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Abstract

®
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Confinement in small structures has required quantum mechanics, which has been known for a
great many years. This leads to quantum transport. The field-effect transistor has had no need to
be described by quantum transport over most of the century for which it has existed. But, this
has changed in the past few decades, as modern versions tend to be absolutely controlled by
quantum confinement and the resulting modifications to the normal classical descriptions. In
addition, correlation and confinement lead to a need for describing the transport by quantum
methods as well. In this review, we describe the quantum effects and the methods of treament

through various approaches to quantum transport.
Keywords: FETs, transport, quantum effects, simulations

(Some figures may appear in color only in the online journal)

1. Introduction

A knowledgeable reader might be tempted to ask the question,
‘hasn’t all transport in semiconductors devices been quantum
mechanical?” The answer, of course, is ‘yes’, but it is a quali-
fied yes, as there are several levels in which quantum mechan-
ics may be involved, especially if we consider that almost one
century has passed since the concept of the field-effect tran-
sistor (FET) was first discussed. Indeed, theories of quantum
mechanics were just being proposed, so Lilienfeld’s ideas

* Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
BY of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1361-6641/22/043001+32$33.00 Printed in the UK

were, by necessity, entirely classical [1] 4. Yet, the wave nature
of the electron, and the periodicity of the crystal lattice, are the
base upon which the idea of the band structure is based. Nev-
ertheless, the introduction of an effective mass for the quasi-
particles (the electrons and holes) freed the scientist from wor-
rying about such things, and allowed one to proceed as if the
carriers were classical objects.

This view was reinforced by Kennard [2], who began
with the Schrodinger equation and developed a hydrodynamic
corollary, and then observed that the electrons would move just
as classical particles would respond to the fields and poten-
tials, but that there would be an additional quantum force/
potential. It is this quantum potential that is folded into the
concept of effective mass. Then, of course, the scattering of
carriers by the quantized vibrations of the lattice, the phonons,

4 Lilienfeld’s patent was filed in 1926.
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is treated quantum mechanically, but only to the extent neces-
sary to describe a probability for scattering that is used in
classical transport equations. Finally, it is the third level of
quantum effects, such as confinement in small structures, for
which quantum mechanics needs to re-enter the picture, and it
is here that one has need to deal with quantum transport. As a
result, the FET has had no need to be described by quantum
transport over most of the century for which it has existed.
But, this has changed in the past few decades, as modern ver-
sions tend to be absolutely controlled by quantum confinement
and the resulting modifications to the normal classical descrip-
tions. One need look no further than the introduction of strain
into the channel of the FET, which is done to modify the effect-
ive mass and electronic structure, to recognize this [3].

But, having said this, if one were to conduct a poll of say
100 experienced device engineers, there would be no over-
all demand for a study of quantum transport, as most see no
need for this level of sophistication. To counter this, we need
only point out that for a long part of the history of FETs, these
same engineers saw no need for any modeling or simulation.
Of course, this is no longer the case, and it may be expected
that the need for quantum transport will become more import-
ant in the near future. And perhaps, with this review, a number
of the quantum effects that may be surprising, will appear to
the readers to change their minds. Recognizing these points, it
is the 3rd level of quantum mechanics and transport mentioned
above that will be discussed in this review. In the following
sections of this introduction, a brief history of the FET, its
scaling, requirements, and modeling will be introduced. This
will be followed by a discussion of just what kind of quantum
effects occur and how they affect the transport. A discussion
of how quantum transport differs from classical transport will
be presented, followed by a discussion in the next sections.

1.1. Evolution of the FET

While the Lilienfeld patent is generally considered to be the
start of the FET, it is not all that clear from the description
in the patent, and it was a later patent by Heil that more
clearly described the surface-oriented device [4]. It is gener-
ally believed that the work at Bell Telephone Laboratories was
attempting to make the device in Ge, but the lack of a stable
oxide led them to the point contact transistor (two metallic
points attached to the Ge layer) [5], developed by Bardeen
and Brattain [6, 7]. Shockley would shortly follow this with
the junction transistor (diffused or grown layers of various
doping) [8].

Bringing the FET to reality would take somewhat longer.
Atalla stabilized the Si surface with a thermal oxide [9], and
this led he and Kahng to develop a MOSFET around 1960.
Atalla got irritated at Bell’s disinterest in the MOS technology
and left in 1962; perhaps this is the reason why Kahng is the
sole author of the patent [ 10]. Fortuitously, others in California
recognized the advantages of MOS technology that eventually
led to its use in integrated circuits through two patents filed in
1959 [11, 12].

Complementary n-channel and p-channel devices appeared
in 1962 [13, 14], as low power devices which eventually

dominated the continued development of integrated circuits
and became the well-known CMOS. The advantage possessed
by these devices lay in their planar layout (the plane of the
current flow is in the layer plane, whereas it was normal to the
plane in a junction bipolar transistor), which was much favored
for large scale integration, and their low power dissipation.
Growth in the technology is largely measured by Moore’s law;
the idea that the dimensions would decrease from one gener-
ation to the next with the result that the number of transistors
on a single chip would increase exponentially [15], although
this law is basically an economic law rather than a physical
law [16, 17]. But, these integrated circuits were, by and large,
digital, which means that the transistors were switching tran-
sistors. Such a switching transistor needs well defined stable
states, which define logic levels, and these are given by the
ground and bias voltage. Transition between these two states is
not of much concern, as long as it happens quickly and reliably.

Other requirements exist for FETs used in amplifiers. These
include a desire for a linear behavior in small, or large, signals,
and FETs have provided a great many analog applications,
especially in microwave applications. Often these are not Si-
based devices, but are III-V devices, such as the high-electron-
mobility transistor (HEMT), which still is a FET. The highest
frequency performance to date have come from InP MOSFETs
(metal-oxide-semiconductor FET [18]) and InP-based, InAs
channel HEMTs [19]. The development of GaN-based devices
has led to excellent power HEMTs [20].

The structure of the MOSFET has undergone a great deal
of change since the first MOS integrated circuit. In partic-
ular, the down-sizing of the device has led to the introduc-
tion of new structures, new materials, and new configurations.
This evolution has occurred in both the switching devices and
the analog devices. For example, as the size of the switch-
ing devices has decreased, a growing problem appeared as the
mobility continued to drop. This drop was due to the effect of
surface-roughness scattering at the oxide-semiconductor inter-
face [21], as well as an increase in the impurity scattering due
to the increased doping in the substrates. To overcome this
decrease in mobility, the first change was to introduce strain in
the channel [22]. The problem lay in the fact that one wanted
tensile strain in the n-channel in order to split the six-fold
degenerate conduction band valleys, and compressive strain in
the p-channel in order to warp the valence band, both of which
effectively lowered the effective mass and increased the mobil-
ity [23]. This was accomplished by putting a SiN layer over the
gate stack in the n-channel devices, and using a SiGe alloy for
the source and drain regions in the p-channel devices. Even-
tually, one had to go further and address the problem of the
oxide becoming too thin, which was addressed through the use
of a new gate structure featuring HfO, [24]. Finally, continued
evolution forced one to turn the normally horizontal FET on its
edge, leading to the FinFET [25], which became mainstream
around 2011. What the future holds is open for discussion, but
gate-all-around quantum wire FETs seem to be one way for-
ward [26, 27], particularly with IBM’s announcement of 2 nm
nanosheet technology in 2021.

As the FET progresses over time, it is worthwhile to dis-
cuss what properties are needed in the evolving device. It was
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already mentioned that switching devices need to be different
than analog devices. For example, the switching device needs
to make the on-to-off transition, and the off-to-on transition
rapidly and the linearity of the transition between these two
points is not particularly relevant. What is needed is a low
voltage in the on state and an extremely low current in the off
state. Leakage current in the off state can create significant
problems with heat dissipation in the circuit [28]. Even an off
current of 1 nA is too large for a circuit with 10! transistors!
The transition from the planar FET to the FinFET was due
to the need to control this off current by being able to pinch
the device off with two opposing voltages from either side of
the fin [25]. Similarly, the likely transition to gate-all-around
quantum wires will be for a similar reason.

In the analog device, whether it be in Si or GaAs, the trans-
ition between on and off states is not nearly as important as
the linearity of the gain over the range of voltages that will be
input to the device. Here, the device is nearly always on, and
biased to provide as large a range of voltage swing as possible
while yielding as linear a gain as possible. These are distinctly
different requirements than those for the switching transistor.
Quite often, this is further complicated in large signal devices
by the need to deliver significant power, so that the gain com-
pression at high power is also a strong consideration in design.
This means that the microwave power device design is quite
different from the low power linear amplifier design [18], and
mixed-mode devices become even more difficult [29].

To aid in the design of FETs, there are a great many com-
mercial software packages available, and many private simu-
lation packages within the scientific community. In the early
years, most evolution within the world of fabricating FETs did
not rely upon such packages, but they have become import-
ant as the device size has continued to be reduced, not least
because of the increased role of parasitics to the design. That
is, through most of the evolution of Moore’s law, transistors
have been downsized through the use of a strict scaling rela-
tionship [30]. In this scaling, the electrostatics are maintained.
All dimensions are reduced by the same factor and voltages
and doping densities are adjusted to maintain the electrostat-
ics. But, this approach ignores the effects of parasitics, which
become more important the smaller the device becomes and
the closer other devices appear. For example, while the elec-
tric fields can be scaled, capacitances begin to be dominated by
edge effects and so do not continue to scale properly. Further,
the device can no longer really be considered in isolation; it sits
in an environment of other devices and circuit elements. This
background provides an environment from which the device
cannot be isolated [31]. Whether this is interface roughness
scattering [32, 33], which is of course already well known,
remote phonon scattering [34], or device-device interactions
arising from unintended coupling between devices [35], it is
not fully apparent how much these effects, particularly the
latter, have been included within widely used simulation and
modeling packages.

There is also the question of granularity, particularly with
respect to dopants. If one considers a small device in a semi-
conductor region 20 nm long, 20 nm high, and 5 nm thick,
doped to 10'® cm™3, there are on average only two dopants

in the volume. And, for a FET, it critically depends exactly
where those dopants are located. They are far more effective
when close to the source than when they are close to the drain.
Even with more impurities, there is the problem that an elec-
tron can be interacting with several impurities at one time [36].
Difficulty here can arise from the fact that it might be difficult
to compute an accurate screening function, or even to estab-
lish that there is any time between collisions; multiple scatter-
ing can dominate [37]. While this is primarily with impurity
scattering, other factors, such as rough interface scattering can
also be affected by this granularity; basically an inhomogen-
eity that spreads throughout the device. This can be especially
problematic when it couples with quantum effects.

1.2. When does quantum transport arise

There have been a great many discussions about the role of
quantum effects and quantum transport in FETs. However,
the basic idea boils down to the problem of just how big is a
quantum electron (or hole). Classically, the size of the electron
has been pondered over the years, but the consensus may put it
at ~10~ '8 m. But this will not work for a quantum particle, and
the size of the electron depends upon how big a wave packet
representation of the electron is quantum mechanically [38].
Several considerations of this suggest the size is in the range
of 3—7 nm. This is quite significant when the idea of the 5 nm
node (for integrated circuits according to Moore’s law) is dis-
cussed. It already becomes a problem in a simple MOSFET,
for how can an ~5 nm electron be stuffed into the classical
size of the inversion layer, which is a ~1 nm potential well?
In fact, it just cannot be done and a self-consistent solution of
Poisson’s and Schrodinger’s equations must be pursued [39].

Pursuing the self-consistent potential mentioned for the
case of electrons in an n-channel Si MOSFET leads to the split-
ting of the six-fold degenerate valleys of the conduction band.
The two valleys whose heavy mass direction is normal to the
oxide-semiconductor interface form one set of quantum levels
which are lower in energy than the levels of the other four val-
leys that have the light mass normal to the interface. From such
calculations, nearly all MOSFETSs will show this quantization.
But, the quantization is not observed in every day operation for
several reasons. First, the transport direction is parallel to the
interface, not normal to it, so the quantization is a second-order
effect. Secondly, such a calculation is a one electron effect
appropriate for having no inversion density present. When an
inversion density is present, there is another quantum effect,
the many-body interaction [40]. While the confinement raises
the quantum levels, the self-energy of the carriers lowers these
energy levels. Thus, a full consideration is quite complicated.
Nevertheless, the use of tensile strain to increase the separ-
ation between the two-fold valleys and the four-fold valleys
is a common situation in today’s devices, and the mobility is
higher in the two-fold (and lower energy) valleys.

While not apparent, many modern simulation packages
account for the size of the electron; not directly, but through
clever manipulation. The total energy of the electron (or hole)
population is a summation over the density, weighted by the
potential at each point. Mathematically, the assumed Gaussian
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shape of the electron wave packet can be moved from the elec-
tron to the potential [38]. This leads to what is called the effect-
ive potential, which greatly simplifies simulations of these
devices [41]. It is the effective potential that appears in these
packages, but it arises from the electron’s size.

From these considerations, it becomes apparent that quant-
ization can set in whenever confinement effects become com-
parable to the electron (or hole) wave packet. In today’s
ultrasmall devices, this means that quantum effects play a con-
siderable role. A further example of this appears in the Fin-
FETs that are popular at this time. The FinFET turns the chan-
nel on its side, so that the inversion layer can extend up either
side of the fin, and even over the top. With the gate potential
on either side of the fin, this makes turnoff more effective by
these two potentials working together. However, the normal
state in which there are two inversion layers, one on either side
of the fin, can change into a single inversion layer in the bulk
of the fin. When the fin is sufficiently thin and the density is
not too high, this central inversion layer is the preferred state
[42]. Thus, the quantum effects can change the basic nature
of the FET, from a surface-oriented device to a bulk-oriented
device, which has the added benefit of less scattering from the
rough interfaces.

Another effect which has been around for some time is tun-
neling, a true quantum effect. Concern in the past has dealt
with tunneling through the gate oxide. In the presence of high
electric fields across the gate oxide, the barrier between the
gate metal and the FET channel is no longer the simple rect-
angular barrier of the textbooks, but becomes trapezoidal or
triangular in nature [43]. Such tunneling has been known to
be a problem in thin dielectrics almost as long as we have
had MOSFETs [44]. What has become more interesting with
the continued down-sizing of the device, is direct tunneling
between the source and drain [45]. While this early work
observed resonant tunneling between source and drain, likely
due to a localized state, the trend of ever smaller devices has
led to direct tunneling between the two. The adoption of high-
k dielectrics was a direct response to the problem of gate tun-
neling in the very thin oxides required in the scaled devices. It
is not clear as yet how the problem of source-drain tunneling
will be addressed, or solved.

