantum mechanics in the form of the
Lippmann–Schwinger equation [80]. When this formalism is
used for electron transport calculations it is often referred to
as the Landauer–Büttiker approach. The basic idea of this
approach is to describe (stationary) charge transport through
a quantum conductor as a scattering process.

In the simplest case the scattering-matrix approach solely
relies on basic properties of the scattering matrix (unitarity)
and conserves charge and energy. Conductance is calculated
from the transmission eigenvalues of the scattering matrix.
This method is applicable as long as electrons traversing the
structure experience only elastic scattering [81, ch 1.3]. How-
ever, the method can be generalized to inelastic processes
by including the imaginary self-energy at the expense of a
non-unitary S-matrix [5, ch 2.4.4].

The original Landauer formula, which applied to a system
with two terminals (electron reservoirs), has been extended to
multiple probes in the Landauer–Büttiker formula. If the two-
terminal Landauer formula is construed as the quantum version
of Ohm’s law, then the Landauer–Büttiker formula contains

both the quantum Ohm’s law and the quantum Kirchhoff’s
law [72, 82]. The Landauer–Büttiker formula can also be justi-
fied by linear response theory (Kubo formalism), see [83]. The
formalism includes the case when a magnetic field is present.

The scattering matrix approach can be applied to non-
stationary quantum transport based on the Floquet theorem
for the Schrödinger equation with a potential periodic in time
[84]. Inelastic and decoherence effects in the Landauer pic-
ture are briefly reviewed in [85]. An application domain where
the method is difficult to employ is single-molecule transport
if electron–electron and electron–vibron interactions play an
essential role, see the discussion in [86, p 216].

2.5.2. Master equations and reduced density operators. The
quantum master equation approach deals with the irreversible
dynamics of quantum systems coupled to a macroscopic envi-
ronment. Equations are usually formulated for the one-time
two-particles density function. When the degrees of freedom
from the environment are traced out the effective descrip-
tion of the open system results in non-Markovian behaviour
(memory effects). The transport operators for the reduced den-
sity become non-Hermitian incorporating dissipative effects.
Textbooks describing the master equation approach include
[87–89]. An introduction is given in [90].

2.5.3. Wigner function. Historically, the Wigner function has
been introduced for the analysis of quantum corrections to
classical stochastic mechanics [91] and thus has been derived
from operator mechanics. Later the Wigner function formal-
ism was established as an independent formulation of quan-
tum mechanics based on the Moyal bracket and the star-
product, which is denoted as quantum mechanics in phase
space [92–95].

The Wigner function is a real quasi-distribution in phase
space [96]. The formalism transfers many concepts and
notions from classical to quantum mechanics, such as the
aforementioned phase space but also the distribution function
and the way of calculating the physical average Ā

Ā =
1

2π h̄

∫∫
Aw(x, p) fw(x, p)dpdx. (10)

Here Aw denotes the Weyl transform of the classical observ-
able A(x, p) and the Wigner function fw plays the role of the
classical probability distribution fcl(x, p).

In contrast to the classical Boltzmann distribution the
Wigner function may take on negative values which is inter-
preted as an indication of quantum effects. As the formalism is
close to a classical phase-space description it allows for mixed
quantum/semi-classical modelling.

Many applications of the Wigner function (also outside of
the electronic scope) are demonstrated in monographs [5, 48,
97] and in recent reviews [7, 95]. Using a Wigner function
approach transport can be analysed in terms of signed particles
and stochastic jump processes, hence Monte Carlo methods
may be employed for simulation (see [79] for a recent mono-
graph on stochastic approaches to electron transport in micro-
and nanostructures). More recent advancements concern,
for example, an extension of the theoretical framework for
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Monte Carlo, accessible descriptions of general electromag-
netic fields [98], handling of boundary conditions [99], and
an operator splitting spectral method for a Wigner–Poisson
system [100]. A 1D/2D signed-particle Wigner transport sim-
ulator is available via ViennaWD [101, 102]. For non-trivial
interaction mechanisms a closure problem exists in the Wigner
formalism [78, p 98]. Other very recent advances of Wigner
function methods for electronics (and photonics, but not fur-
ther discussed here) can be found in a recent special issue [103]
and cover, among others, handling of boundary conditions
[104–106] and modelling and solution approaches [107–113].

2.5.4. Schrödinger–Poisson. In the Schrödinger–Poisson
equation electron–electron interaction is included by assum-
ing that one electron interacts with the average background
potential of all other electrons. This is the prototypical single-
particle Hartree mean-field approximation. For many applica-
tions an approach based on Schrödinger–Poisson is sufficient,
e.g., [3, 114–118].

2.6. Other methods

Here we collectively mention a few other methods which are
also used by the community. Among the methods is the so-
called wave function approach [119–121]. This is yet another
method to study time-resolved quantum electronics. Another
method is the single-electron approach which was proposed
as an extension of the Landauer approach for time-dependent
drive [122, 123]. Tensor networks can be used as represen-
tations of quantum many-body states based on their local
entanglement structure [124, 125]. Bayesian formalism can
be applied to simulate measurement backaction in an electron
detection setting [126]. A program for calculating maximally-
localised Wannier functions from a set of Bloch states is avail-
able by Wannier90 [127]. Neural networks can be used to
predict transport properties of a quasi-one-dimensional (1D)
tight-binding model with disordered on-site energies [128].
Finally, Bohmian mechanics can be used to describe electron
quantum transport [20, 129, 130].

3. Electron quantum optics and flying charge
qubits

The continued down-scaling of electronic devices driven by
substantial technological advancements over the last decades
naturally lead to the single-electron regime. As previously dis-
cussed, this development opened up the field of single-electron
electronics [12], which, aside from introducing the single-
electron tunneling transistor [13], also yielded the first single-
electron sources, focusing on charge transfer [14]. Here we
want to particularly highlight the role of the single-electron
source, its development led to an important milestone: on-
demand coherent single-electron sources [15]. The keyword
coherent is essential here as the generated electrons have well-
defined wave-functions (e.g., Gaussian [131]), enabling one
to engineer coherent manipulations of electrons similar to the
optical world. Having access to reliably generating individual
coherent electrons opened up a new field of research focus-
ing on the wave nature of electrons, electron quantum optics,

which in turn facilitated a new research branch focusing on
flying charge qubits for solid-state quantum information pro-
cessing. For reviews on both areas see, e.g., [6, 132]. In addi-
tion, these developments were accompanied by research into
waveguides, electron transport dynamics, interferometers, as
well as tomography, spectroscopy, and detection methods.

3.1. Single-electron sources

As indicated before, a major milestone for coherent electron-
ics was the development of coherent single-electron sources. In
essence, three different approaches emerged: the first is based
on the discrete level spectrum or Coulomb blockade effect
in strongly confined systems. Realizations have been made
via mesoscopic capacitors in the quantum Hall regime (e.g.,
[15]), superconducting turnstiles (e.g., [133]), electron pumps
(e.g., [134]), and sound waves (e.g., [135]). The second uses
Lorentzian-shaped voltage pulses to generate so-called levi-
tons (e.g., [136]). And the third approach utilizes the local gate
modulation of a quantum Hall edge state for noiseless single-
particle emission on top of the Fermi sea (e.g., [137]). The
review of Bäuerle et al provides an excellent overview of dif-
ferent single-electron source technologies [6]. In what follows,
we highlight recent work in these areas, underlining the highly
active field of research.

3.1.1. Mesoscopic capacitors. Mesoscopic capacitors have
been around since many decades [138–140]. In particular,
Fève et al applied the mesoscopic capacitor concept in 2007
to implement an on-demand coherent single-electron source
by periodically driving a quantum dot [15]. In essence, the
approach is based on driving an RC circuit by alternating-
current (AC) voltage so as to limit the charge and discharge
of the capacitor to a single elementary charge. The generated
electron and hole is then emitted into a ballistic quantum Hall
channel.

Selection of recent computational research: Yin used a scat-
tering matrix approach to introduce a general method to extract
the wave function of quasi-particles (i.e., electrons and/or
holes in the Fermi sea) [141]. The excitation probability and
the one-body wave function can be derived from the scattering
matrix. The author used the approach to compare the charac-
teristics of sources based on quantum dots and on an alterna-
tive approach based on quantum point contacts, showing clear
differences in the differently generated particle features.

Wagner et al introduced a theoretical model of a single-
particle emitter of charge pulses that uses a quantum dot
coupled to a quantum Hall edge state by using a general-
ized master equation approach [142]. The authors used the
model to highlight the Coulomb interactions between the dot
and the chiral quantum Hall edge caused a destruction of
precise charge quantization in the emitted wave packet. The
research thus questions the viability of this particular setup as
a single-electron source of quantized charge pulses.

Gurvitz used the single-electron approach to investigate the
time-dependent electron current through a quantum dot under
external drive, which is coupled to leads at zero bias (one
lead as in the case of single-electron sources) [123]. A sim-
plified formula describing the time-dependent current through
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Figure 1. Design of a two-electron source based on two individual
single-electron sources. Two capacitor-based sources are positioned
in a series which are each driven separately. Reprinted by
permission from Springer Nature Customer Service Centre GmbH:
[Springer Nature] [The European Physical Journal - Special
Topics] [144] (2020).

the quantum dot is derived and investigated by using different
driving pulse shapes. It was found that the current is indeed
time-dependent at steady-state, but is zero if averaged over a
time period for any external drive.

Particularly interesting work focuses on extending the work
of single-electron sources to multi-electron sources. Such
multi-electron sources would enable entirely new experiments
and applications, such as quantum tomography (section 3.4)
protocols. Based on previous work (e.g., [143]), in [144],
Moskalets et al used Floquet scattering theory to describe
composite two-particle sources composed of several single-
particle emitters connected in series to a chiral waveguide in
the (non-)adiabatic regime, see figure 1. The flexible design
allows for more than two sources and for mixing source types,
such as mixing a leviton source (section 3.1.4) with a meso-
scopic capacitor. In follow up work, emission from orbitally
degenerate quantum levels that arise in quantum dots with a
nontrivial ring topology were discussed using an excess corre-
lation function of electrons [145]. Various ring setups with one
or two leads and with(out) a magnetic field were analyzed. It
was shown that degeneracy provides additional flexibility for
single- and two-electron emission.

3.1.2. Electron pumps. Electron pumps have been origi-
nally proposed in 1991 by Kouwenhoven et al [146] and
are in essence dynamic semiconductor quantum dots. Since
the beginnings, the accuracy of electron pumps has been a
challenge [147]. Over the years, the initial design has been
extended. For instance, using one [148, 149] or two [134]
voltage-controlled barrier(s).

