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A B S T R A C T   

Using a spin drift–diffusion model for coupled spin and charge transport, including the spin Hall effect and the 
inverse spin Hall effect, spin–orbit torques acting on the magnetization in heavy metal/ferromagnet bilayers are 
evaluated employing a finite element approach. The behavior of the resulting spin accumulation and torques is 
analyzed for different magnetization orientations of the ferromagnetic layer and varying thicknesses of the heavy 
metal layer. A strong damping-like torque component, consistent with experimental results, is observed. In 
addition, sub-ns switching simulations based on solving the Landau–Lifshitz–Gilbert equation are demonstrated.   

1. Introduction 

Spin–orbit torques (SOTs) allow for efficient manipulation of 
magnetization in emerging spintronic devices such as nano-oscillators 
and nonvolatile magnetoresistive random access memories (MRAM). 
To facilitate the research and development of such devices, it is 
important to have software capable of simulating the spin and magne
tization dynamics involved in their operation. To be able to simulate 
realistic devices the flexibility of the software with regards to geometry 
is critical. To address these needs, a solver has been developed with the 
capabilities to model spin-transfer torques (STT) in STT-MRAM cells. 
The solver uses the finite element method to model magnetization and 
spin dynamics on a mesh by solving the Landau–Lifshitz–Gilbert equa
tion (LLG) and a drift–diffusion model for spin accumulation [1], 
respectively. The capabilities of this solver have been extended to 
include the spin Hall effect (SHE), the main driving force behind SOT. In 
this work we present simulation results for the spin accumulation and 
spin torques in a heavy metal/ferromagnet (HM/FM) bilayer. 

2. Theory & method 

The spin torques acting on the magnetization of the ferromagnetic 
layer are given by [2] 

Ts = De

(
S × m

λ2
J

+
m × (S × m)

λ2
φ

)

, (1)  

where S is the spin accumulation, m is the normalized magnetization of 
the ferromagnetic layer, De is the electron diffusion coefficient, and λJ 
and λφ are the exchange and spin dephasing lengths, respectively. 
Because the spin dynamics occur at a much shorter time scale than 
magnetization dynamics, we can obtain the spin accumulation by solv
ing its equation of motion for a steady state, which is given by [1–3] 

∂S
∂t

= 0 = − ∇⋅JS − De

(
S
λ2

sf
+

S × m
λ2

J
+

m × (S × m)

λ2
φ

)

. (2) 

λsf is the spin-flip length and (∇⋅JS)i = ∂j(JS)ij, where ∂j is the partial 
derivative with respect to coordinate j and (JS)i,j is the rank-2 spin 
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current tensor describing the flow of spin component i in direction j. 
The spin current is given by [2,4] 

JS =
μB

e
βσm ⊗

(

σE + βDDe
e

μB

[
(∇S)Tm

]
)

− De∇S − θSHAσ μB

e
εE, (3)  

where the last term describes the spin current generated by the SHE. 
Here μB is the Bohr magneton, e is the elementary charge, σ is the con
ductivity, and βσ and βD are the charge current spin polarisation and 
diffusion spin polarisation, respectively. In the second and third term 
(∇S)ij = ∂jSi. The ε indicates the Levi–Civita tensor and ⊗ the outer 
product. The strength of the SHE is described by the dimensionless spin 
Hall angle θSHA. E = − ∇V is the electric field and V is the electrostatic 
potential obtained from solving 

∇⋅(σ∇V) = 0. (4) 

With the assumption that the spin and charge currents vanish at 
boundaries not containing electrodes, one obtains the two following 
Neumann boundary conditions [2] 

∇V⋅n = θSHA
De

σ
e

μB
(∇ × S)⋅n (5)  

and 
(

∇S
)

⋅n = − θSHA
σ

De

μB

e
(εE)⋅n, (6)  

where n is the surface normal. The condition imposed by Eq. (5) de
scribes the inverse SHE, through which a spin current can induce a 
charge current. In this work the spin and charge currents are kept 
continuous at the HM/FM boundary. Therefore, the rapid absorption of 
transverse spin components due to interfacial effects is modeled through 
the use of effective exchange and spin dephasing lengths. 

By deriving the weak formulation of Eqs. (2) and (4) and applying 
the appropriate Neumann boundary conditions given by Eqs. (5) and 
(6), the spin accumulation and spin torques can be calculated on a mesh 
with the desired geometry using the finite element method [3]. The 
weak formulation for the spin accumulation takes the same form as the 
one presented in the appendix of [1] with the exception of an additional 
SHE term 

−

∫

Ω
θSHA

μB

e
σεE : ∇vdx

(7)  

in the linear form. Here Ω denotes a domain with non-zero θSHA, v is the 
vector test function and A : B =

∑
i,jAijBij is the Frobenius inner product 

between two matrices. Furthermore, the weak formulation for the 
electrical potential in [1] is also extended by adding to the linear form 
the term corresponding to the inverse SHE 
∫

Ω
θSHADe

e
μB

(∇ × S)⋅∇vdx, (8)  

where v is the scalar test function. The resulting weak formulations for 
the electric potential and spin accumulation are coupled since they rely 
on each other’s solutions. Therefore, both have to be solved consecu
tively, until the solution for the spin accumulation converges. With the 
solution for S, the torques can be calculated with Eq. (1). To simulate 
magnetization dynamics with the LLG equation, the spin torques have to 
be re-calculated at every time step. 

To study the dependence of the torque on several parameters it is 
useful to study the average torque acting on the magnetic layer, given by 
〈

Ts

〉

=
1

Vω

∫

ω
Tsdx, (9)  

where Vω is the volume of the magnetic domain ω. 