Nevertheless, it is clear that quantum effects are appearing
in ever greater quantity as we continue to evolve with Moore’s
law. Moreover, it is not at all evident that they can be treated
in isolation, one at a time, as quantum mechanics is notori-
ously a nonlocal theory, so that we may expect many of the
quantum effects to interact with each other as well as with our
understanding of how the FET operates.

1.3. How do quantum and classical differ?

Probably, almost everyone has heard of Feynman’s quote
‘...nobody understands quantum mechanics...” [46]. If one
is trying to explain quantum mechanics in Bohr’s view that
nothing exists until it is measured, then you can understand
Feynman’s comment. Bohr was very interested in his desires
to do away with causality and determinism [47]. But, there are
alternatives, and most engineers and device scientists tend to

follow these alternatives whether they are aware of it or not
[48]. It is a form of quantum mechanics in which determinism
exists, particles are real and follow real trajectories, which is
what makes semiconductor devices work. The difference then,
between quantum transport and classical transport, lies in that
‘...additional quantum potential...” described by Kennard [2].
We know that this quantum potential derives from the wave
function itself, and introduces both interference and coherence
effects into the transport. The interference also encompasses
entanglement, that magical force unique to quantum mechan-
ics and essential for quantum computing [49].

The quantum potential has a history in the hydrodynamic
expansion of the Schrodinger equation, first done by Made-
lung [50] and Kennard, and much later by Bohm [51]. Like
the effective potential, the quantum potential already has been
used in device simulation [52], and appears in a number of
commercial simulation packages. This provides a definite path
forward. However, again like the effective potential, it is not
a full correction, as it does not account for all the nonlocal
and interference interactions. More extensive quantum trans-
port equations must be used, with the result that a great deal
more complexity enters the problem [53]. And, this brings us
to this review, in which the more extensive transport equations,
and their use in simulation/modeling of FETs, is the heart of
the topic.

One example of this is transport in the presence of very
weak scattering — quasi-ballistic transport. Classically, the
electrons do not behave any differently from a strong scatter-
ing regime. However, quantum mechanically, the electron can
interfere with itself as it passes a single impurity. This interfer-
ence can affect the resulting self-consistent potential [54]. The
need to properly handle such interferences requires the use of
quantum transport approaches.

1.4. What is in this review?

In section 2, the nature of quantization with the FET will be
discussed. Principally, this begins with a more in depth discus-
sion of some of the topics already mentioned in section 1.2, but
goes on to thoroughly address the concepts of interference and
coherence, especially those that arise in the physically short
channels that are emerging today.

In section 3, the nature of quantum transport, its equations,
and its philosophy will be developed. This will extend from
the simple approaches already mentioned to the complexities
of Wigner functions and non-equilibrium Green’s functions.
The principle concept of their difficulties is discussed as well,
and how one addresses dissipation and decoherence, e.g. the
role of scattering.

Finally, in section 4, some concluding remarks and sum-
mary will be presented. In addition, some thoughts about the
future will be presented.

2. Nature of the quantization

Since the late 1960s and early 1970s, quantum effects due
to confinement of carriers at surfaces and interfaces have
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been studied. Examples are the quantum effects in the inver-
sion layers at a Si/SiO; interface, or the accumulation lay-
ers at the GaAs/AlGaAs heterojunction interface [55]. These
quantum effects become observable because the carriers are
no longer simple localized objects. Rather, they are defined by
a quantum wave packet, which becomes deformed when con-
fined within small structures. Quantum effects also arise when
the wave functions begin to interfere either with themselves
or with one another. Distances over which this can occur are
related to the coherence length of the carriers [39]. Another
aspect arises from pure quantum properties of the carriers,
such as their spin [56]. When some or all of these quantum
effects begin to affect the transport through a device such as a
field-effect transistor, we then have to turn to quantum trans-
port. In general, quantum transport can be far more difficult
than classical transport [57, 58].

Both the understanding of the quantum effects, as well
as the use of quantum transport, is complicated by the fact
that the quantization does not occur in a vacuum. Rather than
being isolated, the quantum system, such as a field-effect tran-
sistor, is embedded within its environment. This environment
strongly affects the quantization and the transport, as it can
alter the nature of the quantization. Contrary to what some
believe, opening the quantum system to its environment does
not eliminate all quantum effects [59]. Rather, many quantum
effects remain, and some new ones appear as modes modified
by the environment [31, 60].

2.1 Inversion layers

In a classical treatment of the inversion layer in a standard
MOSFET, the carrier density peaks at the interface between Si
and the oxide, and then decays exponentially with the surface
potential away from the surface. This behavior is completely
opposite from that expected in the quantum treatment. While
the positive gate voltage attracts the charge to the surface (an n-
channel device is considered here), the nature of the quantum
effect is that the charge has to be nearly zero at the oxide inter-
face. The local charge is usually treated as p (z) = —e|t) (z)|*,
where 1 (z) is the wave function. Since, the wave function
must nearly vanish due to the large offset potential of the oxide,
this means the charge must similarly vanish. In addition, the
potential formed between the oxide potential and the band
bending within the semiconductor leads to quantization of the
motion normal to the surface. This forms one or more sub-
bands, which are quasi-two-dimensional energy-momentum
relationships for motion parallel to the interface. The actual
shape of this potential, and the corresponding wave functions
must be found self-consistently by solving both Schrodinger’s
equation and Poisson’s equation [39].

An example of the quantization is shown in figure 1,
where the potential and two sub-band energies are shown
[61]. The self-consistent potential is labeled as Vg(z). The
thick curves include the quantum exchange-correlation self-
energy correction, while the thin curves do not include this
correction. Here, it was assumed that the p-type substrate was
doped to 2.8 x 10> cm™3 and the inversion density was
4 x 10" cm~2. The results are obtained by including the
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Figure 1. The calculated energy band profile and the wave function
for (100) Si. The thick lines are for inclusion of the
exchange-correlation potential, while the thin lines ignore this
many-body correction. Reprinted from [61], with the permission of
AIP Publishing.

normal Hartree potential found from the Poisson equation,
an exchange-correlation correction, and an image force [39].
The exchange-correlation potential is a many-body correc-
tion accounting for the carrier-carrier interaction, and the form
used was taken from Hedin and Lundqvist [62]. One can see
that the wave function peaks approximately 1.5-2.0 nm from
the surface and then decays.

The two major observables from the role of quantization
is the set back of the peak in the wave function, and thus the
charge density, from the surface and the quantization energy
of the lowest sub-band, which appears to be about 45 meV,
from the minimum of the conduction band. These two changes
affect the gate capacitance of the MOSFET [63].

An important impact of the quantization is that the energy
levels depend inversely upon the effective mass of the carriers
normal to the interface in each valley. Hence, in a (001) sur-
face of the Si, carriers in the pair of (001) valleys exhibit the
heavy ~0.98my longitudinal mass, while the other four valleys
exhibit the light ~0.19m transverse mass. This leads to split-
ting of the six conduction band valleys, with the four transverse
valleys sitting higher in energy. Thus, the sub-bands shown in
figure 1 are those for the two valleys with their major axis in
the (001) direction. As these two valleys exhibit the lighter
mass in the transverse directions (down the channel), this will
lead to higher mobility. This effect will be exaggerated when
strain is introduced, as discussed below.

This quantization has been known for a great many years
[39]. Over the intervening decades, there has been a search
for methods of treating the quantum effects without hav-
ing to solve Schrodinger’s equation. As remarked above, one
approach is to use an effective quantum potential [2]. If the
wave function is written as ¢ (r) = A (r)exp (iS(r) /1), then it
has been suggested that the Bohm quantum potential is of the
form [2, 50, 51]

m 0%A
Yo = A o M
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where r is the direction in which the force is to be determined.
If we use the previous relationship above between the density
and the wave function, then this equation can be rewritten as
(this follows directly with the substitution of the amplitude
written as A = /n):

P 8yn

" 2my/n 0P @

VQB =

where n is the local density. This form is often called the
density-gradient potential, and appears to have been first used
in FET simulations by Grubin and Kreskovsky [64]. The com-
pact form of this quantum potential means that it can be incor-
porated into a wide range of transport models for devices of
many sorts, including MESFETSs (metal-semiconductor FET
[52]) and the MOSFET [65-67].

Wigner also introduced a form of effective potential, in his
study of the impact of quantum mechanics on thermodynamics
[68]. He found a pair of correction terms to the kinetic energy
E in the form of a potential given by

Vow = —h—zsz+ h—z(VE)Z 3)
o om 24m ’
If the normal thermodynamic form
n~e BT 4)

where kg7 is the thermal energy, is used, (3) becomes

Vow = — 122 1n (n/my) )
ow 8m 0)]»

where n is a reference density. With a little manipulation, this
latter form can be shown to be only a factor of 2 different from
the density-gradient form (2) [69].

Still another form of quantum potential modification arose
from the study of the non-zero size of an electron in a semi-
conductor [38]. In this case, it was shown that by considering
the total energy of a potential (weighted by the density) in the
Hamiltonian, the shape of the electron wave packet could be
moved to the potential arising from Poisson’s equation, which
led to it being smoothed by [69]

1 |r—r’|2
Vor = dr'V(r'exp | ————
OF ma/ ( ) p( Oéz

: / ar'vir—ryexp [ <L ©)
= r'vir—r - ,
2o P a?

S
kaBT’

where [70]

(N

and the last line of (6) arises following a simple change of
variables. As mentioned, this smooths the potential, especially
in the region where the quantum well is located, and provides
both the charge set-back and the quantization energy of the
lowest subband [41]. This is shown in figure 2. It also can be

Figure 2. The triangular potential that normally sits at the interface
forming the quantum well is shown in red. The effective form of this
potential given by (6) is shown in blue. The charge setback is
indicated by d and the quantization energy is indicated by AEc.
Here, the vertical direction is energy and the horizontal is distance,
with the oxide-semiconductor interface at the vertical jump in the
red curve.

shown to be equivalent to the above quantum potentials. To
do this, the potential is expanded in a Taylor series around the
position r, as follows [69]:

1 vV rit 92V
Vor = dr’' |V AANTES
er \/27Ta/ ' [ (r)+r 8r+ 2 Or? +

I’
X exp -2 | 8)

The first term is just the normal potential, and the next term
vanishes upon integration, so that the leading term is the
quantum correction which gives, in three dimensions

2oty g2 0n (%)
S 2m o2 ©)
which is again within a constant of (5) when using (4). The
point is that almost all of the various quantum potentials wind
up being of the same form for small quantum effects, that is for
small nonlocality. In figure 3, an example is shown comparing
the Bohm potential (2) and the total effective potential (6) [71].
The structure is similar to a MESFET, in that the short bar-
rier that creates the quantum point contact at the bottom of the
structure is similar to a very short gate. In panel (a), the Bohm
potential is created after solving for the full quantum waves in
the structure in the absence of a self-consistent potential, and
particle transport through the structure is indicated by the light
stream-lines. In panel (b), both the Schrédinger and Poisson
equations are solved self-consistently, and the Bohm potential
is found, and particle transport is then determined. In panel
(c), only the Poisson equation is used for the self-consistent
potential, and the effective potential is computed from (6) and
used to study the particle motion. In this latter method, there
are far more vortices beginning to form in the transport, as
there is more confinement observable in this method, as it is
non-perturbative.
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Figure 3. Particle trajectories through a gate defined quantum point
contact. In each case, the density is found from the quantum wave
functions for the structure. (a) With no Poisson solution, only the
Bohm potential derived from the wave functions according to (2) is
used to guide the particles. (b) Both Schrédinger and Poisson
solutions are now used with the Bohm potential (2). (c) With both
Schrodinger and Poisson solutions, the effective potential (6) is used
to guide the particles. Reprinted from [71], Copyright (2000), with
permission from Elsevier.

2.2. Tensile strain

When strain is added to a device, with the intent to modify
the transport properties by modifying the band structure, it
becomes a quantum effect [22, 23]. In the case of the n-channel
MOSFET, the strain is tensile and often accomplished by put-
ting a Si3Ny layer over the gate stack. This tries to stretch the
channel. It was remarked in the previous section that quantiz-
ation in the inversion layer separated the six-fold conduction
band into a two-fold set of elliptical energy surfaces whose
major axis is normal to the interface and a four-fold set whose
minor axis is normal to the interface. Unfortunately, this sep-
aration is not particularly large, especially in elevated temper-
atures. The use of tensile strain increases this separation so that
the conduction is dominated by the two-fold pair of sub-bands.
A 1% uniaxial strain along the [110] transport direction can
give as much as 70 meV splitting between the two sets of val-
leys [72]. Here, the effective mass for transport in the channel
becomes the transverse mass, (~0.19my in Si). This results in
an approximately 40% reduction in the transport mass relative
to the normal conductivity mass in Si, although the strain will
affect this mass [73]. In addition, the carrier scattering between
the two-fold and four-fold sets of valleys is greatly reduced,
and these two effects together lead to a much higher mobility
for the carriers in the inversion channel. Because these valleys
are anisotropic, the actual motion in the channel can be quite
complicated [74].
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Figure 4. Mobility enhancement for uniaxial stress applied along
the (110) direction. The piezoelectric effect is also included in this
enhancement. The horizontal axis is the same as the vertical.
Reprinted from [23], Copyright (2008), with permission from
Elsevier.

In figure 4, the effect of strain on the mobility is plotted for
an n-channel device on the (001) surface of Si with the uniaxial
strain along the [110] direction [23]. The strain deforms the
normally circularly symmetric shape of the two-fold valleys,
as can be seen in the figure. Several different levels of strain
are given by different curves, and one can see that the mobility,
though larger, becomes anisotropic in the valleys. Here, the
effect of strain on the bands was calculated with an empirical
pseudopotential method, and the transport was simulated with
an ensemble Monte Carlo method. The results are comparable
to what is seen experimentally in such devices. The result of
warping of the ellipsoidal energy surfaces is quite expected
in the understanding of these devices. The elongation of the
normally circular energy surface in the plane of the device,
causes a decrease in the effective mass in the channel direction.