Selection of recent computational research: Yamahata et al
shed light on the internal electron dynamics in a silicon
single-electron pump with picosecond resolution by numeri-
cally solving the time-dependent Schrödinger equation [150].
Together with experimental investigations the authors were
able, among others, to show that a non-adiabatically excited
electron spatially oscillates quantum coherently at 250 GHz
inside the source at 4.2 K.

Restrepo et al studied electron pumping in the strong cou-
pling and non-Markovian regime [151]. The authors investi-
gated a single quantum dot with periodically modulated energy
and tunneling amplitudes. For the high-frequency regime, Flo-
quet theory has been used to accurately treat the time depen-
dencies, ultimately obtaining a nonsecular master equation.

Figure 2. Density plots of the total pumped charge during a period
Q as a function of the phase Φ and the energy bias Δ for different
values of coupling strength λ. Positive charge (blue) indicates that
electrons are pumped from the left to the right reservoir. Reprinted
(figure) with permission from [151], Copyright (2019) by the
American Physical Society.

A rectification of the pumped current in the high-frequency
regime has been observed, see figure 2.

Emary et al theoretically studied the relaxation of hot
quantum-Hall edge-channel electrons under the emission of
both acoustic and optical phonons using a master equation
approach [152]. The authors consider the electron energy
distributions and detector arrival times and are thus able to
determine the emission rate of optical phonons.

3.1.3. Surface acoustic waves. In 1953 Parmenter predicted
that SAWs can drive a current through a conductor [153]. The
experimental realization followed four years later by Wein-
reich and White [154]. The fundamental property of electron
transport in SAW minima lead to the interpretation of moving
quantum dots for wavelengths � 1 μm. It took almost 60 years
until SAWs have been successfully used as single-electron
source [135] (at the same time other important advances were
made in the context of SAW-based quantum dot charge transfer
[155]). For excellent recent reviews on SAWs see [156, 157].

Selection of recent computational research: Takada et al
demonstrated a SAW-driven single-electron source that is
triggered by a picosecond voltage pulse in the context of
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Figure 3. Time-dependent simulation of SAW-driven electron propagation. (a) Qubit fidelity F. (b) Electron wave function Ψ. (c) Trace of
Ψ. Reproduced from [158]. CC BY 4.0.

electron transfer between distant quantum dots [158]. The
authors outline the mechanisms to convey quantum informa-
tion through a circuit of quantum logic gates and solve the
time-dependent Schrödinger equation over the entire tunnel-
coupled region using Dirichlet boundary conditions. Figure 3
shows time-dependent simulations of the SAW-driven electron
propagation.

de Oliveira Sales et al analyzed the dynamics of a single
electron (modeled as a wave packet) in a Morse chain consider-
ing SAWs [159]. The considered systems contain two sources
of disorder: on-site energies and mass distribution. The authors
solve the time-dependent Schrödinger equation.

3.1.4. Levitons. In 1996, Levitov et al advanced the theory of
quantum measurement of electric current [160] which together
with follow-up work represents the basis for a different type
of electron source based on voltage pulses, later named levi-
tons [136]. The fundamental approach is based on applying
a periodic train of quantized Lorentzian-shaped pulses to a
quantum conductor. Remarkably, this particular pulse shape
excites minimal single-electron excitations without generating
electron–hole pairs, making leviton single-electron sources an
attractive candidate for single-electron sources, in particular
for flying qubit systems [6].

Selection of recent computational research: Glattli and
Roulleau [161] introduced randomized trains of Lorentzian
pulses by using Floquet scattering theory, highlighting the role
of the Pauli exclusion principle in electronic quantum signals.
These randomized levitons were recently used by Roussel et al
to propose a general signal-processing algorithm to extract the
elementary single-particle states (the authors refer to these as
electronic atoms of signal), see figure 4 [162]. Again, Floquet

scattering theory was applied as well as the Wigner function
to visualize the single-electron coherence.

Yue et al investigated the generation of electron–hole pairs
using a scattering matrix approach [163]. Gaussian-shaped
voltage pulses and transitions to Lorentzians have been inves-
tigated. Among others, it was shown that the electron–hole
pairs can always be classified into normal and anomalous elec-
tron–hole pairs, whose excitation probabilities depend on the
pulse flux.

3.1.5. Locally modulated quantum Hall edge state. In 2018,
Misiorny et al theoretically suggested a new type of single-
electron source particularly aiming for topological insulators,
by applying a local time-dependent gate voltage to create AC
pulses in a single quantum Hall edge channel acting as a coher-
ent conductor [137]. A quantum point contact is used as beam
splitter. The authors used Floquet scattering theory to analyze
different voltage shapes/frequencies and gate geometries.

In follow-up work, Dashti et al used again a Floquet
scattering matrix approach to compare the proposed single-
electron source approach based on a locally modulated quan-
tum Hall edge state with conventional approaches, i.e., meso-
scopic capacitors and levitons [164]. In particular, the authors
conducted detailed analyses regarding the temperature depen-
dence of the time-resolved charge and energy currents of the
investigated single-electron sources.

3.2. Waveguides and electron dynamics

Generating individual electrons reliably is one thing, another is
where to inject them into and how to coherently transfer them
via waveguides (a term stemming originally from the field of
microwaves and which has later been also introduced to the
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Figure 4. Schematic process of extracting single-particle content from a quantum current by using a Hong–Ou–Mandel interferometer,
tomographic reconstruction based on the Wigner function, and final calculation of the single-electron coherence via so-called electronic
atoms of signal. Reproduced from [162]. CC BY 4.0.

field of optics). Ultimately, electron sources and waveguides
enable one to realize quantum circuits [165] which can be used,
for instance, for the previously hinted interference experiments
(section 3.3). As discussed, among the most used approaches
are quantum Hall edge channels. Historically, such channels
have been implemented by using a 2D electron gas (2DEG)
in a GaAsAl/GaAs heterojunction which is exposed to a mag-
netic field so as to realize a quantum Hall regime [166] with
no spin degeneracy and long decoherence lengths resulting in a
1D transport channel [15, 167–170]. However, with advances
in materials science, alternative materials have been suggested
[171].

Selection of recent computational research: Roussely et al
conducted time-of-flight measurements of ultrashort few-
electron charge pulses injected into a quasi 1D quantum con-
ductor [172]. The density profile in the conductor was calcu-
lated using the Schrödinger equation and KWANT [74].

Nedjalkov et al introduced a gauge-invariant Wigner theory
in terms of the kinetic momentum which is conserved after
a change of the gauge [98]. As a consequence the authors
were able to derive an explicit form of the Wigner trans-
port equation corresponding to general, inhomogeneous, and
time-dependent electromagnetic conditions.

In follow-up work, Ballicchia et al applied parts of this
theoretical framework (by utilizing the Wigner signed-particle
formulation provided in the ViennaWD simulator [101, 102])
to investigate the effect of a uniform magnetic field on the
electron state interference pattern which arises in a focusing
double-well potential structure [173]. The authors analyzed the
electron density and the negativity of the Wigner function and
showed how the magnetic field controls the electron state but
also destroys the coherence of the evolution dynamics.

In related work, Ballicchia et al presented an analysis of the
quantum processes involved in the electron evolution around
a barrier placed in a waveguide using ViennaWD [174]. The
quantum transport results have been compared to classical
results (an inherent ability of a Wigner transport approach) to
better highlight quantum effects. The relation between quan-
tum effects and their impact on the current has been high-
lighted. In follow-up work, the authors introduced an approach
for modeling surface roughness in waveguides [175] and

Figure 5. 2D quantum electron density (a.u.) as computed by a
Wigner signed-particle approach for a bottom-injected,
single-electron device. Two gate-driven quantum wells (green:
positive bias, yellow: negative bias) control the interference pattern
and thus the current in the three top output channels separated by
rectangular potential barriers (white). Reproduced from [178]. CC
BY 4.0.

investigated the relation between quantum coherence, interfer-
ence, and the negative parts of the Wigner quasi-distribution in
a beam splitter structure using ViennaWD [176].

Weinbub et al investigated single-electron interference
effects as a result of interactions between single-electrons
and two potential wells symmetrically placed in a waveguide,
again using ViennaWD [177]. The results bear resemblance
to the well-known double-slit experiment. The tight depen-
dence between the well configurations (e.g., size, position)
and resulting interference pattern triggered follow-up research
with respect to a potential application as logic devices [178],
see figure 5.
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Figure 6. Tip-controlled tuning of transport through a quantum Hall
edge channel island in graphene. (d) Simulation setup and potential
landscape. The antidot is represented by a circular region with low
potential, 45 nm from the graphene edge. Four contacts are used
(yellow). (e) Profile of the three lowest Landau levels along the
black dashed line in (d). (f)–(h) Simulated current density maps for
different tip positions. Reproduced from [182]. CC BY 4.0.

Rodriguez et al used a scattering matrix approach to inves-
tigate experimental findings concerning the relaxation and
revival of electrons injected at finite energy into a quantum
Hall edge channel [179].

Sanz et al theoretically investigated the use of two crossed
graphene nanoribbons for use as a beam splitter or mirror
[180]. The authors used tight-binding, DFT, and Green’s func-
tion theory to calculate the electron transport properties.

Ito et al developed a coherent beam splitter for single elec-
trons driven through two tunnel-coupled waveguides by SAWs
[181]. The authors solved the Schrödinger equation to describe
the SAW-driven electron transport. A relation between the
gate voltages and the current oscillations in the wires is being
shown and related to the coherent electron tunneling.

Moreau et al investigated limitations of realizing quantum
Hall edge channels in graphene [182]. The authors particu-
larly looked at the combined role of electrostatics and antidots
at graphene edges in quantum Hall breakdown. Tight-binding
simulations provided by KWANT [75] were used to tune the
position and configuration of the quantum Hall edge chan-
nels by optimizing the utilized scanning gate microscopy’s tip
voltage and position (figure 6).

Varnava et al evaluated quantum point junctions on the sur-
face of an antiferromagnetic topological insulator [171]. Anti-
ferromagnetic topological insulators have been predicted by
Mong, Essin, and Moore in 2010 [183]. Since then several
material candidates have been identified, such as MnBi2Te4,
MnBi4Te7, EuIn2As2, and NpBi, promising high temperature
operation (contrary to conventional 2DEG systems). It this
recent work, the authors used dynamic wave-packet simula-
tions to extract the scattering-matrix of the quantum point
junction.