3. Results 

With the approach outlined in the previous section, SOTs were 
simulated for a HM/FM bilayer structure using a spin Hall angle of 0.06 
in the HM layer. The geometry used in the simulation is depicted in 
Fig. 1, where the HM layer is shown in blue while the FM layer is shown 
in red. The FM has a diameter of 30 nm, and the thicknesses of the HM 
and FM layers are 4 nm and 2 nm, respectively. The magnetization is 
fixed along − ŷ. A 2 mA current passes through the heavy metal layer 
along the x̂-direction, which generates an out-of-plane spin current 
through the SHE, resulting in a buildup of spin accumulation along the 
edges of the HM polarized perpendicular to both the current and the 
surface normals. In Fig. 2 the calculated spin accumulation is shown, 
with the color bar showing the magnitude and direction of the y- 
component. At the far and near sides of the FM a net spin accumulation 
parallel and anti-parallel to the magnetization, respectively, can be 
observed. This difference in accumulation on either side of the FM in
duces an in-plane spin current across the HM/FM interface. This effect is 
also present without the SHE and is caused by the spin injection of the 
current partly flowing through the FM layer [5]. This additional spin 
accumulation is polarized longitudinally to the magnetization and 
therefore does not contribute to the torques. 

The transverse components of the spin current incident on the FM 
layer are absorbed, resulting in SOTs acting on the magnetization. The 
resulting torques are shown in Fig. 3, where the magnitudes of the tor
ques are given by the color bar and depicted by the length of the vectors. 
Since the accumulation generated from the SHE is polarized parallel to 
the magnetization along the center of the FM layer, it does not generate 
any torques. Towards the edges, the polarization is not completely 
aligned with the magnetization, the transverse components are there
fore absorbed, resulting in torques. However, due to the symmetry the 

Fig. 1. The simulation geometry, a HM/FM bilayer, HM(4 nm) in blue and FM 
(2 nm) in red. 

Fig. 2. The spin accumulation calculated for the bilayer shown in Fig. 1 with 
the magnetization fixed along the negative y-direction. The color bar shows the 
magnitude and direction of the y-component of the spin accumulation. 
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average damping-like torque is zero. 
To investigate the dependence of the torque on the orientation of the 

magnetization, the average torque given by Eq. (9) acting on the FM was 
calculated for several magnetization directions along paths in the xy- 
and yz-plane. Fig. 4 shows the average torque as a function of the angle θ 
between the y-axis and m, with m lying in the xy-plane. Fig. 5 shows the 
average torque as a function of the angle ϕ between ẑ and m with m 
constrained to the yz-plane. As expected the magnitude of the average 
torque is at its peak, where the magnetization is perpendicular to the 
polarization of the incident spin current, and it is lowest where 
magnetization and polarization are parallel. These two figures demon
strate, why it is possible to switch the magnetization in-plane deter
ministically in contrast to the magnetization out-of-plane. Fig. 5 shows 
that for out-of-plane switching of the magnetization from z to − z the 
torque acts against the switching after the halfway point where the 

magnetization is pointing along ŷ. To complete the out-of-plane 
switching the mirror symmetry of the structure with respect to the xz- 
plane must be broken [6]. However, in Fig. 5, which demonstrates the 
torques during switching from y to − y, the torque is always working 
towards switching. 

Fig. 6 shows the dependence of the damping-like and field-like 
components of the torque on the thickness of the HM layer. The 
magnetization was kept in the z-direction and the thickness of the FM 
layer was kept at 10 nm. It is observed that both the damping-like and 
field-like components increase with increasing thickness and appear to 
saturate at a finite thickness of the HM layer, in agreement with [7,8]. As 
the torques are driven by the spin Hall effect, the damping-like 
component dominates. The Rashba effect at a HM/FM interface is 
known to give rise to a stronger field-like component. By adjusting the 
lengths λJ and λφ the field-like component can be increased or decreased 
to reflect this behaviour. 

Combining the coupled spin and charge transport calculations with a 
finite element LLG solver [9], enables to perform switching simulations. 
Fig. 7 shows the result of an in-plane switching simulation performed for 
the bilayer in Fig. 1, where the components of m are shown as functions 
of time. A voltage difference of 1 V was applied to compute the current 
and the spin–Hall angle was set to 0.1. The switching was achieved in 

Fig. 3. The spin torques calculated for the bilayer shown in Fig. 1 with the 
magnetization fixed along the negative y-direction. The color bar shows the 
magnitude of t.he spin torques. 

Fig. 4. The average spin torque as a function of the angle between the 
magnetization direction and the y-axis, with the magnetization located in the 
xy-plane. 

Fig. 5. The average spin torque as a function of the angle between the 
magnetization direction and the z-axis, with the magnetization located in the 
zy-plane. 

Fig. 6. The damping-like and field-like torque as a function of the thickness tHM 

of the HM layer. 
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less than 0.5 ns, consistent with experimental results [10], demon
strating one of the many advantages of magnetization switching with 
SOTs. 

4. Conclusion 

By implementing the SHE into a spin drift–diffusion finite element 
solver, SOTs were modeled for a HM/FM bilayer. The behavior of the 
resulting torques for different orientations of the magnetization and 
varying thicknesses of the SHE layer is in agreement with reported 
experimental results [8]. Furthermore, sub-ns switching simulations 
were demonstrated by using our approach in conjunction with solving 
the Landau-Lifshitz-Gilbert equation numerically. 
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