Note that figure 4 actually plots the mobility as a function
of the direction, and not the energy surfaces. Strain along a
[110] direction elongates the crystal in that direction. Since
momentum is proportional to the inverse of the lattice constant,
this compresses the normal energy circle, so that the long axis
of the constant energy line would lie along [TIO} , which is
normal to the strain. Then, if the resulting constant energy line
is written as

kfﬂo]

M110)

n? k1o

E= (10)

2\ mpo

the fact that the major axis in the ellipse is normal to the strain
direction implies that

an

Mi10] > M10]-
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Figure 5. Dispersion of the two degenerate valleys normal to the
(001) surface as a result of strain. The point kg is the normal point
along A near the X point. With the strain along [110], the dispersion
becomes highly non-parabolic. Reprinted from [76], Copyright
(2008), with permission from Elsevier.

As a result, the mass in the strain direction is reduced, while
the normal direction has an increased mass, a result in keeping
with the theoretical calculations [23]. This leads to a larger
mobility in the strain direction, as is indicated in figure 4.

While the two valleys in the lowest sub-band are normally
degenerate, quantum interactions between carriers in these two
valleys can lead to their splitting, which has been observed
experimentally [75]. It has been found that the strain applied
along the [110] direction, and the warping of the energy
surfaces in the plane can lead to significant splitting of the
these two valleys, while maintaining a coupling. The result-
ing energy surfaces are quite dramatic, as shown in figure 5
[76]. Here, the structure was computed using a k - p method,
including the strain, and the dispersion is seen to become very
non-parabolic [77]. Another important aspect is that the effects
can become stronger in ultrathin layers of Si, such as in SOI
or nanosheets [78, 79].

More than 30 years have passed since SiGe alloys were sug-
gested for use in semiconductor devices [80]. If the SiGe alloy
is relaxed, then a subsequent thin Si layer will be under tensile
strain. This was thought to be a good method of improving the
transport [81]. This would lead to its use in hole transport.

2.3. Compressive strain

In opposition to the strained Si above, growing a strained
SiGe layer on Si would put this layer in compressive stress,
and using a subsequent Si layer on top would bury the SiGe
layer as a quantum well [82]. The top Si cap layer moves
the holes away from the surface as a means to reduce the
surface-roughness scattering, while the strain in the SiGe layer
splits the light and heavy-hole bands at I, providing a reduced
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Figure 6. A schematic view of the valence bands in unstrained Si.
E, is the heavy-hole band, while E is the light-hole band. A is the
spin-orbit split-off band. The constant energy surfaces near k = 0
are shown pictorially on the left. Reprinted from [84], Copyright
(2008), with permission from Elsevier.

transport effective mass. A drawback is that the SiGe layer has
significant alloy scattering which tends to lower the mobility,
so that there are competing effects. To generally describe the
valence band structure, in both the quantum effects and with
strain, requires a form of full-band calculation for the com-
plicated splitting, warping and crossing of the various valence
bands [83].

The approach to p-channel devices more or less settled
upon the use of SiGe in the source and drain regions, where
the larger lattice constant put the channel under compress-
ive strain [22]. This uniaxial compression raises the light-hole
band extremum above the heavy-hole band, so that the effect-
ive mass of holes becomes much smaller and the mobility is
raised. This creates a problem, in that the two bands will now
cross at a not too high value of carrier energy. They do actually
cross, but hybridize in a manner to avoid this crossing; the res-
ult nevertheless is a very non-parabolic behavior with the ini-
tial light mass getting very large as the carrier energy increases.
To understand this better, the normal unstrained valence bands
in Si are shown in figure 6, along with an equal energy sur-
face for the two top bands [84]. One can understand the phrase
‘warping’ from the two constant energy surfaces. The maximal
extension of the heavy-hole surface is along the (111) direc-
tions, while that of the light-hole surface is along the (100)
directions.

The energy surfaces in figure 6 are at very low energy. As
the energy increases, the warping becomes much more pro-
nounced, as can be seen in figure 7 for the unstressed bands
(the upper row is the upper band after hybridization while the
lower row is for the lower band). As the channels are normally
in the [110] direction, the holes will see a much reduced effect-
ive mass and therefore an enhanced mobility.

The effect of the strain and the gate field can be observed in
figure 8, where it can be seen that the gate field really has little
effect on the constant energy surface for the dominant band
[85]. Here, the lowest energy sub-bands are shown for both
the strained and unstrained energy surfaces, as calculated with
a k- p method. As the surfaces are not affected by the gate field,
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Figure 7. The constant energy surfaces at 39 meV in the strained
and unstrained case. It may be seen that the mass in the [110]
direction is dramatically reduced as the strain is increased. Reprinted
from [84], Copyright (2006), with permission from Elsevier.
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Figure 8. The constant energy surface of the lowest hole sub-band
for the Si (001) surface devices, with the compressive strain along
[110], for several different gate fields. The black curves and data
points are for unstrained channels, while the red curves and data
points are for the strained channels. Reprinted from [84], Copyright
(2006), with permission from Elsevier.

the masses similarly are not affected. Similar calculations for
the valence band structure in the presence of the uniaxial strain
along [110] have been done by Shifren et al [86], Wang et al
[87], and Kotlyar ef al [88], among others.

2.4. Discrete impurities

The problem with fluctuations in the number of impurit-
ies under the gate was discussed already by Keyes [28]
half a century ago. The actual distribution of the impurit-
ies cannot be controlled, and fluctuations in the actual num-
ber lead to fluctuations in the threshold voltages. In large
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Figure 9. The drain current in simulations of MESFETs and
HEMTs as a function of the actual number of dopants under the
gate. © [1994] IEEE. Reprinted, with permission, from [91].

devices, this fluctuation is small, but in small devices, it
becomes much more significant. For example, if we consider
a 10 x 10 x 10 nm region with a doping of 10" cm™3,
there are only 10 &+ 3 dopant atoms in this volume. Hence,
as devices become small, the fluctuations become large (30%
in this example).

Attention was called to this again when Wong and Taur
included the atomistic nature of these impurities in their MOS-
FET simulations [89]. The importance of this was quickly
realized and picked up in the simulations of MESFETs and
HEMTs [90, 91]. In figure 9, simulations of 16 different MES-
FETs of nominally the same dimensions and doping profiles
and 18 HEMTs are shown, where the drain current is plotted
as a function of the actual number of dopants under the gate,
although the doping level is kept constant. It can be seen that
the variation of the current with dopant number is not mono-
tonic and fluctuates dramatically.

The inclusion of the actual positions of the random doping
distributions was adopted widely in the simulation of MOS-
FETs as well [92-95]. In figure 10, the variation caused by the
atomistic doping is illustrated by plotting the drain current as a
function of gate voltage for a great many different implement-
ations of a 0.1 um gate length MOSFET, doped to 8 x 107 in
the substrate [93]. The fact that the current varies by more than
an order of magnitude in the sub-threshold region points to the
importance of this effect. It also became evident that impurities
near the source-gate entry point into the channel affected the
current far more than impurities further from this region [96].

The rise in these fluctuations has led to the ideas that the
best course in past few years has been to not add any doping
in the substrate, but let the channel appear similar to an™—i-n*
structure. With operation below 1 V, adequate voltage sep-
aration from the substrate can be achieved especially with
double-gate FinFET type devices. A name of junctionless
devices was coined some time ago [97].
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Figure 10. Drain current for a great many different simulatons
(differing by the random position of the dopants) for a 0.1 pm
MOSFET. © [1998] IEEE. Reprinted, with permission, from [93].

While the fluctuations are important, it should also be
recognized that an individual impurity can have a significant
effect on the current due to quantum transport behavior. In
figure 11, simulations of the behavior of a single [98] electron
nearing a single impurity in the MOSFET channel are shown
for various times. Here, the electron is represented as Gaussian
wave packet (the size of the electron and these wave packets
were discussed above in section 2.1). The right hand column is
for a classical Boltzmann solution. The wave packet expands
somewhat, which is normal for Gaussian packets, and moves
deeper into the channel as it is repelled from the impurity. On
the left hand panel though, the wave function becomes quite
broken up due to the quantum interference, that leads to deco-
herence of the packet.

But, the impurity can have a larger effect. The reader should
be familiar with Young’s two-slit optical experiment [99]. It
can be replicated with electrons. A charged wire in a transmis-
sion electron microscope (TEM) creates what is known as a
bi-prism, and electrons split as they pass this wire and form an
interference pattern [100] just as that of photons in the Young
experiment. Importantly, a single electron in the TEM, or a
single photon [101], will lead to the interference pattern. That
is, the single electron (or photon) must have both wave and
particle properties, as recognized by Einstein [102]. For the
purpose here, these observations mean that a single electron
passing by a single impurity can create an interference pat-
tern representing its wave-like self-interactions in diffracting
around the impurity.

Two electrons and two impurities provide a complicated
wave interaction process that illustrates the interference prin-
ciple. Consider a simple nanowire structure with two repulsive
impurities embedded in it, as shown in figure 12 [54]. Here,
the nanowires are 40 nm wide, and the area of interest is some
60 nm long. The impurities are located at the two green circles,
which are constant energy lines. The electrons are continu-
ally injected at y = 0, x = 20 nm, and absorbed completely at
y =60 nm. Consecutive injections are considered as independ-
ent, identically distributed statistical experiments, giving rise

Figure 11. Comparison of classical and quantum Wigner function
behavior of a single electron approaching a single impurity in a

25 nm MOSEFET. The top row is 2 fs after the start, the middle row
is 4 fs, and the bottom row is 8 fs after the start of the simulation.
Red is high amplitude, and blue is low amplitude. Reprinted from
[98], Copyright (2014), with permission from Elsevier.

to the stationary distribution of a single electron. These elec-
trons are simulated by a Wigner function wave packet (Wigner
functions are covered in part 3 below). The continual injection
allows the study of the steady-state inference with impurities.
The electrons are injected at an energy of 0.14 meV, which is
above the second transverse sub-band in the nanowire. This,
plus the nonlocal interaction with the impurities leads to the
injected carriers forming the two beams apparent in the figure
in the region before the impurities (the carriers travel from bot-
tom to top in the figure). The carrier ‘density’ from |t (x,y)[*
is plotted in the figure. It is clear that the electron is diffracted
by the impurities, and then interferes with itself downstream
from them. This would be present even if only a single impur-
ity were present. The interference peak evolves all the wave to
the exit of the nanowire. These interference peaks are certainly
reminiscent of the two-slit experiment.

An analytical study of similar scattering with a single
impurity has been done by Barker [103]. In this work, it is
clear that the interference arises from the matrix element itself
for the scattering interaction. Yet, the result shows almost
the same interference pattern as figure 12, but with a few
amplitude differences. For example, in Barker’s work, the
amplitudes of the different beams decay from the peak for
the forward beam. In figure 12, the second beam to either
side is weaker and this is likely the result of having two
impurities in which their second beams tend to interact neg-
atively to reduce this amplitude. Nevertheless, it is apparent
from these, and other sources, that the quantum interference
around an impurity is a real event that will influence nano-
scale devices. Indeed, a study of the electron wave on its own
when near its donor atom shows a quite complicated wave
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Figure 12. Quantum electron density distribution of an initial wave
packet, injected at x = 20, y = 0. The green circles are equal energy
lines at 0.175 eV of the repulsive impurity potential. Reproduced
from [54]. CC BY 4.0.

function that is dependent upon the presence of strain in the
system [104].

The interference that appears with one or a few impurit-
ies becomes much more complex when many impurities are
present [55]. The impurities lead to a random potential, which
if sufficiently large can localize a number of the band states
[105]. But, the random potential has another effect. Transport
through the random potential is quite sensitive to the position
of the Fermi level and the presence of any magnetic field, even
the self-magnetic field of the current in the FET channel. Small
variations in these quantities can lead to large variations in the
conductance through the channel, and even chaotic behavior.
These fluctuations are typically referred to as universal con-
ductance fluctuations, and have been observed in a large Si
MOSFET at low temperatures [106]. In small modern devices,
this can lead to significant current fluctuations in the drain
characteristics if there is insufficient scattering in the channel
[107]. This will be seen below in figure 15(a).

Even when there is adequate scattering, current filaments
can form in the channel [108], as shown in figure 13 for an n-
channel, 50 nm MOSFET. In the figure, the channel runs from
50 to 100 nm, and the current is in A cm 2. The doping in the
channel was 5 x 10'7 cm—2, while the source and drain were
doped to 2 x 10'” cm~2. The individual dopants are shown as
dots or small circles, while the size of the circle corresponds
to the depth below the surface of the impurity. The impurit-
ies are treated in real space by a molecular dynamics approach
in which the impurity potential is split into a long-range part
which appears in the Poisson equation and a short-range part

16 x 10°

Width (nm)

80
Length (nm)

Figure 13. Current inhomgeneity in an n-channel, 50 nm gate

length MOSFET, the details of which are in the text. The current

scale on the right is in A cm™2.

treated by the direct molecular dynamics forces between the
electrons and impurities [109]. An interesting effect is that the
current filaments do not really break up and decohere until
almost 40 nm into the drain region!

These effects are often grouped under the heading of excess
noise in experimental studies [110, 111]. As the localized
states can be interpreted as traps, the fluctuations often appear
as trapping/detrapping effects [112—-114]. And, often the fluc-
tuations are coupled to those from the random interface poten-
tial due to surface roughness [115].

2.5. Short-channel effects

One of the oldest problems in FETs is drain-induced barrier
lowering [116]. In this process, a potential applied to the drain
of the device affects the injected current at the source-gate bar-
rier, thus leading to an increase in current with drain potential
in a region where saturation is supposed to occur. It is not well
appreciated that this effect will be dramatically increased when
the transport becomes ballistic, that is when there is insuffi-
cient scattering in the channel of the FET.

Ballistic transport in semiconductors also is a relatively old
idea. In the strictest sense, ballistic transport means the lack of
any scattering. It is often discussed in mesoscopic structures,
where the mean free path is comparable to the device size, in
connection with the Landauer formula [117], but the ideas of
ballistic transport are older, and derive from the earliest dis-
cussion of vacuum diodes. The Langmuir—Child law describes
the ballistic transport of electrons in a thermionic diode, with
space charge built up near the cathode (corresponding to our
source in a MOSFET) [118, 119]. More recently, Shur and
Eastman suggested that ballistic transport in ultra-short chan-
nel length semiconductor devices would have the same space
charge and current relationship as the diode [120]. Drain-
induced barrier lowering is one of the first indications of bal-
listic behavior [121], and leads to qualitatively similar curves.