Rebora et al studied electron–electron interactions between
two edge channels at filling factor two considering electro-
magnetic radiation generated by a quantum Hall device in a
quantum point contact geometry [184]. The two interacting
quantum Hall edge channels are modelled using the edge-
magnetoplasmon scattering matrix formalism.

Welland and Ferry developed a novel numerical method for
solving the Wigner transport equation, without relying on eval-
uating the Wigner kernel [185]. The authors evaluated their
method by simulating and analyzing a cat state, entangled
Gaussians, and excited states.

In follow-up work to [186], Jensen et al developed a
novel numerical solution to the time evolution equation of
the Wigner distribution function [187]. A particular focus was
to correctly capture the intricate dynamics of an impinging
wave packet (electron) on a barrier (focus on Gaussian and
parabolic), exhibiting transmission and reflection behavior,
i.e., transmission and reflection delay times. The newly devel-
oped solution approach relies on the finite difference method
using second-order accurate schemes in both position and
momentum.

Benam et al introduced a computational approach for
investigating Coulomb interaction using Wigner–Poisson cou-
pling, thereby providing an option to investigate dynamic
electron–electron entanglement [188]. The authors apply an
approximation based on replacing the Wigner potential of
the electron–electron interaction by a local electrostatic field,
which is introduced through the spectral decomposition of the
potential.

3.3. Interferometers

Based on research into electron sources and additional work
on ballistic conductors, it became possible to investigate
the fundamental wave-based quantum properties of elec-
trons by conducting experiments similar to the quantum
optical domain, most dominantly, interference experiments,
such as Fabry–Pérot [16], Mach–Zehnder [17], Hanbury
Brown–Twiss [18], and Hong–Ou–Mandel [19] interferom-
eters. The reader is directed to the review of Bäuerle et al con-
cerning an overview of various electron-based interferometers
[6].

Selection of recent computational research: Barbarino et al
considered a Hong–Ou–Mandel interferometer and showed
how to engineer statistical transmutation of identical quantum
particles, in particular, to cause fermions to bunch [189]. To
that end, the authors used a scattering matrix approach and
suggested to entangle the quantum particles with an external
degree of freedom.

Bordone et al reviewed an approach where the Schrödinger
equation is solved with a split-step Fourier method for inter-
ferometers based on quantum Hall edge channels [190].
Using this modeling and simulation framework, in earlier
work, Bellentani et al investigated a multichannel elec-
tronic Mach–Zehnder interferometer, based on magnetically
driven noninteracting edge states [191]. Later, the antibunch-
ing of two interacting fermionic wave packets impinging on
a quantum point contact considering a Hong–Ou–Mandel
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Figure 7. Design of a conditional phase shifter based on two
Mach–Zehnder interferometers. Reprinted (figure) with permission
from [193], Copyright (2020) by the American Physical Society.

interferometer based on quantum Hall edge states was simu-
lated [192]. In follow-up work, single and two-electron trans-
port in a full-scale, 2D Hall nanodevice as a potential candi-
date for a two-qubit conditional phase shifter was investigated
[193]. The authors considered two parallel Mach–Zehnder
interferometers, see figure 7. In particular, the spatial shift
induced by Coulomb repulsion in the final two-electron wave
function for two indistinguishable electrons was shown and
discussed.

Acciai et al studied the interplay between electron excita-
tions, considering levitons, and electron–electron interaction
in an integer quantum Hall system [194]. The authors showed
that the excitations fractionalize into oppositely charged wave
packets and show the derivations of the used equations of
motion as well as using the Wigner function for visualizing
the excitations.

Clark et al studied the decoherence mechanisms of hot elec-
trons in a Mach–Zehnder interferometer, particularly focusing
on acoustic and optical phonon emissions [170]. The authors
used a quantum master equation for the electron density matrix
based on rates derived from the Fröhlich Hamiltonian modified
to include emission within interferometer arms.

Rebora et al investigated a Hong–Ou–Mandel interferom-
eter with levitons injected into a quantum Hall edge channel
[195]. A particular focus was on the relation between noise
and the geometry of the setup. The dynamics of the two inter-
acting quantum Hall edge channels are modelled in terms of
the edge-magnetoplasmon scattering matrix formalism.

Kotilahti et al investigated multi-particle effects in an elec-
tronic Mach–Zehnder interferometer driven by a series of volt-
age pulses [196]. The authors used the Floquet scattering for-
malism to evaluate the interference current and the visibility in
the outputs of the interferometer.

3.4. Tomography, spectroscopy, and detection

With the ability to reliably generate and transport single-
electrons the natural next step is to be able to characterize

them. This gives rise to tomography, spectroscopy, and detec-
tion techniques. This section summarizes a few key computa-
tional research advances in this setting.

Selection of recent computational research: in general,
quantum tomography refers to extracting and analyzing the
wave function of single-electron excitations [197]. In 2019,
Bisognin et al introduced a quantum tomography protocol for
generating electron and hole wave functions and their emis-
sion probabilities from any electrical current, focusing in par-
ticular on levitons [198], see figure 8. The authors evaluated
the electron/hole wave functions based on calculated Wigner
distributions using Floquet scattering theory.

Fletcher et al introduced a continuous-variable, back-
projection-based tomography scheme of solitary electrons
[199]. The authors used energy-time filtering and reconstruc-
tion of the mixed-state density matrix Wigner representation.

Locane et al investigated single-electron scattering by a
ballistic constriction in a fully depleted quantum Hall sys-
tem under spatially uniform but time-dependent electrostatic
potential modulation [200]. The authors applied the Wigner
function to describe electrons distributed in time-energy space.

In contrast, spectroscopy provides insights into the time-
frequency dependencies of the quantum systems. In 2018
Rossignol et al proposed a spectroscopy approach of flying
qubits, by measuring the direct-current (DC) response to a
high-frequency AC voltage drive [201]. The authors used Flo-
quet theory and conducted time-dependent simulations based
on different models and predicted the power-frequency map of
the multi-terminal device using KWANT [74].

Burset et al proposed time-domain spectroscopy of waveg-
uides by applying Lorentzian-shaped voltage pulses (levitons)
to an input contact [165]. Floquet scattering theory was used
to calculate the electron waiting times, considering an elec-
tronic Fabry–Pérot cavity and a Mach–Zehnder interferome-
ter. The authors showed how the distribution of waiting times
between charge pulses relates to the characteristic timescales
of the waveguide.

In turn, Zilberber et al studied electron detection consider-
ing coherent transfer via adiabatic passage in a triple quantum-
dot system, where a quantum point contact senses the charge of
the middle dot [126]. The authors apply a Bayesian formalism
based simulation to study the measurement backaction.

4. Quantum dots and spin qubits

As previously indicated, different approaches for realizing
a competitive quantum information processing platform are
being investigated. Contrary to section 3, here we focus on one
of the primary platforms to realize such a system, spin qubits
based on quantum dots, which is based on the original pro-
posal by Loss and DiVincenzo in 1998 [202]. These quantum
dots are typically implemented by impurities or gate-defined
potential wells and the qubit is realized via spin orientations
influenced by a magnetic field. For excellent in-depth reviews
(also concerning alternative approaches, e.g., superconduct-
ing systems) see [9, 203–208]. In what follows we highlight
several contributions in the context of quantum dots and spin
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Figure 8. Electron wave function generated by a Lorentzian pulse and described by Wigner function reconstruction. Reproduced
from [198]. CC BY 4.0.

qubits where computational methods played a key role in the
presented results.

Selection of recent computational research: Watson et al
demonstrated a programmable two-qubit quantum proces-
sor in a silicon device and showed the operation based on
the Deutsch–Josza and Grover search algorithm [209]. The
authors conducted numerical simulations where they consid-
ered two electrons in two tunnel-coupled quantum dots with an
external magnetic field applied to both dots. They solved the
dynamics of this system with the Schrödinger–von Neumann
equation.

Mohiyaddin et al introduced a multiphysics simulation
approach for designing silicon qubit devices [210]. By way
of example, a Si-MOS, gate-defined two-qubit device is used
as an evaluation platform. The electrostatics of the dots
are numerically investigated by self-consistently solving the
Schrödinger–Poisson equations.

Lepage et al described an approach to entangle spin qubits
within moving quantum dots (i.e., SAWs) [211]. The authors
used graphics processing units to simulate the wave func-
tion dynamics of two electrons carried by a SAW through
a 2D semiconductor heterostructure. The authors solve the

time-dependent Schrödinger equation using a staggered-
leapfrog method.

Yazdani et al studied carrier transport, generation, and trap-
ping in nanocrystal quantum dot-based semiconductors using
DFT [212]. The authors used CP2K [68] to calculate the
electronic structure.

Niquet et al discussed the challenges and perspectives in
modeling spin qubits [213]. In particular, the authors make
the case for establishing quantum computer-aided design as
the key required simulation-based toolchain which will enable
the success of solid-state based quantum information process-
ing platforms. To that end, the authors identified structural,
electro-magnetic, electronic structure (k · p, tight-binding),
electron interaction (Schrödinger–Poisson or better), and qubit
dynamic and operation (time-dependent Schrödinger or better)
modeling and simulation as the key elements of the envisioned
toolchain.

In similar work, Asai et al introduced a device simu-
lator specifically tailored to qubits [214] using in-house
tools [215]. The authors envision the following toolchain:
(i) self-consistent quantum simulation of the quantum
dot (Schrödinger–Poisson) coupled with semi-classical
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Figure 9. Comparison of the measured (left) and simulated (right) tunneling current in a two-hole double quantum dot setup as a function of
the gate voltage and the magnetic field. Reprinted (figure) with permission from [223], Copyright (2021) by the American Physical Society.

modeling (drift–diffusion-Poisson) for device interfaces;
(ii) quantum dot capacitance calculation; (iii) micromag-
netic simulations; (iv) single-electron quantum transport via
Schrödinger equation (with magnetic field).

Pont et al studied inter-Coulombic electron capture in
nanowire-embedded quantum-dot pairs, considering electron
emission in one quantum dot triggered by electron capture in
the other dot [216]. The authors used a multi-configuration
time-dependent Hartree approach [217, 218] to calculate the
electron dynamics in general binding potentials.

Santos et al theoretically investigated the transmission of
a two-electron quantum state between the leads of a chaotic
quantum dot [219]. The chaotic nature of the system required
a statistical approach to describe the electron dynamics. To
that end, the authors used the scattering matrix formalism in
combination with Wigner–Dyson circular ensembles of ran-
dom matrices to study the fidelity of orbital state transfer in
the quantum dot.

Bush et al depicted a master equation approach to simu-
lating transport through quantum dots targeted for educational
purposes [220].

Hu et al introduced a machine learning approach for solv-
ing the quantum conditional master equation for qubits [221].
More concretely, the authors used a long short-term memory
network [222] to study the two-level quantum qubit transport
problem.

Bogan et al (contrary to the approaches discussed so far)
focused on hole spins as qubits and analyzed the magneto-
transport of a gated lateral GaAs double quantum dot [223].
The authors applied the density matrix formalism to simulate
the tunneling current, see figure 9.

Ginzel et al theoretically investigated spin shuttling
between semiconductor quantum dots [224]. Spin shuttling
refers to a bucket-brigade transport style between neighbor-
ing empty quantum dots [225]. The electron dynamics dur-
ing a detuning sweep in a silicon double quantum dot occu-
pied by one electron was analyzed. The authors calculated the
spin shuttling infidelity by numerically integrating the time-
dependent Schrödinger equation with degenerate spin levels
during a finite-time detuning sweep.

Buonacorsi et al introduced a design for a large-scale
surface code quantum processor based on a node/network
approach and on spin qubits [226]. The approach relies on
electron shuttling to distribute entanglement between adjacent
nodes. The authors used a three-dimensional (3D) Poisson
solver to calculate the potential landscape. Individual 1D slices
of the potential profile were used for the shuttling simulation
based on solving the time-dependent Schrödinger equation. In
follow-up work, the work was extended towards more realistic
device scenarios by optimizing the shuttling voltage sequences
and the device geometry [227]. The shuttling of single elec-
trons in gate-defined silicon quantum dots was simulated using
the split-operator approach for solving the time-dependent
Schrödinger equation.

5. Superconducting junctions

Among the focus areas of research into superconducting sys-
tems are interfaces between metals and superconductors. Con-
sidering current flow, at such an interface Andreev reflection
[228] (also referred to as Andreev processes) manifests itself,
i.e., the conversion of electrons in the metal to Cooper pairs in
the superconductor. Andreev reflection is the essential mech-
anism for the supercurrent flow in Josephson junctions. Of
course, yet another important and related research area are
superconducting qubits; for a recent review see [207].

Selection of recent computational research: Mi et al investi-
gated the waiting time distributions of superconducting hybrid
junctions based on conventional and topologically nontrivial
superconductors [229]. The authors employ a scattering matrix
formalism for evaluating the waiting times between the trans-
missions and reflections of electrons or holes. It was demon-
strated that the waiting time distributions of Andreev processes
are sensitive to topological edge states.

Rossignol et al introduced a computational framework
for microscopically describing Josephson junctions consid-
ering an attached electrical circuit [230]. In essence, the
resistor capacitor Josephson model is merged with the
Bogoliubov–De Gennes equation, providing a self-consistent
treatment of the Josephson junction and its electromagnetic
environment. Among others, this approach allows to describe
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Figure 10. Calculated DC (top) and differential conductance
(bottom) in one of the leads of a Josephson junction. Reprinted
(figure) with permission from [231], Copyright (2019) by the
American Physical Society.

non-equilibrium phenomena such as multiple Andreev reflec-
tion. The system of equations is solved within the Keldysh
formalism, ultimately requiring to solve a plethora of time-
dependent Schrödinger equations, for which the authors used
an at that time unreleased version of TKWANT, which has
been released in the meantime [75].

Nowak et al theoretically studied coherent multiple
Andreev reflections in a biased three-terminal Josephson junc-
tion [231]. The authors used a scattering matrix approach
to calculate and analyze the current through the junction
and compared the results with conventional experiments, see
figure 10. In related work, Belogolovskii et al used scattering
theory to investigate transport across a three-arm beam splitter
made by different superconducting wires [232].

Damanet et al introduced an approach to study dissipa-
tive control of transport in strongly interacting fermionic
systems considering a superconducting lead-quantum dot-
superconducting lead tunnel junction [233]. Among others,
the relation between superconducting leads and subgap cur-
rents exhibiting multiple Andreev reflections was discussed.

The authors derived a Floquet–Born–Markov master equation
which allows to describe multiple Andreev reflections.

Averin et al extended the theory of Andreev reflection in a
normal metal-superconductor junction to include an arbitrary
time-dependent bias voltage across the junction [234]. The
authors solve the Schrödinger equation to describe the wave
function of an electron crossing the metal–superconductor
junction.

Another intriguing superconducting system is a supercon-
ducting quantum point contact [235]. Here, two supercon-
ducting electrodes are connected by a narrow constriction,
where the length of said constriction is much smaller than the
superconducting coherence length. Acciai et al investigated
the transport properties of a superconducting quantum point
contact (in the tunnel regime) considering an arbitrary peri-
odic drive (Levitons) [236]. In particular, the authors extended
the research into Coulomb interaction based electronic cor-
relations (as done with the field of electron quantum optics)
to the superconducting domain. The authors used an NEGF
approach to calculate the direct current across the junction
and the zero-frequency noise at lowest order in the tunneling
amplitude.

6. Material systems

The success of electronic systems is inherently linked to
advances in materials science. For instance, the understand-
ing of silicon and its oxide was vital for the development
and astounding success of microelectronics and remains a
key driver until today. Another example are semiconductor
light-emitting diodes, which of course rely on direct semicon-
ductors, such as InAs and GaAs. Materials science in gen-
eral has benefited from computational tools since a long time
[10, 63–65, 67, 68, 237–241]. In particular, first-principles
methods, such as DFT, have been key enablers to advance
the understanding of known materials and also predict entirely
new materials.

6.1. 2D materials

As previously indicated, the high pace of research in electronic
devices has been fueling massive research efforts into novel
materials. With the advent of graphene in 2007, 2D materi-
als entered the race and have since then evolved into a major
field of research giving rise to a plethora of new very excit-
ing electronic materials, e.g., MoS2 and many others [8]. In
the following we list several advancements in computational
materials science where treating electron transport quantum
mechanically is vital for the gathered findings. We first start
with graphene followed by research into other 2D materials.

Selection of recent computational research: Mosallanejad
et al investigated the electronic transport properties of curved
graphene waveguides by using an NEGF approach [242]. In
particular, the authors studied the dependence of the con-
fined waveguide modes on the potential difference, waveg-
uide width, and side barriers. In similar research, Wei et al
used graphene waveguides to build and analyze a four-terminal

15



J. Phys.: Condens. Matter 34 (2022) 163001 Topical Review

Figure 11. Snapshot of the trace of the calculated Wigner matrix
describing electron dynamics in strained graphene. Reprinted
(figure) with permission from [247], Copyright (2020) by the
American Physical Society.

gate defined waveguide and an Aharanov–Bohm interfer-
ometer [243]. The authors used an NEGF approach (Lan-
dauer–Büttiker for spin-dependent current) and highlighted
and discussed the predicted conductance plateaus and relations
to experimental results.

Espinosa-Torres et al used DFT, molecular dynamics, and
NEGF to theoretically analyze the electronic structure and
transport properties of several single and double walled car-
bon nanotube configurations to identify optimal configurations
[244].

Santos et al used a graphene Hall bar to introduce a
novel self-contained description of the wave-function match-
ing method to calculate electronic quantum transport proper-
ties of nanostructures using the Landauer–Büttiker approach
[245]. The method is based on partitioning the system-to-be-
solved into a central conductor and an asymptotic region for
the leads. The thus resulting two subsystems are linearly cou-
pled and can be solved simultaneously using a sparse linear
solver.

Yamaletdinov et al used stochastic reactive molecular
dynamics simulations for developing a statistical method for
generating fluorinated graphene structures with a desirable flu-
orine distribution [246]. In addition to molecular dynamics, the
transport properties are investigated using a recursive NEGF
method based on a tight-binding Hamiltonian.

Díaz-Bautista et al used the Wigner function for analyzing
the electron dynamics of uniaxially strained graphene [247]. In
particular, the authors studied the effect of strain on the Wigner
function of electrons considering a uniform magnetic field, see
figure 11. It was shown that strain impacts the shape of the
Wigner function of Landau and coherent states.

Kraft et al investigated graphene superlattice miniband
fermions using interferometry in magnetotransport experi-
ments and tight-binding and Green’s function quantum trans-
port simulations [248]. The results revealed unconventional
cyclotron motion on the length scale of the cavity, which
reflects the reshaped hexagonal Fermi surface.

Silva et al used time-dependent DFT to investigate nega-
tive differential conductance, current oscillations, and molec-
ular sensing in isolated finite armchair single wall carbon nan-
otubes without end contacts [249]. The authors showed that (i)

the conductivity depends on the nanotube length, (ii) the nan-
otube current has Bloch oscillations, and (iii) that the adsorbed
molecule on the nanotube impacts this oscillatory pattern,
decreasing the conductivity.

Solomon et al analyzed valleytronic phenomena in
graphene using a Schrödinger equation approach [250]. In par-
ticular, it was shown that strong valley-dependent scattering
emerges from bilayer graphene quantum dots. Dots of course
allow for tuning as the gap size can be modulated using the
interlayer potentials in dual-gated devices. The authors inves-
tigated the role of dot size, mass strength, and other potential
terms.

Barletti et al derived a mathematical model describing a
general graphene heterojunction device consisting of two clas-
sical regions (diffusive transport) and one middle active region
(quantum transport) [251]. Where the first are modelled by a
conventional drift–diffusion modeling approach, the latter is
modelled by an interface where suitable transmission condi-
tions are imposed, which take the quantum scattering process
into account.

Aktor et al used a combination of quantum transport for-
malisms (Green’s function, Kubo, and Landauer–Büttiker for-
malisms) to discuss bulk and valley-polarized currents in
graphene-based devices which are driven by spatially vary-
ing regions of broken sublattice symmetry [252]. The findings
represent alternatives for generating the valley Hall effect in
graphene and for valley-dependent electron optics.

We now turn to other 2D materials beyond graphene. As
indicated before, there is a plethora of predicted and inves-
tigated 2D materials providing various advantages but also
disadvantages. Klinkert et al conducted a large-scale compu-
tational study to investigate the suitability of 100 different 2D
materials for potential use in ultra-scaled FETs [8]. To that
end, the authors applied DFT and quantum transport simula-
tions using OMEN (Schrödinger–Poisson solver via an NEGF
formalism) [253] to calculate current–voltage characteristics
for each material. In another review, Wang et al provided an
overview on the advancements concerning Schottky barriers
within the context of FETs based on 2D materials [254]. The
authors investigate both theoretical and experimental work and
identify in particular first-principles simulations to be most
crucial for advancing the research in this area.