However, one cannot argue just from the shape of the curves
that ballistic transport is present, but must carry out the com-
parison with, and without, scattering as done in [122]. The
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impact of ballistic transport can be seen from a normal deriv-
ation of the current in a MOSFET, where

L

/Idy = WCOX/V(VG —Vr—V,)dy,
0 0

L
12)

where C,, is the gate oxide capacitance, L is the channel
length, Vi and V), are the gate and drain potentials, W is the
gate width, v is the velocity along the channel, and V), is the
surface voltage along the channel. Normally, one would now
introduce the mobility, but in the case of ballistic transport this
has no meaning. Rather, the velocity is a function of the local
potential as v = |/2eV, /m*. In the ballistic case, the potential
can be described through [119]

dv,

[2
- :a\[IVI,/4,a2:87r —e.
dy J m*

Introducing this into (12), one finds that saturation occurs in
the same manner, but that
] 2/3

Hence, the appearance of saturation has little to do with the
properties of the transport in the channel, although the voltage
dependence of the current does change somewhat [123]. But,
this result arises entirely because it is assumed that pinchoff
does occur in the channel. The Langmuir—Child law for diodes
does not have any restrictions on the carrier motion, such as
occur with pinchoff. If the pinchoff restriction is removed, then
one might well expect diode/triode like behavior in the MOS-
FET, especially under quantum conditions.

In materials like InAs, the transport length for the trans-
ition from ballistic to resistive transport can be 15-20 nm
at room temperature [124]. Yet, this is sufficiently long to
affect the device characteristics as is evident in figure 14,
which is a quantum simulation of a 30 nm gate length InAs
nanowire MOSFET [125]. The cross-section of the channel
is 9 x 8.5 nm, and the channel region is undoped. It is clear
that this device has some strange behavior in the gate char-
acteristics near turn-on, and does not saturate in the normal
manner. Studies of the transport itself confirm that it is almost
completely ballistic in nature. This can explain the diode/tri-
ode like behavior of the drain current.

But ballistic transport is only one of the effects that arise
in short channels. When the transport is fully quantum, then
the transitions from the low-dimensional channel to the larger
three-dimensional source and drain begin to play a role. When
crossing one of these latter interfaces, there is a discontinuity
in the carrier momentum, and since this occurs at both source
and drain, the possibility arises for quasi-bound states, often
called resonances, in the longitudinal wave function for carri-
ers in the channel. That is, at certain biases, the drain current
can have large peaks that are almost like resonant tunneling
peaks. These may be seen in figure 15, which is a quantum
simulation for ballistic transport in a 9.8 nm channel length Si
MOSFET [126]. The channel cross-section is 18.5 nm wide
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Figure 14. (a) Gate characteristics for two different 30 nm InAs
MOSEFETs. (b) Drain characteristics for one of the devices with a
gate voltage of 0.4 V. Reprinted from [125], with the permission of
AIP Publishing.
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Figure 15. (a) Gate characteristics for six devices. The fluctuations
are caused by the interferences due to the random positions of the
dopants, discussed in section 2.4. (b) Drain characteristics for one
device. The smaller fluctuations are due to the dopants, but the large
peaks are longitudinal resonances. © [2005] IEEE. Reprinted, with
permission, from [126].

and 6.5 nm in depth. The channel area is doped p-type with
5 x 1018 cm-3 concentration. In panel (a), the gate character-
istics are shown for six different device doping configurations;
the dopants are randomly placed according to the doping con-
centration and the grid size in the simulation. The peaks are
the random fluctuations discussed above for atomistic doping
when only a few dopants are present. There are, on average,
only six dopants in the channel, so that their exact positions
will introduce considerable variability. In panel (b), the drain
characteristics are shown for a single device. While the small
fluctuations are dopant caused, the large peaks are the result
of longitudinal resonant levels arising from the mis-matches
at the source and drain transitions. In a sense, these can be
considered as source-drain resonant tunneling.

2.6. FinFETs

The long road to FinFETs began many decades ago when it
was realized that the danger of scaling would be seen in a situ-
ation in which the standby ‘off’ current of a chip was larger
than the operating current. The road to FinFETs can largely
be said to be a road in which control of the off current was the
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Figure 16. Schematic of a tri-gate transistor. Reprinted from [127],
Copyright (2003), with permission from Elsevier.

leading concept. The off current arises from the bipolar like
nature of the nt*—p-n™ doping of a standard n-channel MOS-
FET (the complement is true for the p-channel). Much of the
leakage current that provides the off current is a weak bipolar
behavior in which the substrate plays an important part. The
first step along the road was the concept of silicon-on-insulator
(SOI) [128], as a means to suppress the substrate contribution
to the off current. Indeed, the first chip appeared with this tech-
nology shortly after [129], and it was shown that these tran-
sistors did have a better sub-threshold slope (reduced leakage)
[130].

The next step to control was the double-gate MOSFET,
with top and bottom gates to better control the pinchoff [131].
But, this was a complicated and expensive fabrication process,
so others began to look at different gate configurations that
offered similar control [132, 133]. Thus was the arrival of the
FinFET in which the channel is turned to the vertical direction
with gates on either side. A variant was called the tri-gate tran-
sistor, shown in figure 16 [127], although gate materials have
changed since this time [134].

Turning the channel vertical allows the surrounding gates
to work together to dramatically reduce the off current in
these devices. Nevertheless, new roughness appears due to
fluctuations in the body thickness, essentially, the fin thick-
ness [135]. Despite many perceived problems and various
approaches, it was shown that the trigate design was a more
scalable transistor than the conventional planar MOSFET
[136]. In 2009, integrated circuits using the FinFETs and trig-
ate FETs began to appear [137], although there were still
experiments using alternative materials to Si [138]. Neverthe-
less, Intel introduced the trigate as a mainstream device at the
22 nm node in 2011, and the industry has not looked back.

With the gate potential on either side of the fin, turnoff of
the transistor becomes more effective as these two potentials
work together to shut off the channel. The normal state in
which there are two inversion layers, one on either side of
the fin, can change into a single inversion layer in the bulk
of the fin. When the fin is sufficiently thin and the density is
not too high, this central inversion layer is the preferred state
[42]. Thus, the quantum effects can change the basic nature
of the FET, from a surface-oriented device to a bulk-oriented

Charge distribution

X (nm)

Figure 17. The charge distribution along the fin width (x direction)
as a function of the fin width. For small fin width, one gets volume
inversion, while for larger fin widths, surface inversion is found as
expected. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer, Journal of Computational
Electronics volume [42], Charge density variation with fin width in
FinFETs: an application of supersymmetric quantum mechanics,
Razib S. Shishir & D. K. Ferry, © 2008.

device, which has the added benefit of less scattering from
the rough interfaces. In figure 17, the charge density is plot-
ted as a function of the fin width, for a total inversion density
of 3 x 10'> cm~2. For smaller fins, one gets bulk inversion as
opposed to surface inversion. Of course, larger gate voltages
also pull the charge to the surface, enhancing surface inversion.
Even though one has better gate control in the FinFet, it
should not be assumed that random doping effects will go
away. This is just not in the cards [139], although here it seems
that the devices are most sensitive to dopants in mid-channel.
However, it does appear that the device is less sensitive to
short-channel effects, and have low 1/f noise [140].

2.7 Nanowires and nanosheets

Once the concept of multiple gates was brought forward, then
thoughts turned to what could be done with quantum wires,
and a gate-all-around (GAA) technology. The first quantum
wire device was simply a very narrow channel MOSFET, of
10 nm width [141]. The announced purpose of the device was
to begin to study quantum effects in ultra-small MOSFETs,
although the SOI device had a gate length of 250 nm, and the
Si layer was 7 nm. The channel doping was only 1015 cm™,
so that there was typically no dopants in the channel, although
they studied a range of channel widths (1.25-43.75 nm). They
observed an increase in threshold voltage as the channel width
was reduced below ~10 nm. Simulations of these devices soon
appeared [142, 143].

The GAA Si nanowires seem to have appeared both the-
oretically [144] and experimentally [145] around 2004. The
fabricated wires were about 12 nm high and 20 nm wide, nom-
inal gate lengths of 100 nm, and were surrounded with oxide,
although the gate was closer to a trigate than a GAA. These
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Figure 18. Three-dimensional scheme and cross-section of the
multi-nanosheet FET. (a) Transistor with bottom oxide.

(b) Transistor with no bottom oxide. Reproduced from [156].
CCBY 4.0.

showed excellent sub-threshold slopes, comparable to a large
planar device. In simulation, it was shown that these devices
had the same bulk-to-surface channel effects, discussed above
for the FinFETs, with varying diameter wires [144]. In addi-
tion, these simulations did not show any increase in mobility
in these nanowires. More advanced forms of simulation con-
tinued to appear [146].

It was pointed out Moore’s law results from an economic
law rather than a technology law [16, 17]. The economics boils
down to the cost of Si itself, and leads to the fact that, for
Moore’s Law to proceed, the gate periphery must be larger
than the Si area in order to minimize Si cost, as the techno-
logy proceeds. This certainly supports the transition to Fin-
FETs. But, it was shown that nanowires laid on the surface
of Si could not satisfy this economic requirement, and could
not compete with FinFETs [147]. This is because you basic-
ally cannot pack a single layer of circular wires dense enough
to overcome the height advantage of the FinFET. An altern-
ative would be to have the wires vertical [16], but that is a
more difficult manufacturing technology. Of course, a better
way was found, and this is stacked nanowires [148, 149]. The
nanowire stack was good, but it was not that much preferred to
the FinFET. This changed with the nano-sheet FET, which was
a stack of squashed wires—the vertical thickness was much
less than the width of each wire [150], although the phrase
nano-sheet would come later [151], in a joint effort of IBM,
Samsung, and Global Foundries.

By utilizing other materials, such as SiGe and Ge, a
range of strain possibilities arise in these GAA stacked
devices [152, 153]. Generally, the substrate under the stack
can undergo punch-through by the source-drain bias which
leads to leakage, so that some form of punch-through stop-
ping layer is used [154]. Later, the use of a bottom oxide was
used to provide this behavior and to give better control [155].
In figure 18, a nanosheet stack is shown [156]. Although this
stack has four nano-sheets, the usual and preferred, is to use
only three nano-sheets. Use of the oxide led to better sub-
threshold slope and less drain-induced barrier lowering.

This has led to the announcement this year of IBM’s 2 nm
node technology using their nano-sheets and oxide spacer
layers [157]. In this approach, the nanosheets are 40 nm wide

and 5 nm thick, with an effective gate length of 12 nm. It is
expected that this technology will appear in mainline produc-
tion in 2024. But, other technologies are being examined for
the nanosheets, since these are formulated by various epitaxial
and deposition methods. Indeed, nano-sheets have been stud-
ied in the III-Vs, as mentioned above [138]. More recently, the
monolayer transition-metal di-chalcogenides (TMDC) have
been studied in this association [ 158]. Materials such as MoS,
and WS, offer the ultimate in nano-sheets, as the layer is a
two-dimensional material less than a nm in thickness. These
materials have a sizable band gap and reasonable velocities
and mobilities [159, 160].

Perhaps as important is the problem of keeping the n-
channel and p-channel transistors of the CMOS pair close
together. One suggestion has led to a variety of approaches
that lead to perhaps stacking the n and p devices on top of
one another as part of the nanosheet stack [161, 162]. One
approach to this is the forksheet technology which utilizes a
self-aligned common gate between the two devices.

2.8. Spin field-effect transistors (Spin-FETS)

The Spin-FET was theoretically predicted over 30 years ago
[163] (for relevant reviews see, e.g. [56, 164—166]). This par-
ticular type of transistor uses the spin properties of electrons
for switching. In essence, a Spin-FET is based on two ferro-
magnetic contacts (source and drain) connected by a semicon-
ductor channel. Spin-polarized electrons are injected via the
source contact into the semiconductor region. The manifesting
channel current is modulated by the gate-voltage-dependent
spin—orbit interaction [167] which results in electron spin
precession during transport. The drain contact’s magnetiza-
tion acts as a filter, as only spin-aligned electrons can pass
through. All ballistic electrons have the same spin rotation at
the end of the channel, which is linked to the spin—orbit field
dependence on the electron momentum. As a consequence, the
spin—orbit interaction strength dictates the minimum required
length of the semiconductor channel for sufficient spin preces-
sion. In principal, two dominant spin-orbit interaction mech-
anisms are known: Rashba (geometrically induced structural
asymmetry [167]) and Dresselhaus (bulk inversion symmetry
breaking [168]). In silicon thin films spin—orbit interaction is
Dresselhaus-dominated [169, 170], and is due to interfacial-
induced breaking of the inversion symmetry (for transport
modeling see, e.g. [171, 172]). The spin—orbit interaction
strength depends almost linearly on the effective electric field
and has been reported to be in the order of 2 peV nm [173],
making confined silicon structures candidates for Spin-FET
channels ([100] oriented thin silicon film channels seem to be
those best suited [174, 175]). However, among the challenges
is the fact that a channel length in the order of micrometers
is necessary. This requirement is contradictory to the ongo-
ing geometric device down-scaling. Modern semiconductor
devices offer roughly two orders of magnitude shorter chan-
nels: a severe competitive disadvantage of silicon Spin-FETs.
Moving forward, required channel lengths can, in principal,
be reduced by increasing the gate-voltage-dependent spin—
orbit field strength (e.g. III-V materials). Another challenge
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is electron-phonon scattering which introduces randomization
and acts against the spin precession coherence. Tackling this
challenge requires cryogenic operational temperatures, fur-
ther limiting potential applicability of Spin-FETs. The ori-
ginal limitation of requiring ferromagnetic contacts by inject-
ing spin-polarized electrons through electrostatically created
point contacts has been overcome [176]. More recent work on
Spin-FETs has investigated alternative channel (e.g. 2D mater-
ials) and electrode materials (e.g. cobalt) as well as multi-
gate and multi-functional logic devices and systems (for recent
reviews see, e.g. [165, 166]).