Ferry et al investigated the use of the Wigner function for
describing transport in transition metal dichacogenides (WS2)
with a dominant spin–orbit interaction [255].

Szafran et al studied electron transport, in particular elec-
tron wave packet dynamics, along the zero line of a symmetry-
breaking potential of a vertical electric field in buckled
silicene [256], see figure 12. The authors used an atomistic
tight-binding approach and solved the Schrödinger equation
on the atomic lattice; for the initial conditions an analytical
solution of the Dirac equation was utilized.

Qu et al studied the electronic properties of 2D Sb2Te2Se
and its use in a double-gated MOSFET by coupled
DFT–NEGF simulations [257]. Monolayer Sb2Te2Se offers
some intriguing properties, such as high carrier mobility, and
the authors show that in particular the n-MOSFET is attractive
because of a much higher on-current.
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Figure 12. Time evolution of the wave packet without (top row) and with (bottom row) applied magnetic field. Reproduced from [256]. CC
BY 4.0.

Zhang et al introduced an implementation of the exact
muffin tin orbital method in combination with Kohn–Sham
DFT for electronic-structure and quantum transport simula-
tions [258]. The authors considered a representative device-
material system in equilibrium condition based on, e.g., MoS2

and black phosphorus, as evaluation platform and used the
recursive Green’s function method to calculate the device
region.

Hu et al used DFT coupled to NEGF to investigate the
electronic properties and ballistic transport performance of 2D
SbSiTe3 [259]. This particular material has attractive proper-
ties and a layered structure, thus monolayers can be created via
exfoliation. The authors used a double-gated MOSFET device
structure as benchmark platform.

6.2. Topological materials and systems

Topological materials have an electronic band structure that
has a band topology and offer topologically protected sur-
face states with unique electronic properties (for a recent
review on topological nanomaterials see [260]). Research into
topological materials focuses, among others, on 2D materials,
topological (crystalline) insulators, topological semimetals,
topological superconductors, fractional quantum Hall effect,
quantum rings, and Majorana zeromodes [260, 261].

Selection of recent computational research: Gioia et al
used a scattering-matrix approach to calculate the electronic
two-terminal conductance (including interference effects) of
a quantum ring, considering Dirac-like charge carriers as are
typical for 2D materials [262]. The authors apply a k · p
approach to describe the Dirac-electron rings.

Rodríguez-Mena et al investigated the transport of the
anomalous Floquet-Anderson insulator which is a topologi-
cal phase unique to driven systems [263]. The authors used
Floquet scattering theory for the transport calculations.

Wu et al used an NEGF approach to study the transport
properties of the edge modes of a Fe3Sn Kagome nanoribbon
[264]. Kagome lattice materials are layered 2D materials and
can possess topologically non-trivial electronic bands and are
an attractive candidate as an interconnect material.

Ronetti et al analyzed the transport properties of a single
edge of a 2D topological insulator (with Rashba spin–orbit
coupling) which is driven by a train of Lorentzian-shaped

pulses (levitons) and connected to a superconductor [265]. The
suggested setup represents an alternative realization of an elec-
tron quantum optics experiment where the beam splitter is
realized by the superconductor rather than a quantum point
contact. The authors calculated the charge noise and derived
the equations of motion for their setup and used the scattering
matrix approach to take the effect of the superconductor into
account.

Okugawa et al studied disorder induced topological phase
transitions in magnetically doped (Bi, Sb)2Te3 thin films [266].
To that end, the authors used Landauer–Büttiker theory to cal-
culate the disorder averaged conductance and compare their
exact disorder simulation results with a self-consistent Born
approximation.

Huang et al derived the exact master equation and tran-
sient quantum transport for studying dissipative topological
systems, focusing on non-interacting topological insulators
and topological superconductors and including initial system-
reservoir entanglement [261]. The authors show that the dis-
sipative dynamics is fully encapsulated in the spectral density
through NEGFs.

Cepellotti et al introduced a first-principles model for elec-
tronic transport using the Wigner distribution function and
used it to solve the electrons’ equations of motion in Bi2Se3

[267], see figure 13. It was shown that interband tunneling
dominates the electron transport dynamics.

6.3. Light–matter interaction

Light–matter interactions are quantum electrodynamical pro-
cesses and typically described by electron quantum transitions
and cover emission, absorption, and scattering of electromag-
netic field quanta [268]. Here, we introduce computational
research covering solar cells, photovoltaic effect, and LASER
based energy transfer.

Selection of recent computational research: Hathwar et al
published a review on the role of ultrafast carrier dynam-
ics in the performance of advanced concept solar cells [269].
Aside from theoretical work, the authors particularly high-
lighted computational results based on ensemble Monte Carlo
transport simulations and focused on multi-quantum well
systems and as well as III–V nanowires. Li et al reviewed
research focusing on excited state dynamics in perovskite solar
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Figure 13. 2D histogram of calculated contributions to electrical
conductivity as a function of two interacting carriers: the authors
identified on-diagonal elements as ab initio Boltzmann transport
equation like terms and the important off-diagonal elements
provided by ab initio Wigner transport. Reproduced from [267]. CC
BY 4.0.

cells [270]. Many other reviews on this topic exist, see for
example an extensive review by Moskalenko et al [271].

Michelini et al introduced a theoretical framework
to describe time-dependent energy transport in quantum
networks, in particular focusing on energy transfer from
a femtosecond LASER pulse to electrons and subsequent
transport in a molecular circuit [272]. The authors used an
NEGF approach to simulate the energy current in the system.

Bajpai et al conducted a computational study of shift cur-
rent (a central mechanism of the bulk photovoltaic effect)
dynamics in response to a femtosecond light pulse [273].
To that end, the authors employed a time-dependent NEGF
approach to simulate the current dynamics.

Beltako et al used an NEGF approach to calculate
the charge transfer dynamics triggered by a femtosecond
LASER pulse at the donor–acceptor interface of molec-
ular junctions [274] (for molecular junctions, see also
section 6.5). The authors include Coulombic interaction within
the Hartree–Fock approximation.

Aeberhard conducted a computational study of hot car-
rier photocurrent generation in quantum well solar cells using
an NEGF approach [275, 276]. The author included GW
self-energy to treat electron–electron scattering together with
photogeneration and phonon-mediated carrier relaxation.

Karlsson et al introduced an NEGF approach for describ-
ing electron-boson dynamics with a particular focus on com-
putational efficiency (numerical effort scales linearly with
propagation time) and upholding the conservation law [277].
Figure 14 depicts the simulated electron–phonon dynamics in
the considered showcase system.

Tang et al investigated the layer-dependent photoresponse
properties and photovoltaic effects of 2D Bi2O2X (X = S,
Se, and Te) by combining first-principles calculations and
quantum transport [278]. In particular, the authors calculated

Figure 14. Electron–phonon dynamics triggered by a laser pulse in
a narrow band-gap insulator consisting of one valence and one
conduction band. Insets depict respective populations at the end of
the evolution. Reprinted (figure) with permission from [277],
Copyright (2021) by the American Physical Society.

the absorption coefficients via time-dependent DFT and the
photocurrent via an NEGF method.

6.4. Heterostructures and interfaces

Heterostructures consist of several combined materials with
the typical motivation to improve the intrinsic characteris-
tics of an individual material. Heterostructures are a success
story and there are countless examples, both historically and in
modern times, in particular with the advent of 2D materi-
als. Practically, all modern electronic devices are actually het-
erostructures so it is hard to draw a clear line here. How-
ever, here in this section, we present computational research
where the focus is on the heterostructure itself rather than on
a complete device. For a recent overview on this matter see
[279].

Selection of recent computational research: Jech et al used
ab initio methods to study the interactions of a Si–H bond in
a 3D Si/a-SiO2 interface [280]. In particular, the authors used
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well-tempered metadynamics and nudged-elastic-band calcu-
lations based on DFT (via the CP2K package [68]), which
allowed them to shed light on the dissociation kinetics and
electronic properties.

Dong et al introduced atomistic full-band self-consistent
quantum transport simulations of the graphene/MoS2 edge
contact using a Wannier-function basis [281]. The authors used
DFT to obtain the band structures and for the quantum trans-
port solver they applied the NEGF formalism and maximally
localized Wannier functions.

Xu et al presented a computational study about the ohmic
contact at bilayer InSe–metal interfaces within the context of
FETs [282]. The authors employ DFT and ab initio quantum
transport simulations [52]; the latter is particularly useful for
correctly describing the lateral Schottky barrier heights.

Szabó et al used ab initio quantum transport simulations to
investigate the role of an oxide layer between a metallic con-
tact and a MoS2 monolayer [283]. The authors analyzed the
interface related edge- or area-dependent electron transport
processes. The computational methodology consisted of com-
bining plane-wave DFT, maximally localized Wannier func-
tions, and NEGF.

Yang et al looked at ballistic transport properties with a
particular focus on a change of the Hamiltonian in a lead-
semiconductor-lead structure (1D atom chain model) [284]. A
NEGF approach was used to derive the transient current.

Ning et al used ab initio electronic calculations and quan-
tum transport simulations to investigate the electronic and
transport properties of InAs/graphene heterostructures [285].
More specifically, the authors used VASP [65] for the DFT part
and interfaced it with NEGF based transport simulations [52].

Bhattacharya et al investigated the bridge-site asymme-
try for methanethiol adsorbed on Au(111) with two different
S–C bond orientations using dispersion-corrected DFT [286].
Again, VASP [65] was used and various configurations regard-
ing pseudo-potentials, exchange functionals, and dispersion
correction were considered for optimal modeling.

Ducry et al introduced a mode-space approximation for
transforming the Hamiltonian of a metallic structure expressed
in a nonorthogonal DFT basis into a low-dimensional space
suitable for electron-transport simulations, in particular for
NEGF [287]. The authors applied it locally to inhomoge-
neous material stacks including amorphous phases and inter-
faces. Figure 15 shows simulation results for a Cu/a-SiO2/Cu
conductive bridging random-access memory cell structure.

M’foukh et al discussed a full-band quantum transport
model based on the NEGF formalism and empirical pseudopo-
tentials and the application to heterojunctions between lattice-
matched semiconductors [288]. The authors also applied their
method to an Esaki tunneling diode and n- and p-type hetero-
junction tunnel FETs.

Smorka et al investigated non-equilibrium steady-state
charge transport through a heterostructure consisting of a finite
2D lattice (Falicov–Kimball model) which is sandwiched
between two non-interacting semi-infinite leads [289]. A par-
ticular focus was on the influence of non-homogeneous charge
orderings on the transport. The computational approach was
based on a Monte Carlo-NEGF solver.