In 2015, researchers showed the first demonstration of
a Spin-MOSFET with a high on/off ratio operating at
room-temperature [177]. Two metallic ferromagnetic contacts
(source and drain) are connected by a non-magnetic semi-
conductor channel, allowing for charge and spin transport.
Parallel/antiparallel magnetization alignment between source
and drain leads to a current increase/decrease at the drain con-
tact respectively. The ability to change the contact magnet-
ization of the contacts by an external magnetic field and/or
by the current (spin-transfer torque) provides opportunities for
reprogrammable logic [178]. A particularly important feature
of Spin-MOSFETs is the fact that the contact magnetization is
preserved without external power, partly enabling non-volatile
logic devices. However, in contrast to Spin-FETs, spin orient-
ation is solely determined by the injecting ferromagnetic con-
tact orientation.

As a concluding remark on the matter of Spin-FETS, let
us point out that from an efficiency point of view, Spin-FETs
only hold true advantages over conventional transistor designs
when no current flow is required for the fundamental transistor
switching mechanism. Indeed, only if this switching mechan-
ism is realized solely via spin manipulation, will Spin-FETs
be able to advance to a high-impact transistor technology. For
reviews of recent applications of Spin-FETs see in particular
[165, 166].

2.9. Tunnel FETs

While the idea of tunneling in semiconductors is quite old, the
idea of putting a tunnel junction into an FET seems to have
appeared around 2007 [179]. At this time, the problem of poor
sub-threshold slope and leakage current was becoming ever
more important, and of course led to the rise of FinFETs and
now nanowire FETs, as discussed previously. But, the idea
of greatly improving the sub-threshold slope by using tunnel-
ing from the source into the channel was quite promising, and
was quickly pursued by some [180, 181]. In this approach, a
resonant tunneling structure is placed between the source and
the channel, to create a large resistance in the sub-threshold
region; but a smaller resistance through resonant tunneling as
the device turns on. Interband tunneling from a p-source into
an n-inversion channel did improve the sub-threshold slope.
But there was a correlated problem with the device, and that
was that the tunneling barrier lowered the available ‘on’ cur-
rent in the device. This problem seems to be intrinsic to its very
concept [182]. While there have been many approaches to try
to raise the on current, including III-V materials [183] and

monolayer compounds [184, 185], it does not appear that this
problem has gone away. Almost immediately, it was sugges-
ted that graphene would be a suitable material for this device
[184]. However, the device is still under study today, follow-
ing ideas such as anisotropic insulators [186]. Yet introducing
tunneling generally lowers device performance, in particular
by limiting the available current that is intrinsic to a tunnel
barrier, and this may be a problem not easily overcome.

3. Dealing with quantum transport

Quite generally, most engineers think of FET operation and
performance in terms of the motion of electrons or holes, as
well as the resulting space charge and self-consistent poten-
tials [48]. This is simulated with classical or semi-classical
methods. What then makes quantum transport approaches dif-
ferent? Certainly, the mathematics are somewhat different,
and in certain cases much more complicated. But in reality, it is
the physics and the physical effects that occur due to quantum
mechanics that must be handled by quantum mechanics. Any
quantum mechanical representation has to meet all the require-
ments of a self-contained and consistent mathematical theory,
but it obviously also has to correctly reflect the laws of nature.
In this sense, it is no different than classical simulations. But,
the physical behavior is deeper.

The physical effects that arise have been outlined in the pre-
vious section. Of course, most of these effects, such as random
dopants, appear in normal devices and are merely the result of
the devices becoming smaller. Indeed, other quantum effects
can be handled by modifications to the semi-classical trans-
port of normal devices. This includes the quantum potential
and/or the effective potential additions, and even the current
striations that appear in figure 13 are basically classical. Thus,
a great deal of the incorporation of modest quantum effects can
be achieved without the complications of quantum transport.

Howeyver, this is not the case for the interference that is
shown quite clearly in figures 12 and 15. And it is this inter-
ference, or correlation or entanglement, depending upon how
one wishes to describe it, that is clearly evident in the device
characteristics of figure 15. Interference is a property that is
given to the electrons, or holes, when they are treated as waves
under the premise of quantum transport. And this interference
is not just the transverse quantization effect, but also the lon-
gitudinal resonances apparent in figure 15. Quantum interfer-
ence and entanglement are some of the most important aspects
of pure quantum transport [187]. It cannot be obtained with a
semi-classical treatment of the particles. But there is more, as
a detailed and careful look at figure 3 shows that there is a
tendency toward the creation of vortices. A vortex is what you
see as water runs down the drain, much in the fashion of whirl-
pools in the ocean. Vortices are well-known in classical hydro-
dynamics. Quantum waves create vortices as well, especially
in the many-body interactions [188, 189], and many think
of this as quantum hydrodynamics [190]. As may be expec-
ted, quantum vortices have a quantized angular momentum,
which leads to more fluctuations as the vortices are created and
annihilated. The quantization arises from the EBK (Einstein,
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Brillouin, and Keller [191-193]) form of quantization which
leads to:

Fcz¢p~dr:nh,
C

5)

where 7 is an integer and 4 is Planck’s constant. Surprisingly,
this same equation comes into play for the Aharonov—Bohm
effect [194], and in the spin-FET [195], both through the Berry
phase [196]. In the full quantum world, the constant n can be
modified in many circumstances. For example, it is known
to become n+ 1/2 in WKB approaches (Wenzel, Kramers,
Brillouin [197]). In proper quantum mechanics, p becomes the
expectation value of the momentum. Equation (15) can take on
other values when topological considerations come into play,
such as in spin effects. It is clear that this quantization can well
be important in modern FETSs, where quantum transport must
differ from semi-classical transport in the FET. It is in the treat-
ment of these truly quantum effects which lead to observable
behavior. No perturbatively obtained extra potential can give
rise to this interference behavior. Moreover, no perturbative
treatment of impurity scattering, even in quantum mechanics,
can show the interferences of figure 12. Much of this beha-
vior can occur over regions the size of the thermal de Broglie
wavelength [198]. In a Si MOSFET at room temperature, this
length is a few nm. In the modern world, some feature sizes
are much less than this, and quantum effects are expected to
be prevalent in the transport through these modern devices.
There are basically four common approaches to the treat-
ment of quantum transport. These are: (a) direct solution of
the Schrodinger equation, (b) the density matrix, (c) non-
equilibrium Green’s functions (NEGF), and (d) Wigner func-
tions. It is not the purpose here to treat these in depth. Rather,
a brief introduction to each will be given and then examples
will be given that demonstrate how these approaches have been
used to describe FETs. But first, it is important to review a few
basics that are independent of the transport scheme used.
There are some general concepts for discussing the
quantum effects that appear in FETs, whether they are experi-
mental details or simulation descriptions. The first is described
schematically in figure 19. In the figure, there are two domains.
One is the physical domain of the device shown in the upper
panel. The other is the simulation domain illustrated in the
lower panel. The most important dimension here is the lon-
gitudinal coordinate along the current flow direction, which
is taken to be the x-axis. It does not matter whether this is
a planar FET (pictured) or a dual-gate FET or a gate-all-
around nanowire FET, the descriptions will be the same. The
simulation domain has been split into five distinct sections.
The obvious ones are the gate, channel and drain, which
are easily replicated by the physical design of the transistor.
What is not so often recognized is that there are two trans-
ition regions, one between the source and the channel, and
the second between the channel and the drain. These trans-
ition regions are extremely important, and they may be much
larger than indicated in this simple drawing. For example,
it has been shown that the high kinetic energy that carriers
bring into the drain region may take as much as 20-30 nm

Gate
]

- I b I

Drain

Source

Device

Simulation Domain

Figure 19. Two domains need to be considered in discussing the
quantum transport. The first is the physical device domain (top) and
the second is the simulation domain (bottom).

to dissipate as the carriers thermalize [108]. Consequently,
failure to carry the detailed simulation well into the drain
may fail to give adequate recognition to this fact, and miss
important device physics. The drain and source regions are
not simply ‘contacts’. Important quantization occurs in these
regions, especially in the nanowire devices, and the transition
regions have to relate this quantization to that occurring in the
channel.

The second general problem is indicated in figure 20 where
local potentials are plotted along the device longitudinal axis.
In panel (a), the device schematic is repeated from figure 19,
in order to position the potential relative to the device parts. In
panel (b), the potential variation from source to drain is indic-
ated in the absence of any bias. This variation is also present
in the absence of dopants in the channel region (the so-called
junction-free FET), but the amplitude is less than in a doped
channel region. Finally, panel (c) indicates the potential vari-
ation when positive gate and drain voltages are applied. Note
that the potential peak is less in this case due to the gate bias,
as the latter meters carriers into the channel. It is important
to note that the potential barriers, or the variation in poten-
tial along the channel require excess charge to be present.
Thus, even in the absence of bias, the device is not in equi-
librium, but in a sort of steady-state. The potential step at the
source end requires a dipole of charge, whose size is determ-
ined by the width of the potential rise. These space-charge
regions have to be fully accounted for in any simulation, as
they provide both boundary conditions and physical transition
limitations on the simulation. But they require even more from
the quantum simulation [199].

In the simulation domain, the quantum problem is usu-
ally partitioned into various parts, just as in the physical
device. This partitioning was discussed in quantum theory
at least as early as the work of Lowdin [200, 201]. One
begins with the separate slice Hamiltonians that are the trans-
verse eigen-states, and builds up the structure via coup-
lings between the slices. In essence, the resulting system
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Figure 20. (a) Device schematic from figure 19. (b) Potential
variation along the device with no applied biases. (c) Potential
energy variation with positive drain and gate voltages applied.

Hamiltonian is partitioned into sub-sections. For the schem-
atic in figure 19, there will be five diagonal blocks, one each
for the source, drain, channel, and the two transition regions.
The off-diagonal blocks will describe the interactions between
one region and its two neighbors. This general form is found
in all four of the quantum simulation techniques mentioned
above, although in many applications that have appeared, the
two interaction regions have been relegated to the off-diagonal
parts of the matrix. This is explained in a little more detail
in figure 21 [202]. Here, the various slices that make up the
device are shown in panel (a), while the total Hamiltonian is
given in panel (b). There is a group of slices that correspond
to each part of the device discussed in figure 19 (it should
be mentioned that there are other methods to reduce the size
of the Hamiltonian; in two dimensions one such is [203]). In
this figure, the transitions may be considered to be the last
electrode box closest to the device and the light grey boxes,
coupled by T, or Ty. The current through the device may be
written as [202]

oo
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(16)

where the p are the Fermi levels in the left and right con-
tact regions, and T}, is the transmission of a particular wave in
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Figure 21. (a) Schematic representation of an ‘atomic’ system, in
which the left and right electrodes are the source and drain
respectively, and the device is the channel. Each block may be
several layers thick, in which a layer is described by the quantized
transverse states, which may themselves be built up from atomic
wave functions. The couplings are indicated by the arrows. (b) The
total Hamiltonian that results from the slice representation of (a).
The central device is shown in the dashed box. Reprinted from
[202], Copyright (2003), with permission from Elsevier.

the left contact (fully to the left so that that particular layer is
nearly in equilibrium) to a particular wave in the right contact
(again, fully to the right so that that particular layer is nearly
in equilibrium).

It was emphasized by Landauer [117] that the transmission
must be computed from the far left to the far right, and not just
over the device region, in order to properly account for the role
played by the charge dipoles mentioned above. Indeed, (16)
may be immediately recognized as one form of the Landauer
formula. While some feel that this formula is limited to low
temperature ballistic systems, this is not the case. If properly
applied, (16) is quite universal and even handles the presence
of significant scattering. Thus, it is an important equation to
keep in mind, as many, if not most, of the four methodolo-
gies for quantum transport will eventually use the Landauer
formula. However in semiconductors, there is an additional
change due to the fact that these are not metals. Hence we have
to account for the fact that different modes can have different
propagation velocities. This requires the modification of the
transmission terms to

|Tlr|2 - :l|trlm|27 (17

m
where this measures the transmission ¢,,,, from mode n on the
left to mode m on the right, and summations over the modes
must be made.

In principle, the entire matrix of figure 21(b) can be inver-
ted to find the eigenvalues, but this can be expensive. For
example, with a three dimensional device and a grid size of
100 x 100 x 100, the order of this matrix is 10°. This is solv-
able, but usually only with massive supercomputers. A more
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common method is to iterate the solution from the two ends.
For example, beginning by solving just the Hamiltonian of the
far left slice of figure 21(a). This would be just 100 x 100, or a
matrix of order 10%, which is considerably easier. This is dis-
cussed in the next few paragraphs. In either case, an important
property of the system lies in the diagonalization of the ger-
mane Hamiltonian. It is needed, for example, in (16) where the
transmission is computed for a mode, but Poisson’s equation
requires the amplitude at each site (the density at each site).

Another method that has some promising properties is the
contact block reduction method (CBR) [204]. In this approach,
all of the surrounding world is projected into the dashed box
in figure 21(b). This greatly reduces the size of the matrix that
has to be inverted, and this inversion is done only once. As
this is usually applied to Green’s functions, it will be discussed
further when these are dealt with.

3.1 The Schrédinger equation

The normal approach to solving transport using the
Schrodinger equation is straight from the textbook. This
involves matching the wave function and its derivative at
each slice of the structure (across the interface, as shown in
figure 21). But, this is generally unstable when a large number
of such interfaces are present, due to the presence of evanes-
cent modes that must be accurately treated. This leads to both
increasing and decreasing exponentials, and that is the source
of the instability. Stability can be restored by modifying the
recursion to one based upon the scattering matrix, which has
long been a staple of microwave systems and entered quantum
mechanics through the Lippmann—Schwinger equation [205].
The stability of this approach lies in the fact that modal solu-
tions maintain their orthogonality through the scattering pro-
cess [205]. In small devices, the connection to microwave
theory becomes stronger as the transport becomes dominated
by the modes introduced by the lateral confinement, much as in
a microwave waveguide. The use of scattering states provides
a method of building up an orthogonal ensemble, even with
weighting of the states by e.g. a Fermi-Dirac distribution
[206]. This is particularly useful for the initial conditions of
the wave function in a particular semiconductor device [207].
In the end, this approach allows to determine the transmission
from one end to the other and evaluate the conductance via
the Landauer formula.