Figure 15. Simulated current field lines for the considered atomistic
representation of a Cu/a-SiO2/Cu conductive bridging
random-access memory cell structure under an applied bias.
Reprinted (figure) with permission from [287], Copyright (2020) by
the American Physical Society.

Kumar et al studied the low field 2DEG transport proper-
ties in β − (AlxGa1−x)2O3/Ga2O3 heterostructures [290]. The
authors used a self-consistent Poisson–Schrödinger solver to
calculate the sub-band energies and the wave functions in the
quantum well. In turn, DFT (and density functional perturba-
tion theory) was used to determine the phonon dispersion.

Li et al used neural networks to predict transport proper-
ties of a quasi-1D tight-binding model with disordered on-
site energies [128]. The authors consider a scattering region
between two leads as the evaluation platform. Different dis-
orders of the on-site energies in the scattering region are
considered.

Wu et al introduced a machine learning approach to replace
NEGF quantum transport simulations and used as a showcase
a simulation of a graphene–ferroelectric–metal ferroelectric
tunnel junction [291]. Their approach is based on learning a
sparse representation of a quantum transport property, which
allows to train a model to yield device properties.

Wang et al investigated van der Waals p–n heterojunc-
tions considering 2D–2D (e.g., black phosphorus/MoS2) and
mixed dimensional systems [292]. The interface physics
is investigated by means of quantum transport simulations
(encompassing incoherent scattering and carrier recombina-
tion). The transport simulations were based on an NEGF
method (NEMO5 [50]) in combination with maximally local-
ized Wannier function basis sets created for structures relaxed
within DFT models (VASP [65]).

Jin et al used a Schrödinger–Poisson approach to cal-
culate the dynamical electron transmission in an ultra-short
two-terminal piezoelectronic device (ballistic regime) [293].
A metal–piezoelectric ZnO–metal structure exposed to sinu-
soidal and rectangular external stresses was considered.

6.5. Molecular junctions and systems

This section discusses computational research into the elec-
tronic characteristics and electron transport in molecular
junctions and systems. The majority of research focuses on
junctions, where a metal–molecule–metal configuration is
considered. However, other molecular systems are considered
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Figure 16. The oligo-(phenylene-ethynylene)-graphene nanoribbon
model system is shown including an overlay of the simulated
electronic current density as a streamline plot for a representative
snapshot. Reprinted with permission from [298]. Copyright (2019)
American Chemical Society.

as well, such as loop structures. Excellent recent reviews on
computational methods for molecular junctions cover electron
transport [294] and specifically the use of Green’s function
methods [295].

Selection of recent computational research: Avriller et al
investigated time-dependent electronic transport properties
and vibrational dynamics of a molecular junction based on
an NEGF approach [296]. Among others, the authors iden-
tify oscillations and establish a similarity with the classical
harmonic oscillator.

Moura-Moreira et al analyzed electron tunneling through
two 1D molecular junctions using a coupled DFT and NEGF
approach [297]. The first junction consists of left and right
carbyne wire electrodes with a sodium atom in the middle.
In contrast, the second junction is based on two single-wall
carbon nanotube electrodes with again a sodium atom in the
middle, the scattering region.

Pohl et al presented time-dependent electron transport
simulations through a graphene nanojunction under time-
dependent potential biases [298]. The authors used the
driven Liouville–von Neumann approach to simulate the one-
electron density matrix dynamics under non-equilibrium con-
ditions and to analyze scattering and relaxation processes as
well as the steady-state, see figure 16.

Chiang et al discussed time-dependent electron
transport simulation results of a molecular junction
(fumaronitrile molecule) in the adiabatic limit using DFT
and the molecular dynamics-driven Liouville von Neumann
(MD-DLvN) approach [299]. The modeling was done within
the Born–Oppenheimer approximation, i.e., no vibronic
coupling, and ignoring nuclear quantum effects.

Phuc et al showed that the electron transfer dynamics in
molecular loop structures can be manipulated by Floquet engi-
neering (i.e., Hamiltonian of the system is temporally modu-
lated in a periodic manner) via LASER pulses [300].

Liu et al introduced the generalized input–output method
for studying charge transport in molecular junctions consider-
ing strong electron-vibration interactions and including elec-
tronic and phononic environments [301]. The authors derive a
Langevin-type equation of motion for system operators and
position their framework relative to NEGF and perturbative
quantum master equation methods. In follow-up work, the
method is applied to various molecular junctions [302].

Ramakrishnan et al studied transport selectivity across iso-
meric molecular junctions by conducting computational elec-
tron dynamics studies considering many-body coherence and
electron correlation effects [303]. To that end, the authors
employed the real-time, many-body, and time-dependent con-
figuration interaction method to model and simulate the ultra-
fast electron dynamics [304] and compared the method to
Green’s function and density matrix approaches. Cyanoben-
zene and in m/p-linked benzonitrile thiolate molecules bonded
to a gold atom (acceptor terminal) were considered. Inter-
ference effects in the electron density were observed and
discussed.

Tharammal et al discussed a simulation based design for a
molecular switch considering a 1.4-benzene dithiol molecule
with gold, silver, platinum, and palladium metal electrodes
[305]. The electronic properties have been calculated using
DFT and the Hartree–Fock method.

Romero-Muñiz et al presented a theoretical study within
the context of protein electronics [306]. More specifically,
the authors investigated the coherent electron transport in
metal–protein–metal junctions based on the blue-copper
azurin from Pseudomonas aeruginosa. The simulation
methodology was based on molecular dynamics ( junction
geometries), DFT (electronic structure), and Landauer
formalism/NEGF (electron transport).

Tuovinen et al introduced a generalized Kadanoff–Baym
ansatz scheme (on top of NEGF theory) which considers initial
correlations in a partition-free setting [307]. The method was
evaluated considering carbon-based molecular junctions based
upon electron correlations in transient current signatures.

Arasu et al employed atomistic simulations to establish
a general relationship between the electronic spectra of aro-
matic, antiaromatic, and quinoidal molecules and the impact
on electron transport [308]. To that end, the authors utilized
a DFT–NEGF approach for simulating and analyzing the
electronic properties.

Cheng et al investigated non-equilibrium transport in con-
jugated polymer by a time-dependent NEGF approach [309].
Specifically, a polymer chain, using a Su–Schrieffer–Heeger
model Hamiltonian, was sandwiched between two reservoirs.

7. Field-effect transistors

Lilienfeld’s patent for a transistor has been granted over 90
years ago [310] and, most astoundingly, to this day the tran-
sistor is the core device of the electronics industry and will
remain so for the foreseeable future. Of course, device designs
and material systems have advanced over time and in particu-
lar the feature sizes have decreased; both will continue to do so
even if approaching atomistic limits requires alternative device
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designs. Over large parts of the transistor’s history, the funda-
mental electrical characteristics could be modelled in a classi-
cal manner: the introduction of the effective mass enabled this
simplification, allowing to hide quantum mechanical features
centered around the wave nature of electrons. However, with
increased confinement in today’s and in particular tomorrow’s
devices, the wave nature of electrons has emerged as a funda-
mental property of the device’s electrical characteristics and
transport properties. Consequently, fully quantum mechani-
cal descriptions solidified themselves as key methodologies to
describe and predict ultra-scaled and thus quantum mechani-
cally dominated devices. For a recent review on quantum trans-
port modeling in FETs including a historic overview see [311].
This section gives a concise overview of recent research on the
various flavours of FETs, which applied computational meth-
ods, highlighting the plethora of investigated material systems
and device designs.

7.1. Nanowire, nanosheet, nanoribbon, and nanotube FETs

With the advent of nanotubes came the idea of using them
as transport channels in FETs. This further evolved over the
years and yielded various forms and approaches resulting in
several loosely-defined technological terms as indicated by
this section’s title, which are thus differently used through-
out research and industry but in essence refer to similar device
concepts. Overall, these highly confined FETs, in particular
the GAA approaches, are strong candidates to come out as the
successor of the currently prevailing FinFET technology [312,
313].

Selection of recent computational research: Kim et al used
the discrete Wigner transport equation to simulate the elec-
trical characteristics of GAA junctionless nanowire transis-
tors [314]. The authors particularly focused on the accuracy
balancing problem and mitigation.

Markov et al investigated the source-to-drain direct tunnel-
ing limit in GAA Si nanowire FETs (3–8 nm gate lengths)
[315]. A density functional tight-binding Hamiltonian together
with an NEGF approach was applied, including self-consistent
solution via the Poisson equation.

Medina-Bailon et al studied the electron mobility of n-
type silicon nanowire transistors with a particular focus on
the nanowire cross-section’s shape and scattering [316]. Based
on the findings, the authors identified the elliptical shape to
be superior over the circular shape. To minimize computa-
tional effort, the authors self-consistently solved several cross
sections of the nanowire via a Poisson–Schrödinger solver to
calculate the respective potential profiles and eigenfunctions.
Based on this, various scattering rates and mobilities (using the
Kubo–Greenwood formalism) were calculated.

Hsiao et al introduced a coupled Poisson-NEGF approach
to self-consistently calculate 3D transport in GaAs GAA
nanowire FETs [317]. The approach included elec-
tron–phonon scattering, ionized impurity scattering, and
surface roughness scattering.

Hwang et al theoretically and experimentally studied
graphene-nanoribbon tunneling FETs at room temperature
[318]. A particular focus was on the negative-differential

resistance observed in graphene nanoribbons. The authors
used an NEGF approach with a p/d orbital tight-binding model
to corroborate the experimental findings.

Van de Put et al introduced an alternative to the prevail-
ing tight-binding approach to describe the atomic configu-
ration by using a plane-wave approximation of the atomic
(pseudo-)potentials [319]. The developed approach separates
the intrinsic Hamiltonian concerning the atomic configuration
and the extrinsic Hamiltonian dealing with the external poten-
tial. The performance was evaluated by simulating a graphene
nanoribbon FET containing more than 2000 atoms. In follow-
up work, Chen et al investigated the effect of defects on
the charge-transport properties of GAA graphene nanoribbons
FETs [320], see figure 17.

Poljak et al conducted a performance study of 15 nm-gate-
length MOSFETs based on silicene nanoribbons [321]. The
width scaling, series resistance, and transport characteristics
were investigated by using an NEGF approach and corre-
sponding silicene nanoribbon Hamiltonians that are expressed
in an atomistic tight-binding basis.