Normally, the transport would be governed by the size of
the Hamiltonian. In the scattering matrix approach however,
the matrix is twice that of the Hamiltonian due to the exist-
ence of waves traveling in both directions. These are separated
to avoid the exponential problem of wave function matching.
Thus, the modes and their momentum wave numbers are com-
puted at the far left slice in figure 21, via the matrix [208-210]

U, U

=1 v, ru_ |’

(18)

This is a scattering matrix form. Prior to this, the Hamiltonian
for this first slice is solved to find the eigen-functions and the

eigen-energies. The U matrices are then the similarity matrices
for the forward and backward solutions for the wave functions,
while the A matrices are the eigen-value matrices. Normally,
we think of the similarity matrices being the transformations
on the Hamiltonian as

U'HU = ElI, (19)
where I is a unit matrix. In other words, this matrix allows
one to diagonalize the Hamiltonian, and find the eigen-values
for the particular slice. Since, these eigen-values, for propagat-
ing waves, can correspond to forward or backward propagation
for that particular slice, the system is doubled in dimension in
order to separate the two types of eigen-values [208]. When the
Hamiltonian is inverted to find the eigenvalues, a result is the
similarity transformation matrix U, which is used to diagonal-
ize it. This matrix is also computed during the process, and it
(or its adjoint, depending upon the details of how one defines
it—the order of matrices in (19)) contains valuable informa-
tion. The columns of this matrix are the modes and their values
at each site on the grid used to solve Schrodinger’s equation.
The rows are the values of the various modes at a particular
grid point. This matrix is now a mode-to-site transformation
matrix.

The matrix (18) changes the mode wave functions into the
site wave functions in this zero-slice initialization of the pro-
cess. Process through the structure is generated by solving the
required normalization to a unit matrix of the following set of
matrices [55, 57, 211]:

(1) (2)
G G| = .
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(1)
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where the / are unit matrices. C}l) and C}z) are the amplitudes
of the forward and backward modes respectively. The initial

values of C(()l)

tion in the far left slice (between O and 1), while C(()z) =0.
The P matrices will be found from the basic scattering mat-
rix requirement that

(20)

are determined as the value of the Fermi func-
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Equating these last two equations gives
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These are now propagated to the Nth slice, which is the end
of the device and H, region, and then onto a terminating slice.
For various points in the device, T will become T, as indic-
ated in figure 21. At this point, the inverse of the mode-to-
site transformation matrix is applied to bring the solution back
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to the mode representation, so that the transmission coeffi-
cients of each mode can be computed. The density at each
point in the device is determined from the wave function
squared magnitude at that point, which is back propagated
from the terminal so that the wave function at site i in slice j is
given as

Vi) :P]m +R](2)7/15.J'+1~ (23)
This solution technique for the direct Schrodinger equation
was used for the MOSFET depicted in figures 14 and 15 above.

If there is no scattering, and the device transverse dimen-
sions remain constant from one end to the other, then the vari-
ous modes will be uncoupled, so one can simply use the Land-
auer formula. This provides a type of ballistic transport for a
small device and has been used to study wave function pen-
etration into the gate oxide [212], and to study a double-gate
FET in TMDC:s as a biological sensor [213]. A slightly differ-
ent formulation, termed the quantum transmission boundary
method [214], has been used to study the effect of defects in
graphene nanoribbon FETs [215].

It is not necessary to avoid including scattering, as it can
naturally be added via a self-energy correction [216] (the self-
energy is discussed further below). Primarily, the scattering
is represented by the imaginary part of the self-energy, and
this was calculated for all common scattering processes [216].
With these scattering processes, the crossover from ballistic
to collision-dominated transport (usually referred to as the
ballistic-to-diffusive crossover) was studied for Si and for a
variety of temperatures and materials [124, 216, 217]. Thus a
direct solution method provides a viable simulation technique
for FETSs that can be done on a standard desktop computer and
provides accurate representations of the quantum physics.

3.2. The density matrix

The second approach, which is one of the most straight-
forward approaches, creates a matrix of modes. Generally, the
Schrodinger equation is solved by assuming an expansion of
the wave function in a suitable basis set so that each basis func-
tion is an energy eigen-function according to

just as is done for the regular solutions of the previous section.
Here, E, is the energy level corresponding to the particular
basis function ¢,. For example, in a quantum well, the basis
functions are the set of wave functions corresponding to the
bound states of the quantum well. In a quantum wire, these are
the bound states arising from the quantization resulting from
the wire width (and height). In both of these cases, the basis
functions are the mode wave functions. They have values on
the sites of the grids used in the computation. Then, the total
wave function can be written as

Y (rt) = chsan (r) e En/h, (25)

For the general situation, one may then define the density mat-
rix, as a single time function, to be

p(r.r' ) = ol (r) Gu (') x EnE/R - (26)

The off-diagonal elements are rapidly oscillating in the differ-
ence frequency, so that they are usually ignored in transport
theory. However, these off-diagonal elements are generated in
the complex device and represent entanglement of the various
modes, such as that occurring in figure 12 [218].

Generally, the device is embedded within an environment,
such as shown in figure 21, and this environment can include
other devices. So, the total Hamiltonian can be written as [31]

H=H, +Hgey + Ho—g, (27)
where the last term represents interactions between the device
and its environment. Since measurements are always made in
the environment [59], the coupling between the device and
the environment is crucially important. The reduction to the
dashed box in figure 21 can be achieved through the use of pro-
jection operators [219], in which the goal is to find the equation
of motion for the reduced density matrix

Pdev = Tren {P} . (28)
The problem is that the equation of motion arises from the
normal Liouville equation in which

n2

—Hp—pH=[H
5 ~HP—p [H.p],

(29)
where the last term defines the commutator relationship. It is
to this equation that the projection operators are applied [31,
53, 57]. The details will not be presented here, as they are com-
plicated and the result agrees with intuition. The end result is
that the equation of motion for the device density matrix is
found to be

apdev

ih
! ot

- [(Hdev +Hefd) 7pdev]

t

+ / &[S (1) paes (1 —1')].

0

(30)

where in the last term, X (') is the self-energy mentioned
above and represents scattering within the device and between
the device and its environment. The reduced interaction (rep-
resented by the overhead bar) in the first term represents effects
of the environment on the device, such as boundary conditions
affected by the environment.

There are two common approaches followed from here to
obtain solution techniques of use for the solving of the prop-
erties of a device. In the first approach, a set of balanced
equations for the density, momentum (current), and energy
are obtained [220, 221], just as are normally done with the
Boltzmann equation [222]. These equations are referred to as
the (quantum) hydrodynamic equations. These equations were
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Figure 22. The potential in the 5 nm thick device. The reference
level is the Fermi energy in the source region. Reprinted figure with
permission from [233], Copyright (2020) by the American Physical
Society.

used to study tunneling in single and double-barrier structures
[64, 223]. Often, these approaches bring the explicit quantiz-
ation in a confined structure into the problem via an effective
potential, and this approach was used to study the carrier dens-
ity distributions in a GaAs HEMT [224].

It is possible to directly use the Liouville equation (28), and
try to solve this equation directly. However, it is not obvious
that one can do this for an application in a small semiconductor
device. One problem is that we cannot just do the diagonal
terms in the density matrix, but must also properly account
for the off-diagonal terms [225]. But there is a long history of
this approach [226]. The presence of the reservoirs, or con-
tacts, generally lead to interferences that appear within the
oft-diagonal terms [227-230]. Indeed, this approach has been
used to study the transport through a small n* — n — n" struc-
ture in Si [231, 232]. More recently, this approach has been
applied to a double-gate ultra-thin-body Si MOSFET [233].
The channel region was 5 nm thick and 10 nm long, and lightly
doped. The source and drain regions were more heavily doped.
In figure 22, the potential throughout this device is shown. The
effect of phonon scattering and interface roughness scattering
are shown in the distribution functions in figure 23, where the
diagonal terms of the density matrix are plotted as a function
of energy.

The second approach develops a proper quantum kinetic
equation and then solves it directly for the density matrix,
an approach that is amenable to using ensemble Monte Carlo
particle methods [234]. The density matrix is more complic-
ated than a classical approach as there are two positions and the
time along either of these must be considered. But a path integ-
ral equation can be constructed from the equation of motion for
the density matrix, and this serves as the basis for developing
a Monte Carlo procedure. More importantly, this procedure is
not limited to just the lowest-order scattering processes [235].
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Figure 23. The diagonal elements of the density, plotted as a
function of energy, for the source and drain of the device. The latter
represents the final occupation for (a) phonon and (b) interface
scattering. The solid and dashed red lines represent the expected
ballistic occupation from source and drain, respectively. Reprinted
figure with permission from [233], Copyright (2020) by the
American Physical Society.

General Monte Carlo techniques coupled with the density
matrix have been discussed by Jacoboni [236]. This approach
was used to follow time-dependent wave packet trajectories,
and the Bohm potential, in order to build up the density mat-
rix [237]. Monte Carlo was also used with the density matrix
to study interband tunneling of holes at high electric fields in
GaN [238].

3.3. Nonequilibrium Green'’s functions

With the classical Boltzmann equation, one has a nearly equi-
librium situation in which the distribution function is a Max-
wellian or a Fermi—Dirac at a temperature possibly above that
of the lattice. One often couples this with an assumption that
the contacts are in near-equilibrium, but this is not always true,
as was seen in figure 13, and this assumption is no more likely
to be true in the quantum case. Then in the hot carrier system,
and that means most devices, the distribution is unknown and
has to to be found via one of several possible methods to solve
this version of the Boltzmann equation, as the currents (and
therefore the device characteristics) are found from integrals
over this distribution.

In quantum mechanics, the system is quite the same, giv-
ing rise to excitations that propagate under the action of
the potential. The NEGF include new functions that must
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be found to describe this very non-equilibrium distribution
[239, 240]. With these Green’s functions, the wave functions
1 and 9T go beyond the simple forms (25), as the coefficients
become expressed as fermion creation and annihilation operat-
ors. Thus, the wave functions are referred to as field operators
[57], and the Green’s functions determine the transport of an
excitation over a certain distance (given by the two positions
and times in the arguments) to where it is annihilated (or des-
troyed). In this sense the Green’s functions describe transport
through the system. In terms of these two field operators, one
uses the anti-commutators for fermions as

{A,B} =AB+BA, (31)
and the four Green’s functions in NEGF are described by
Gy (rrtt') = =i0 (=) { (r.0), 91 (1) |
Ga(r,'51,1") = 10 (1o = 1) {1 (,4), b (r.0) |
G< (r,rst,t")y = bt (' ;1) 1) (r,0)
G (rr'st,t") = =it (r,) 0T (1) (32)

Here, G, and G, are the retarded and advanced Green’s func-
tions respectively, and derive from the near equilibrium case
where the distribution function is a Fermi-Dirac function.
These define the spectral density as

A (kyw) = —-Im{G, (k,w) — G, (k,w)}, (33)
where k and w are Fourier transforms of r—r’ and t—1¢'
respectively. The spectral density relates the energy to the
momentum of the quantum state. Classically, this is a delta
function asserting that, for example E = p2 /2m*, where the
momentum p = hk and m* is the effective mass in the semi-
conductor. In quantum mechanics, the presence of state broad-
ening leads to a breakdown of this equality, thus leading to the
need for the spectral density. These two Green’s functions, G,
and G,, are operator expressions, hence the anti-commutation
(curly) brackets common for fermions.

The other two Green’s functions in (32) are not operators,
but are correlation functions related to the distribution function
that must be found for the non-equilibrium device. The con-
nection between these two functions is not accurately known
in the far from equilibrium case, but has been hypothesized to
maintain the same form as found near equilibrium [240]. This
ansatz thus gives the less-than function as [241]

G= (kw) =f(w)A (kw), (34)
and the greater-than function as
G~ (k,w) = [f(w) + 1A (k,w), (35)

where f(w) is the nonequilibrium distribution function. As one
can infer from the multitude of functions, using the Green’s
functions is far more difficult than using either wave functions
or the density matrix.

The correlation functions (34) and (35) require a pair of
equations of motion for these quantities. With the added

21

complications of having four functions, these equations will
be more complicated than the simple Boltzmann equation.
Keldysh [242] introduced a general method with a single mat-
rix Green’s function, and hence a single matrix equation to be
solved. This does not reduce the overall effort required, but it
simplifies the equations in which these functions are described.
The Keldysh matrix involves a contour that defines the evol-
ution of time between ¢ and ¢’, either forward or reverse in
time. This contour is drawn from the initial time (¢, or 0) to the
time of interest (the lower part of the overall contour) and then
back to the initial time (the upper part of the contour). Each
of these field operators can be on the upper line or the lower
line of the overall matrix. The matrix is a 2 x 2 matrix. The
wave functions enter the Green’s functions through (32). The
rows of the Keldysh matrix are defined by the operator v (r, 7).
That is, row one of the matrix corresponds to when t is on the
lower line, while row two is defined when ¢ is on the upper line
of the trajectory. Similarly, the operator 1T (+,¢') defines the
columns of the matrix. Column one is defined when ¢’ is on the
lower part of the trajectory, while column two is defined when
t' is on the upper part of the trajectory. This is discussed fully
in more detailed treatments [57], but is not all that germane
to the discussion here. This contour ordered matrix may be
written as:

_ Gr GK
GC - |: 0 Ga :| ) (36)
where the Keldysh function is
Gk=G~+G~, (37

and G< and G~ are given by the third and fourth lines of (32),
respectively. From the Liouville equation (28), the equation of
motion for the Green’s functions can be written as [242]

|:lhaat —H() (r) — V(r)] GK =hl— EGK
[_lhaaﬂ — H() (r’) — V(V’):| GK = hl— GKZ. (38)

Here, the bold-face characters are the matrix forms following
(36). The Keldysh approach and its failures will be discussed
further in the appendix.

Most modern approaches to the use of NEGF for devices
base their work on the Keldysh [242] formulation. The scat-
tering self-energies 3 depend on the correlation functions G<
and G~ and on the greater and lesser Green’s functions of
the phonons, which account for the occupancy of the phonon
states and depend on the phonon energies. Keldysh himself
uses the S-matrix from equilibrium theory that works only
upon the assumption that the system is close to equilibrium, so
that the normal techniques can be used. Keldysh also assumes
the interaction representation, in which the scattering-derived
. is assumed to follow from a unitary time-translation oper-
ator. But this assumption fails when the energies contain self-
energies so that the Hamiltonian is no longer Hermitian. More
importantly, Danielewicz has pointed out that correlated initial
conditions also make the S-matrix questionable at best [243].
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The entire concept of the contour mentioned above is also
debatable. When electric fields or forces are applied to the
device, the entire complex system undergoes a phase trans-
ition that breaks time-reversal symmetry. The device, within
its environment, then seeks a steady-state if it exists; a far-
from-equilibrium stable state that balances the driving forces
and the dissipative forces [53]. During the transient evolution
to this stable state, the system may evolve though a number of
intermediate phases: e.g. homogeneous, inhomogeneous, lin-
ear, nonlinear, etc. When these driving forces are removed,
the system response does not reverse its course through these
different phases, but seeks a relaxation toward the equilib-
rium steady-state from which it initially deviated. This excit-
ation/relaxation cycle may involve significant hysteresis. The
excitation process generates entropy [220]. The relaxation pro-
cess does not remove this entropy from the system, but gener-
ates even more as dissipation still occurs during this relaxation.
The adoption of a time-ordered contour that smoothly retraces
itself to its initial state is contrary to this physics (discussed
further in the appendix).