Zhang et al studied different designs of vertically stacked
horizontal Si and Ge nanosheet GAA pMOSFETs (sub-5 nm
node) using an NEGF approach [322]. The ON-state current
and subthreshold swing were calculated and evaluated.

Lv et al used quantum dynamics simulations to analyze the
electronic fluctuation issue of the so-called armchair graphene
nanoribbon MOSFETs [323]. In addition to electron transport,
the authors also considered the behavior of the C and H nuclei
and used DFT as well as an NEGF transport simulator provided
by NanoTCAD ViDES.6

Tamersit proposed a new double-gate band-to-band
tunneling junctionless graphene nanoribbon FET with a
sub-10 nm gate length by using a self-consistent Poisson-
NEGF simulation approach (in the ballistic limit) [324].
Several key electrical properties, such as the IDS –VGS transfer
characteristics, were simulated and discussed. Other work
of the author, including colleagues and using a similar
simulation approach, focused on investigating a nanoscale
coaxial-gate negative-capacitance carbon nanotube FET
with a metal–ferroelectric–metal–insulator–semiconductor
structure [325].

Abdi et al looked into an optimized design of a tex-
tured graphene nanoribbon phototransistor [326]. Here, the
graphene layer acts not only as the channel but also as the light
absorber. The authors used an NEGF mode-space approach.

Sun et al investigated the operation modes of a dual-
gate reconfigurable (silicon-nanowire) FET [327]. Reconfig-
urable FETs use electrostatic doping for virtual n-/p-regions
and can be tuned to operate as unipolar n-/p-transistors. The
authors used a self-consistent NEGF approach and solve it
one-dimensionally on a finite-difference grid using an effec-
tive mass approximation (symmetric conduction and valence
band).

6 https://vides.nanotcad.com.
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Figure 17. Simulated local density of states of a graphene-nanoribbon FET with a particular defect setup and for different bias positions (top
versus bottom). Reprinted by permission from Springer Nature Customer Service Centre GmbH: [Springer Nature] [Journal of
Computational Electronics] [320] (2021).

7.2. 2D FETs

The staggering advancement of 2D materials (see section 6.1)
also triggered substantial research into utilization as channel
materials for FETs, collectively named: 2D FETs [328–331].

Selection of recent computational research: Ye et al stud-
ied the performance limits of monolayer bismuthane (BiH)
transistors considering spin-orbital coupling using a coupled
DFT–NEGF approach [332]. The authors particularly focused
on the required device width to achieve suitable OFF-state
currents.

Kim et al used a computational simulation workflow which
also uses a DFT–NEGF approach to investigate the device per-
formance of double-gated silicene/gallium phosphide hetero-
bilayer FETs [333]. The authors could predict that these FETs
have attractive characteristics, such as high ON-state current.

Han et al analyzed the photoresponse mechanisms (pho-
toconductive and photogating effects) in MoSe2 transistors
[334]. Using a self-consistent simulation approach based on
solving the Poisson’s equation, an NEGF approach, and con-
sidering charge trapping the authors were able to, among oth-
ers, identify photogating effects as the primary contributor to
the overall photocurrent.

Liu et al simulated sub-10 nm double-gate monolayer
Cs2PbI4 MOSFETs by using a coupled DFT–NEGF approach
[335]. Good subthreshold swing values, ON-state current, and
delay time were predicted.

Guo et al studied monolayer α-CS with a puckered
structure for potential application as a channel material
for sub-5 nm FETs [336]. The authors used a coupled
DFT–NEGF approach to calculate the electrical characteris-
tics which yielded attractive results, in particular regarding the
ON-current.

Klinkert et al used a coupled DFT–NEGF approach to
investigate the orientation misalignments and their impact on
the performance of black phosphorus FETs [337]. N- and
p-type configurations were investigated including six align-
ment angles. Ballistic transport as well as electron–phonon
and charged impurity scattering was assumed.

Ding et al investigated the ballistic transport perfor-
mance and gate control mechanism of sub-10 nm monolayer
GeS metal-oxide-semiconductor FETs by using a coupled
DFT–NEGF approach [338], see figure 18. A particular focus
was on evaluating the ON-state current, subthreshold swing,
delay time, and power consumption.

Zhang et al simulated sub-5 nm gate-length double-gate
monolayer MoS2 MOSFETs using a coupled DFT–NEGF
approach [339]. Based on the results the authors predicted
that 1–5 nm gate lengths fail to meet certain expectations
(e.g., ON-state current) but with the introduction of a negative
capacitance dielectric layer some of them could be mitigated.

Cao et al looked at dissipative transport in antimonene
and arsenene double-gate n-type FETs using a coupled
DFT–NEGF simulation approach [340]. Among others, the
authors highlighted that the ON-current can be highly
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Figure 18. Simulated double-gate monolayer GeS MOSFET: calculated local density of states and spectral current densities for different
gate biases (top) and transmission eigenstates for different configurations (bottom). Reprinted with permission from [338]. Copyright
(2021) American Chemical Society.

impacted by optical intravalley and intervalley phonon scat-
terings and that simulations not properly considering these are
seriously overestimating device performance.

7.3. Tunneling FETs

Tunneling FETs (TFETs) differ from conventional FETs by
using a different switching mechanism which is based on quan-
tum tunneling through a barrier. For reviews on this topic see,
for instance, [341, 342].

Selection of recent computational research: Gnani et al
investigated the performance of an inverter based on an
n- and p-type TFET considering InAs/Al0.05Ga0.95Sb and
interface traps and localized strain [343]. A four-band k · p
Hamiltonian is used in combination with an NEGF approach
self-consistently coupled to a Poisson solver.

Ahn et al introduced an advanced NEGF simulation
approach to reduce the computational burden of atomistic-
level simulations of FETs [344]. The approach is based on
using the R-matrix (for details on the R-matrix method see
[345]) and recursive Green’s function method and was eval-
uated considering a germanane/InSe vertical tunneling FET.

Brahma et al studied electron–phonon coupling limited
transport in phosphorene MOSFETs and TFETs [346]. Among

others, the local density of states and spectral current densi-
ties were calculated (see figure 19) using hybrid DFT whereas
transport is solved by an NEGF approach using a DFT-
calibrated two-band k · p Hamiltonian. Electron–phonon scat-
tering was incorporated. Among others, the authors could
show that optical phonon modes are primarily responsible for
the degradation of the ON-current.

Chen et al proposed an improved design of a triple hetero-
junction tunneling FET with a 12 nm body thickness based on
doping profile engineering [347]. To that end, the authors used
a mode-space quantum transport simulation approach, con-
sidering thermalization and scattering, to optimize the device
design.

7.4. Other types of FETs and diodes

This section collects all remaining FET designs, ranging from
the predominant FinFET to ultrahin-body FETs and other
types of related devices.

Selection of recent computational research: Pala et al pre-
sented a new method for full-band quantum transport simula-
tions based on an empirical pseudopotential Hamiltonian and
an NEGF approach [348]. The method was showcased by con-
sidering planar, ultrathin-body FETs and nanowire FETs. The
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Figure 19. Current spectrum (superimposed on the conduction edge profile) for the considered TFET in the dissipative regime in the
OFF-state (left) and ON-state (right). Reprinted from [346], with the permission of AIP Publishing.

authors further discussed different crystal orientations as well
as various strain/stress scenarios.

Vyas et al introduced a method based on the Pauli mas-
ter equation supporting dissipative quantum transport, which
keeps the transfer-wave-vector dependence of the scatter-
ing processes [349]. A Schrödinger–Poisson solver using the
effective-mass approximation was used in the 2D plane of
the device. The quantum transmitting boundary method was
applied because of open boundary conditions. Finally, dissi-
pative transport was modeled using the Pauli master equation.
Ultra-thin body FETs were studied with respect to elec-
tron–phonon and surface roughness scattering to evaluate the
method.

Kao et al studied the subthreshold swing of source-to-
drain tunneling short-channel MOSFETs at cryogenic tem-
peratures [350]. To that end, a coupled Poisson-NEGF
simulation approach was employed. The authors discussed
four features concerning subthreshold swing saturation domi-
nated by source-to-drain tunneling.

Cam et al coupled Landau–Khalatnikov and Poisson
equations self-consistently with the NEGF formalism
and used the simulation approach to study ultra-scaled
(i.e., to sub-10 nm gate lengths) metal–ferroelectric–
insulator–semiconductor negative-capacitance FETs [351].
Based on the simulations, the authors could show that the
considered device structure holds attractive properties, e.g.,
concerning subthreshold slope.

Kumar et al considered a split-gate 2D MoTe2 FET to
design an AND gate and studied the device by using an NEGF
approach [352]. Back-gate parameter variations were studied
with respect to their impact on device performance.

Khaliq et al used doping engineering to improve the electri-
cal characteristics in double-gate pMOSFETs hosting a 5 nm
gate length [353]. A NEGF approach was used in combination
with a six-band k · p Hamiltonian.

Damodaran et al investigated a quantum well modulation-
doped FET for use as a quantum dot memory device

Figure 20. Snapshot of the simulated evolution of the Wigner
function at 500 fs of the considered resonant tunneling diode.
Reproduced from [355]. CC BY 4.0.

[354]. Their approach centered around a self-consistent
Schrödinger–Poisson solver and an eight-band k · p model.
Among others, the results showed that information (i.e., elec-
trons/holes) can be stored longer with increased dot sizes.

Related to FETs are diodes, which contain some form of
junction with which to realize the diode functionality. In what
follows, a few computational studies are highlighted which
explicitly focus on diodes.

Schulz et al introduced a numerical approximation tech-
nique for the Wigner transport equation (including the spatial
variation of the effective mass) and applied it to simulating a
resonant tunneling diode with different material systems using
a GaAs/AlxGa1−xAs structure [355], see figure 20.

Abedi et al suggested a time-dependent quantum transport
model considering elastic scattering and based on the time-
dependent Schrödinger equation [356]. Similar to the NEGF
approach, an imaginary potential is added to the Schrödinger
equation for absorbing electron waves [357]. Also, a source
term is added to model the injection of electron waves. Again,
a resonant tunneling diode was used to showcase the model.

Dey et al applied a coupled DFT–NEGF approach to
study quantum ballistic transport properties of a doped
guanine-nanosheet-based bio-Zener diode [358]. Coherent
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tunneling and incoherent hopping processes are covered by the
considered Hamiltonian.

Zhao et al introduced a boron intratube p-i-n junction via
gas storage for diode applications [359]. The authors used a
coupled DFT–NEGF approach to describe and simulate the
electronic structure and transport properties.