Many approaches to using the NEGF use this perturbation
theory expansion to arrive at X, even in the case of impurity
scattering. It has already been pointed out that this approach
will not yield the interferences seen in figure 12. More prop-
erly, the terms X Gk and G should be two-particle Green’s
functions, and their partition into a pair of single particle
Green’s functions is not clearly evident, as it ignores all cor-
relations. The evaluation of a two-particle Green’s function is
usually much more complicated and cannot be reduced to a
simple Dyson’s equation. Rather, it needs the full evaluation
of the Bethe-Salpeter polarization [57]

&dK’

H(k,w)=Gr(k,w)Ga(kaw){k/'ka(k/_kH—/(277)3

k' -k
X ?A(k’ — k)T (k' W) },
(39)
which then enters the conductivity as
eh [ &Pk [dw! If(w’)
=— II (k' w' .4
Pk =i [ o [ e G o

The distribution function f(w) comes from (34). Failure to
incorporate the Bethe—Salpeter equation should cause a ques-
tioning of results found with the use of NEGF.

Most approaches for actually solving for device response
with NEGF rely on a version of the CBR mentioned above.
With this approach, the Green’s functions can be reduced to
those of the device itself (the region in the dashed box in
figure 21). The CBR leads to equations of the form [244]

G*(E) =A™ (E)Go (E)
AT'GY A7'GY

= ! U , (41
—AgAT G+ GY, —AuATGY 4G “h
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with

A(E)=1-Gy(E)X(E). (42)
The subscripts are written according to figure 21. The mat-
rix A can easily be evaluated using the properties of the self-
energy, which is presumed to be non-zero only where the sys-
tem makes contact with the external leads. This obviously
means that ballistic transport is being assumed throughout the
device. But in the case of ballistic transport, NEGF is an unne-
cessary afterthought. For ballistic transport, the coupling to
leads gives the self-energies that define the transmission from
one lead through the device to the next lead as [245]

I=1,G,I'\G, (43)

and the trace over the matrix 7 is used in the Landauer equation
(16). The I" are the imaginarly parts of the self-energies that
arise from T, and T, Since the two Green’s functions in this
equation are the equilibrium Green’s functions, use of NEGF
seems to be overkill and is used more for hype than for need.

It is clear that the interference from impurities can be
treated with NEGF from the earliest applications to real
devices [103]. More recently, the role of fixed charges in Si
nanowire FETs was examined, taking full account of the atom-
istic positions of the fixed charge within Poisson’s equation
(and not with perturbation theory) [246]. These authors clearly
demonstrated how a few random dopants can greatly affect the
nanowire FETS. The effect of random dopants in an InAs drain
region for a Si tunnel FET was also examined [247]. Then,
using DFT to calculate both the band structure and the full
asymmetric wave functions of donor electrons in Si nanowire
FETs, it was clearly established how this anisotropy could
affect the transport properties [104].

NEGF was used early to study the properties of double-gate
MOSFETs and showed that channel length modulation and
drain-induced barrier lowering became significant for chan-
nel lengths below 15 nm [248]. It was also used to study a
double-gate SOI Si MOSFET [249], and to study the role of
phonon scattering in multi-material nanowire FETs and Fin-
FETs [250]. In figure 24, the current spectra found in this latter
work, overlaid on the potentials, are shown for two Si nanowire
FETsof 2.2 x 2.2 N m? and 3.6 x 3.6 N m?. It may be seen that
the larger cross-section device has less change in the current.
The hot electrons have not relaxed in this larger device even
after 65 nm of drain region. It may be concluded from this that
the denser density of states in the smaller wire has more dissip-
ative scattering than the slightly larger wire, and that relaxation
of the carriers extends well into the drain regions for quite a
distance.

Others have also studied nanowire FETs of various types
[251] and FinFETs [252], as well as various tunneling struc-
tures [253]. Strong simulation packages using full band struc-
ture and NEGF for transport have appeared for FETs over the
years [254, 255]. There have been several studies of alternate
material FETs, typically graphene and TMDCs, that have used
NEGEF as well.
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Figure 24. Current spectra taken for Si nanowire FETSs of (top)
2.2 x 2.2 N 'm” and (bottom) 36 x 3.6 N m*. The drain region is
64 nm in length and Vg = 0.9 V. The dotted white line is the first
subband and the dashed red line is the current-energy variation in
the device (basically the integral over the cross-section of the
product of current and kinetic energy). This dashed red line shows
clearly that the hot carriers have relaxed even after 64 nm of drain.
Reproduced from [250]. CC BY 4.0.

3.4. Wigner functions

In classical physics one uses the Boltzmann equation, which
yields a distribution function that is defined in position,
momentum, and time. Hence, there has always been a desire
to have a phase space formulation in quantum mechanics, and
one was developed quite early by Wigner [68]. To approach
this, and to clarify the two positions and time that appear in
the density matrix, as well as the NEGF, the center-of-mass
and difference coordinates are defined through

=

R=:(r+r")

s=r—r" ~ (44)
Like the density matrix, the Wigner function has only a single
time, so that the times in NEGF are set equal as t=1' =1.
Then, the density matrix may be transformed on the difference
coordinate as

1 s s .
dsp (R 3,8 3.0 ersin,
/sp +2 ) €

= (45)

Jfw(R,1)

Using the Liouville equation (28), this leads to an equation of
motion for the Wigner function that is expressed as (in one
dimension)

23
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sp’

’ ) x|v(r+

s’ )]

(47)

W(R,p'):/ds sin( )—V(R—%

The term W(R,p’) is often called the Wigner potential. Scat-
tering has not been included, but it is easily incorporated by
a gain-loss term added to the right-hand side of the equation.
This is usual for treatment of devices, and we will return to
this below.

The Wigner function is not a positive definite function
under far-from-equilibrium conditions [256]. This is a con-
sequence of the uncertainty relationship. If the Wigner func-
tion is integrated over position or momentum, a positive def-
inite function gives the probabilities (square magnitude of the
wave functions) in momentum or position respectively. The
negative excursions of the function exist over phase space
regions whose volume is of order 7’ (in three dimensions),
so that smoothing the function over a volume correspond-
ing to the uncertainty principle will produce a positive def-
inite function. The Wigner function is always positive definite
in the ground state appropriate to equilibrium. But the onset
of negative excursions of the Wigner function are viewed as
the appearance of correlation and/or entanglement [58]. Such
correlation or entanglement is connected to off-diagonal ele-
ments of the density matrix [218], and these lead to oscillatory
behavior in the Wigner function and the negative excursions.
Because of the phase-space nature of the Wigner distribution,
it is possible to identify where quantum corrections enter a
problem by comparing it with the classical version. Wigner
himself derived an effective quantum potential that can be
used as a correction term for the potentials in thermodynam-
ics [68]. It is worth remarking that many start their study of
devices with NEGF, but finally resort to using the Wigner
function [257].

As with Green’s functions, early use of Wigner functions
for transport considered resonant tunneling diodes [207, 258].
Such tunneling can be seen in figure 25, where a Gaussian
wave packet is in the process of tunneling through a 3 nm
AlGaAs barrier, with GaAs regions on either side [259]. The
total wave packet still has components that represent the ini-
tial wave packet (on the right below the barrier, represen-
ted by the two black lines), the reflected wave (on the left
below the barrier), and the transmitted wave (above the bar-
rier). It is worth noting that a wave packet is composed of
a great many waves, and the figure shows how the reflec-
ted components actually slow down and then accelerate into
the backward direction. Reflection and transmission is not
instantaneous in quantum mechanics, but occurs over a period
of time, which is characteristic of the motion of the wave
packet. The wave here is incident on the barrier at a slight
angle, which is observed in the ‘tilts’ of the partial waves,
and there is a small electric field applied which is appar-
ent in the increasing momentum as the wave moves forward
(upward).
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Figure 25. Tunneling of a Wigner wave packet through a 3 nm
single barrier in the GaAs/AlGaAs system. The incident and
transmitted partial waves have positive momentum, while the
reflected wave has negative momentum. Reproduced with
permission from [259].

The Wigner equation of motion (45) is quite similar to
the Boltzmann equation, except for the complication of the
Wigner potential, which arises from the nonlocal properties
of quantum mechanics. Nevertheless, it is possible to trans-
form the equation of motion into a path integral form, from
which a Monte Carlo procedure can be developed. As has been
mentioned in the Introduction, the idea of using particles in
quantum mechanics was discussed quite early by Kennard [2].
The concept of a Wigner path is thus useful, as it provides a
representation of the quantum evolution, and leads to numer-
ical simulation of the Wigner equation of motion. Such a path
is followed by a small sample of the Wigner function as it
evolves through phase space (these are represented by the
particles used in the simulation). Moreover, this path evolves
quite like a classical particle, except for scattering and for rap-
idly varying quantum potentials, as described by Kennard [2]
and later by Bohm [51]. Using paths guided by the Bohm
potential has been used extensively by Oriols [260]. In using
particle approaches with the Wigner function, there are a few
quantum issues that have to be addressed. First is the problem
of including interference effects leading to negative excursions
for the Wigner function. Second will be the nonlocal effects
that have to be treated in scattering processes, especially those
that appear in treating FETs.

The problem of phase is dealt with first. An early approach
used a weighted Monte Carlo in which each particle was
assigned a particular weight [261]. A variant to include paths
with negative weights handles the negative parts of the Wigner
function [262]. Because some of the Monte Carlo particles
carry negative weights, a problem arises as to how to keep the
density at its nominal value, as there may well be more simu-
lation particles than real particles. This can be handled easily
within the simulation, and the weights are termed affinities.
The Wigner function at a point in phase space can be described
by a sum over the particles as
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fw(r,k) = ZAics(’”* ri) 0 (k—ki),

i=1

(48)

where N is the number of simulation particles and A; is the
weight, or affinity, attached to each of these particles. Absorb-
ing boundary conditions on the exit boundaries from the device
may be instituted in a very easy manner. An important aspect
of the affinity is its sign and magnitude change during the sim-
ulation. The nonlocal Wigner potential determines the change
in the affinity that each particle possesses. That is, the wave
nature of the particles is maintained through the variation of
each particle’s affinity. This affinity was used for figure 3.

The weight and the affinity are really artificial numerical
quantities whose purpose is to simulate the quantum phase
interference that occurs during real propagation within a semi-
conductor device. A melding of these two concepts was pur-
sued in another approach [263], which led to the adoption of a
pure sign convention [264, 265]. This creates a model in which
the Wigner function is considered to include a Boltzmann-like
scattering term, and a generation term. The quantum informa-
tion is carried by the sign of the quasi-particles. This approach
is most useful when treating the interaction with the non-local
potential as a scattering event. When a scattering event from
the potential occurs, two new particles are created, and thus
two new wave packets, one with the momentum increased by
g and one where it is reduced by ¢, with ¢ determined randomly
from the probability distribution of the potential’s spatial Four-
ier transform. The sign on one of these new particles is taken to
be the same as the incident particle, while the sign on the other
is the opposite. These signs are taken into account in each aver-
aging process that is used to find average values. Equivalent
particles with opposite signs annihilate one another when they
meet in phase space, i.e. when their wave packets overlap. This
approach was used for figure 12. The Wigner Monte Carlo
approach was used to simulate double-gate MOSFETsSs [266],
especially on the nano-scale [267]. In figure 26, the schematic
of a nano-scale double-gate MOSFET is shown for these sim-
ulations. The source and drain regions are heavily doped and
are degenerate, while the channel region is undoped and has
a gate length of 6 nm. The Si layer thickness is taken to be
3 nm. In figure 27, the quantum calculation is compared to a
classical calculation for the lowest sub-band occupancy in the
sub-threshold region. Interference fringes may be seen in the
quantum calculation, but not in the classical simulation.

The above simulation for the sub-threshold behavior gives
results similar to those for the transistor when it is turned
on. In figure 28, the Wigner function is shown for the low-
est propagating sub-band in a gate-all-around cylindrical
nanowire Si MOSFET with diameter of 50 nm diameter and
channel length of 60 nm [268]. It may be seen that the low-
est sub-band, which is pictured, moves smoothly through the
device, accelerating in momentum as it follows the electric
field. Both ballistic transport and scattering due to impurities
and acoustic phonons are shown. In either case, as well as the
sub-threshold behavior of figure 27, the current-carrying car-
riers are not relaxed well in the drain. One can clearly see the
separation of these carriers from the main body of carriers in
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Figure 26. The simulated double-gate MOSFET structure. Highly
doped source and drain regions are 15 nm in length. [267] John
Wiley & Sons. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,
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Figure 27. (a) Cartography of the Wigner function for the lowest
subband in the (100) valleys of the Si in the sub-threshold region
(Vgs =0.25V, Vps = 0.7 V) at 77 K. (b) The equivalent
distribution for a semi-classical simulation at the same bias and
temperature. [267] John Wiley & Sons. © 2008 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim.

the drain in figure 28. Similar behavior has been reported by
Croitoru et al [269, 270].

As remarked above, many approximations are used to
include collision effects and scattering within the Wigner
approach. These are typically the normal semi-classical scat-
tering functions, modified slightly to account for off-shell
effects and collisional broadening. Levinson has developed
a formal approach to Wigner scattering [271], and his res-
ults support this approach. In quantum transport, scattering
from a phonon, for example, does not have to be local; the
event may spread over a small spatial distance. The collision
is not instantaneous, but takes a few femtoseconds to be com-
pleted [272]. With the intra-collisional field effect, in which
the particle continues to be accelerated by the field during
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(b)

k(nm™)

k(nm™)

Figure 28. Contour plots for the partial Wigner functions (of the
current-carrying lowest mode) and the main body of carriers in the
source and drain. The biases are Vg =1 V and Vp = 0.3 V. (a) The
ballistic case. (b) The case for scattering by impurities and phonons.
Reprinted from [268], Copyright (2002), with permission from
Elsevier.

this short time, the particle also moves a short distance, which
makes it nonlocal. In addition, the loss of a one-to-one corres-
pondence between energy and momentum leads to broadening
of the energy conservation that arises from replacement of the
delta function by the spectral density function.

While it is not something that is often discussed with the
Wigner function, the momentum arises from the difference in
the two positions of the wave functions, as may be seen in
(44) and (45). The momentum is therefore normal to the main
diagonal in the density matrix. The time duration is the time
required to transit between the two positions at the correspond-
ing momentum. These different variables are thus tied together
in a self-consistent manner. Many methods have been sugges-
ted to include the collisional displacement as a modification
to the use of semi-classical scattering within the Monte Carlo
method [273-275]. To properly include the role of the finite
collision duration, we need to account for two effects: (a) the
collision duration itself and the resulting energy shift, and (b)
the position change during the collision. During the collision,
the position changes approximately as [276, 277]

eF-v(t) 1,

mv(t) 2 e

> (49)

ox=|v(r)+
where F is the electric field and 7, is the collision duration.
The first term is just simple displacement due to the particle’s
motion. The second term represents the intra-collisonal field
effect. During the interaction, there is an overlap between the
two wave packets at the two positions separated by dx. The two
wave functions are Wigner packets which may be taken to be
Gaussian in shape, which leads to the probability for a given
shift
o~ (60)?/20%

P(ox)=—

4ro? (50)

Here, o is the rms width of the wave packets. The direction
of the shift is given by the angle between the velocity and
the electric field in the dot product of (49). This provides a
method of incorporating the displacement in time and space
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Figure 29. Average (rms) amplitude of the collision displacement
during scattering as a function of position in a resonant tunneling
diode. The tunneling structure is located at x = 0. The large increase
near the tunneling structure arises from the high electric fields in
this region. The red curve is for V = 0 across the device, while the
blue curve is for V = 0.5 V. Reprinted from [277], Copyright
(2003), with permission from Elsevier.

when using the semi-classical (instantaneous) approximation
for the scattering process.
Generally, the collision duration may be considered to be
exponentially distributed, and then may be estimated by
T.=—1/In(r), (51)
where 7./ is the maximum collision duration determined from
direct calculations [272] and r is a random number between 0
and 1. In figure 29, the average displacement during the colli-
sion is plotted for a simulation of a resonant tunneling diode
[277], with the tunneling structure centered around x = 0. The
RTD structure contains 3 nm barriers of 0.3 eV height and
a 5 nm well. It may be seen that, away from the tunneling
region, the rms displacement is about 0.6 nm. But in the tun-
neling region, the rms displacement can be much larger. This
is because the field is considerably larger around the tunnel-
ing structure (due to the barriers), where most of the potential
drop occurs. Here, the displacement is peaked in the direction
of the electric field, and clearly shows the increase due to the
intra-collisional field effect.

4. Discussion

The FET is a simple device in concept. However, in reality,
it is a very complex system, and the simulation of it also may
be a very complex endeavor, involving full simulation of the
processes by which it is created, as well as simulation of its
operation and resulting characteristics [278]. This complexity
arises not merely from the need for a deeper understanding of
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the transport of such small or large systems, but also because
these devices interact with their environment. From a physical
point of view, a device comprises an active region, which is
open to the environment in which it is embedded. This con-
nection to the environment may be through a set of contacts,
or through interactions with the phonon structure of the lattice
upon which the device lies, or through other types of inter-
actions, as mentioned below. The experienced device engin-
eer will recognize that measurements are made in the environ-
ment, not within the device, so treatment of the environment is
essential. The central feature of these devices is that the device
dynamics cannot be treated in isolation and must be considered
in conjunction with this environment [31, 53], including the
array of other devices and interconnects nearby [279]. This is
especially true in the quantum regime [59].

Device—device interactions have not been discussed much
recently, but are known to be important in even larger devices
than some of those encountered today. It is known, for
example, that hot carriers in FETs can emit light [280]. This
light emission is believed to arise from intra-conduction band
radiative transitions of the hot carriers [281, 282]. These
photons have been observed to excite carriers in the substrate
which then affect an adjacent device, by modifying the sub-
strate bias [283, 284]. It is also known that clocking an inter-
connect line can affect charge stored in a nearby potential well
[279]. This produces a nonlinear pumping that can excite car-
riers out of the well, which has consequences for memory
devices. So there are a variety of methods whereby a device
can interact with neighboring devices and with interconnects,
all of which are part of the environment in which a device
is situated. These effects can clearly be amplified in quantum
controlled devices. At the same time, these interactions have
been pursued for the idea of quantum dot array processing
[285, 286].

While we have largely examined the entire range of
quantum effects that could occur within a FET, it must be poin-
ted out that the FET isnota “...one size fits all...” device. FETs
range from the ultra-small to the ultra-large, and they may be
digital or analog or mixed-signal devices. They may work at dc
or at THz frequencies. In any of these cases, quantization in the
inversion/accumulation layer is almost always going to occur,
but may never be observable in the device characteristics. It
is easy to see that a given device may have little in the way
of quantum effects, or it may be a maximum quantum device.
We have tried here to cover most of the quantum effects, and
the manner in which they may be simulated, but it is up to the
device engineers to determine if any or all of these effects are
germane to their device.

Transport in these complex FET systems requires a com-
plex quantum description, which takes into account coher-
ent phenomena, as well as dissipative processes of scattering,
with both modified by the interaction with the environment
as well as by the onset of quantum effects, such as the intra-
collisional field effect. There are many approaches to study the
quantum effects, as detailed in section 3. Our preference is for
the Wigner function, as perhaps was evident in this preceding
section. The use of the Wigner function is particularly useful in
studies of complex systems, as it may explicitly illustrate the
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important quantum effects and entanglement that is a signature
of quantum interactions. Particle approaches and Monte Carlo
simulation of the quantum Wigner function provide an effi-
cient approach to the study of such methods. It becomes clear
how to study each process with this approach and to estab-
lish its importance in the behavior of the overall system. The
Wigner function allows one to clearly identify the quantum
effects, particularly the entanglement that arises between dif-
ferent parts of the quantum system.

However, the industry has kind of gone in a different dir-
ection, with NEGF becoming increasingly applied in prac-
tice. But there are problems with NEGF, both conceptually
and with implementation in FETSs. These have been discussed
in section 3.3, and should not be ignored, if for no other
reason than that they call into question the accuracy of present
approaches to NEGF. Moreover, the assumption of merely
using quantum approaches for the channel region, and coup-
ling to the source and drain ‘contacts’ by a simple self-energy
term ignores a great number of important effects. Not the least
of these are the effects illustrated in figures 13, 23, 24, 27 and
28, where the hot carrier energy relaxation has not been com-
pleted even 10 s of nm into the drain region. Failure to cap-
ture these important effects can lead to simulations that are far
removed from reality.

The reader may have observed that most of the discussion
concerns the steady-state behavior of the FETs, and not the
behavior beyond dc. This is primarily because that studies
for the latter are somewhat limited. Nevertheless, the time-
dependent behavior has been reviewed [287] in a special issue
of the Journal of Computational Electronics on this particu-
lar topic. It turns out that any of the various approaches to
quantum transport discussed in section 3 can be adapted to
study the transient and steady ac response of devices, although
some have not been applied to FETs.

The wave function approach of section 3.1 has been used
to study microwave oscillations in a mesoscopic ring [288],
transport through nanowires in the presence of the spin—orbit
interaction [289], ac response of quantum point contacts [290],
and the dynamic response of laser structures [291]. Neverthe-
less, these approaches can be improved, and it should be noted
that, to date, no one has addressed the transient response of
a simple quantum point contact even though detailed meas-
urements are available [292]. Part of the problem with this
approach, as with any approach whether quantum or classical,
is that the transient response depends significantly upon the
circuit in which any FET is embedded.

The density matrix often appears in the form of a quantum
master equation, and this can easily be used to study the ac
response of a system [293]. This has been applied to the sub-
picosecond response of a mesoscopic system, such as a reson-
ant tunneling diode [294]. This has also been used to look at the
initial stages of optical absorption in a semiconductor [295],
and this has been applied to the transients in pump-probe spec-
troscopy [296].

NEGF has been used to study short-time behavior for many
years. Transient transport in bulk semiconductors has been
studied [297, 298]. A general NEGF approach to open systems
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has also been discussed [299]. NEGF has also been used to
compute the actual collision durations for optical phonons
interacting with electrons [272, 300]. More recently, general
time-dependent transport has been reviewed [301].

Transient response of resonant tunneling diodes was stud-
ied with Wigner functions was first done quite some time ago
[302]. More recently, the decoherence behavior of scatter-
ing has been studied with the Wigner function [303]. Tran-
sient behavior in devices has been studied by the Monte Carlo
techniques for decades, so that the Monte Carlo approach to
Wigner function modeling is quite easy to use for the transient
behavior of FETs as well. This follows on from the general
particle trajectory approach [304].

Most of these quantum approaches can be extended to the
study of noise as well. Noise can arise from many different
sources within a device, and the field needs a full book to treat
itin a coherent manner. A brief review of the noise and the two-
time correlation functions needed due to the finite bandwidth
of a device is given in [287]. A final point is that considera-
tion of most devices at high frequencies usually also involves
solutions of Maxwell’s equations, often through an approach
that couples the electromagnetics to the self-consistent device
simulation.

5. Conclusions

In this review, we have tried to present quantum effects in a
manner which draws attention to how they will appear in FET
characteristics, as well as how they will affect the transport.
In addition, we have tried to review the various approaches to
quantum transport that have been applied to describe FETs. Of
course FETs come in variety of flavors, and one has to evaluate
what can occur in any device of interest. The palette presen-
ted here is meant to inform these evaluations for the device of
interest.

One important aspect is that most of the approaches
to quantum transport, including both Wigner functions and
the density matrix, require proper initial conditions. While
quantum transport remains over the horizon from most FETs
today, it may be expected that this will not remain the case in
the foreseeable future. We hope that this review has helped to
ease the transition to that future.
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Appendix. Failure of the Keldysh approach

In equilibrium quantum mechanics, use is made of a unitary
operator U (¢', 1), in which U(—00,00) is used as a normaliz-
ation to the vacuum state,

’

t
U(t',1) = Texp —%/Him(t’)dT” , (A1)
t

where H;, (t'') is an appropriate interaction term (or terms)
of the Hamiltonian. This means that the interaction is turned
on (and off) adiabatically from the infinite past (or infinite
future). Keldysh [242] modifies this to move from the infin-
ite past to ¢’ and then return to the infinite past, but retains the
assumption that the operator (Al) is unitary. One important
point is that the normal trajectory (from past to future) leads
to a cancellation of disconnected Feynman diagrams in the
equilibrium case [198]. But in real devices, the interaction is
neither turned on adiabatically, nor turned off adiabatically, as
was pointed out in section 3.3. In reality, quantum field theory
(QFT) deals with self-energy corrections, which have imagin-
ary parts. In QFT these lead to divergences, which are some-
times overcome with renormalization of the masses. But ima-
ginary parts of the energy lead to problems with (A1), as it may
not result in unitary behavior. Moreover, the expansion of (A1)
into a series of terms (from which diagrams may be construc-
ted to evaluate the terms) has never been shown to converge
[305]. In the derivations of (30), several of the terms have their
own included commutators, and this leads to nested commut-
ators, such as in the current—current correlation functions used
to compute the conductivity [198]. In real systems, this can
lead to disconnected diagrams and a failure of Wick’s theorem
[305, 306], and the need for doubled diagrams (such as those
used in the Bethe—Salpeter equation [57]). Moreover, some of
the terms that arise do not arise from Wick contractions, and
the many additional terms lead to the doubled diagrams [307].

As noted, disconnected graphs are assumed to be canceled
in equilibrium Green’s functions. But, this is not the case in
nonequilibrium theory. Disconnected graphs represent two or
more interaction processes occurring among separate groups
of particles which have physical reality, but are usually omit-
ted from the Dyson equation [308, 309]. Here, these particles
have direct particle—particle interactions, and these disconnec-
ted graphs lead to phase factors that are important in inter-
ference terms. In a modern example, these phase factors are
known to be important in the braiding approach to quantum
computing [310].

Doubled Feynman graphs, especially the two-particle
graphs, appear automatically when particles interact with one
another. Even tripled graphs can be necessary, for example
when one has to deal with propagators for the nonequilib-
rium phonons. More importantly, these graphs often signal
the need for two-particle Green’s functions. In (38), the last
terms on the right are actually two terms, due to the mat-
rix product. Each 3 and G involves a creation and an anni-
hilation field operator, which means this product term actu-
ally involves two of each operator. The two resulting terms

in the matrix product arise from matching one annihilation
operator with each of the two creation operators. In fact, the
product of these four operators lead to a two-particle Green’s
function [311]. Even Feynman noted that these two-particle
Green’s functions are difficult to analyze and approximated
them with the pair of one-particle functions [312], as Keldysh
has done. But this does not make it correct, and the two-
particle Green’s function is usually solved using the Bethe—
Salpeter self-consistent integral equation [313]. Even simple
impurity scattering requires solution of the Bethe—Salpeter
equation for the two-particle Green’s function to accurately
arrive at even the classical result.

Another example of the impact of the two-particle Green’s
function is in heavily-doped semiconductors, where both the
number of electrons and the number of ionized impurities is
large. In considering the interactions between these two scat-
tering processes (electron—electron and electron—impurity),
does one screen the impurities with the electrons as done clas-
sically, or screen the electron—electron interaction with the
impurities? If one wants to incorporate the contribution of
the electron—election interaction to band-gap narrowing, the
latter has to be used [314]. In this case, the interaction site
in the Feynman diagram is given a vertex correction, which
is composed of the ladder diagrams arising from the normal
two-particle Green’s function evaluation of the Bethe—Salpeter
equation for impurity scattering, but with the two Feynman
lines pulled together at one end [55].

From these considerations, it is apparent that using NEGF
based upon the Keldysh approach is a somewhat simplistic
approach to quantum transport in real devices. Use of the
adiabatic approximation for paths and the avoidance of two-
particle Green’s functions are serious deficiencies. Even the
avoidance of disconnected graphs can lead to large errors
in interference cases such as those illustrated in figures 12
and 13.
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