8. Quantum cascade devices

QCLs represent prototypical applications of the quantum cas-
cade effect. QCLs have historically been associated with the
field of quantum electronics and remain a core research topic
in this area. For reviews see, e.g., [360–364].

Selection of recent computational research: Hałdaś et al
used an NEGF approach to simulate scattering transport in
a THz QCL [365]. The authors developed a non-uniform
mesh based approach to tackle the computational effort. A
GaAs/AlGaAs material system was considered.

Kolek et al applied the NEGF formalism to calculate the
properties of a 5.2 μm wavelength emitting QCL and opti-
mized the device design [366]. Among others, the authors
found that the maximum optical power is not exclusively
described by the value of the gain peak. In follow-up work, a
numerical efficient approach to implement light–matter inter-
actions in NEGF via self-energies [367].

Wang et al also utilized an NEGF approach to study the
parasitic paths in two-well scattering-assisted THz QCLs oper-
ating at 3.5 THz [368]. These paths are responsible for sig-
nificantly reducing the efficiency of these devices. Due to
their research, the authors were able to suggest approaches to
suppress these paths and thus increase efficiency again.

Kato et al studied enhancement of GaInAs/AlInAs mid-
infrared QCLs by improving the accuracy of the energy levels
[369]. The energy-dependent effective mass of electrons was
calculated from the complex band structure of each bulk mate-
rial of the QCL. The thus calculated effective mass was used in
an NEGF approach to compute the lasing wavelength/optical
gain peak.

Ushakov et al introduced a balance-equation method for
simulating THz QCLs using a wave-function basis [370].
Dephasing was taken into account and the current-voltage and
power characteristics were calculated.

Franckié et al applied Bayesian optimization algorithms
in combination with an NEGF approach to determine and
improve the maximum operating temperature of THz QCLs
[371]. The authors argue that their Bayesian optimization
approach converges faster and more robustly then a genetic
algorithm. Different device designs based on two and three
wells per period were considered, including optimal extraction
energy and electron–electron correlations.

Gower et al used an NEGF approach to analyze a split-
well direct phonon THz QCL (three-level system), offering
effective suppression of thermally activated leakage channels
[372]. The results clearly highlighted the importance of inter-
face roughness and impurity scattering strengths for device
operation. Figure 21 shows the calculated density of states and
electron density plots for the considered device.

Figure 21. Calculated density of states (top) and electron density
(bottom) of the considered split-well direct phonon THz QCL.
Reproduced from [372]. CC BY 4.0.

Kazemi-Tesieh et al proposed an electrically driven opti-
cally excited THz QCL through frequency down-conversion
optical nonlinearity [373]. The authors used a self-consistent
Schrödinger–Poisson solver to calculate the bandstructure.
Also, a density matrix formalism and the energy-density bal-
ance equation was applied to provide a self-consistent electro-
opto-thermal model considering nonlinearities of the device.

Soleimanikahnoj et al presented a density-matrix approach
for mid-infrared QCLs, which is based on a Markovian mas-
ter equation for the density matrix [374] (Knezevic’s group
also looked at a Wigner function approach to model dissipa-
tive transport [375] and at multi-scale electrothermal simu-
lations [376]). The approach covers in-plane dynamics, pre-
serves positivity of the density matrix, and does not rely
on phenomenologically introduced dephasing times. A three-
band k · p model is used to account for the nonparabolic-
ity in the band structure. This work was extended to study
photon-assisted electron transport [377].

9. Heat transfer and thermoelectric systems

Until now we focused on electron transport and/or on elec-
tric structure properties. What we have omitted so far is a
discussion on heat transfer and potential thermoelectric effects
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which accompanies electron transport. For more background
on this topic, the reader is referred to [238, 279, 378, 379].

Selection of recent computational research: Chu et al
used an NEGF approach with Büttiker probe scattering self-
energies to calculate the thermal boundary resistance of an
Si/heavy–Si-interface (heavy-Si differs from Si in its atomic
mass ratio) and compared it to molecular dynamics simula-
tions [380].

Foster et al investigated the impact of nanoinclusions and
voids on the electronic and thermoelectric coefficients of 2D
nanocomposites using an NEGF approach [381]. The mod-
eling approach considered geometry, electron–phonon inter-
actions, quantization, tunneling, and the ballistic-to-diffusive
nature of the transport.

Slimane et al introduced a gauge-invariant theoretical
framework which allows to describe time-resolved thermo-
electric transport in an arbitrary multi-terminal electronic
quantum system described by a noninteracting tight-binding
model [382]. Driven, non-equilibrium conditions are consid-
ered, e.g., an external time-dependent electromagnetic field.
The authors extended the wave-function approach of Gaury
[119] by including energy transport and implemented their
approach in the TKWANT library [75]. A simulation of
dynamical thermal transport in a quantum point contact sub-
jected to voltage pulses was used as a showcase.

Crépieux calculated heat current fluctuations in a quantum
dot coupled to electron reservoirs at finite frequency, volt-
age, and temperature using an NEGF approach [383]. Among
others, the link between the asymmetry of the quantum dot-
reservoir couplings was studied as well as the heat noise for a
(non-)equilibrium quantum dot.

Knezevic discussed a multi-scale electrothermal simula-
tion approach for QCLs with a focus on describing the highly
nonequilibrium physics of the embedded strongly coupled
electron and phonon systems [376]. In earlier work, the ther-
mal conductivity of ternary III–V semiconductor alloys and
the role of mass difference and long-range order was investi-
gated using equilibrium molecular dynamics [384].

Foss and Aksamija used first-principles calculations
and phonon interface transport modeling to calculate the
temperature-dependent thermal boundary conductance in sin-
gle layers of several 2D materials, e.g., silicene, hBN, boron
arsenide, and blue and black phosphorene [385]. In related
work on 2D materials, the group looked at electrical and elec-
trothermal properties of few-layer 2D devices [386]. In pre-
vious work, the group used the Wigner–Rode formalism to
investigate the impact of potential barrier geometries (applied
to a single layer of MoS2) on transport [387] and to study
the thermoelectric properties of periodic quantum structures
[388].

10. Summary and outlook

In many areas of science and engineering, computational
tools have matured to a degree where computational experi-
ments are a reality and a necessity. Combined with the broad
availability of large-scale parallel computing resources,

computational tools enable us to not only increase our under-
standing of fundamental physical processes and properties, but
most excitingly to predict and design a plethora of quantum
electronic devices and systems. Quantum electronics and its
extended focus on utilizing the wave nature of electrons pro-
foundly benefits from these developments as can be seen from
the plethora of research published just in the highlighted focus
areas of the last years alone. This development will continue
and computational tools will further increase in importance to
advance research and development in the many focus areas of
quantum electronics.

What is particularly exciting is the extensive inter-
disciplinarity of quantum electronics today. From QCLs and
other nanoelectronic devices, such as the various flavours
of FETs and heat transfer based devices, to material
and superconducting systems, electron quantum optics, and
finally to different solid-state quantum information process-
ing approaches. Consequently, the research originates from
various fields of science and engineering, such as electrical
engineering, solid-state physics, chemistry, materials science,
applied mathematicians, and computational scientists.

Looking ahead, computational methods will of course need
to further evolve. The primary challenge is to reduce simula-
tion runtimes to practical levels, in particular, when consider-
ing engineering workflows. Already many tools involve high
degrees of parallelization approaches to stem the burden. How-
ever, a profound potential for accelerating simulations across
the board is promised by machine learning and we will thus
see an increased share of research into these directions.

Overall, the computational quantum electronics future is
bright.
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[8] Klinkert C, Szabó Á, Stieger C, Campi D, Marzari N and

Luisier M 2020 ACS Nano 14 8605–15
[9] Chatterjee A, Stevenson P, De Franceschi S, Morello A,

de Leon N P and Kuemmeth F 2021 Nat. Rev. Phys. 3
157–77

[10] Marzari N, Ferretti A and Wolverton C 2021 Nat. Mater. 20
736–49

[11] Lundstrom M 2015 Drift–diffusion and computational elec-
tronics—still going strong after 40 years! Proc. Int. Conf.
Simulation of Semiconductor Processes and Devices (SIS-
PAD) pp 1–3

[12] Kastner M A 1992 Rev. Mod. Phys. 64 849–58
[13] Averin D V and Likharev K K 1986 J. Low Temp. Phys. 62

345–73
[14] Geerligs L J, Anderegg V F, Holweg P A M, Mooij J E, Pothier

H, Esteve D, Urbina C and Devoret M H 1990 Phys. Rev.
Lett. 64 2691–4
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[289] Smorka R, Žonda M and Thoss M 2020 Phys. Rev. B 101
155116

[290] Kumar A, Ghosh K and Singisetti U 2020 J. Appl. Phys. 128
105703

[291] Wu T and Guo J 2020 IEEE Trans. Electron Devices 67
5229–35

[292] Wang K-C, Valencia D, Charles J, Henning A, Beck M E,
Sangwan V K, Lauhon L J, Hersam M C and Kubis T 2021
Appl. Phys. Lett. 118 083103

[293] Jin L, Li Z, Jiang Z and Li L 2021 J. Appl. Phys. 129 194501
[294] Evers F, Korytár R, Tewari S and van Ruitenbeek J M 2020

Rev. Mod. Phys. 92 035001
[295] Cohen G and Galperin M 2020 J. Chem. Phys. 152 090901
[296] Avriller R, Souto R S, Martín-Rodero A and Yeyati A L 2019

Phys. Rev. B 99 121403
[297] Moura-Moreira M, Felipe Silva Ferreira D, Liu S, Fry J N,

Del Nero J and Cheng H-P 2019 J. Phys.: Condens. Matter
31 445501

[298] Pohl V, Marsoner Steinkasserer L E and Tremblay J C 2019 J.
Phys. Chem. Lett. 10 5387–94

[299] Chiang T-M, Huang Q-R and Hsu L-Y 2019 J. Phys. Chem. C
123 10746–55

[300] Phuc N T and Ishizaki A 2019 Phys. Rev. B 99 064301
[301] Liu J and Segal D 2020 Phys. Rev. B 101 155406
[302] Liu J and Segal D 2020 Phys. Rev. B 101 155407
[303] Ramakrishnan R 2020 J. Chem. Phys. 152 194111
[304] Krause P, Klamroth T and Saalfrank P 2005 J. Chem. Phys.

123 074105
[305] Tharammal R K, Kumar A, Rajak A R A and Gaidhane V H

2020 J. Nanomater. 2020 6260735
[306] Romero-Muñiz C, Ortega M, Vilhena J G, Díez-Pérez I, Pérez
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