3.1.4 Lattice Heat Flow Equation

To account for self-heating effects in semiconductor devices, the lattice heat flow equation has to be solved.

$\displaystyle \mathrm{div}(\kappa_L\cdot\mathrm{grad}\,T_\mathrm{L}) = \rho_{\mathrm{L}}\cdot c_{\mathrm{L}}\cdot \frac{\partial T_\mathrm{L}}{\partial t} - H$ (3.25)

The coefficients $ \rho_{\mathrm{L}}$, $ c_{\mathrm{L}}$, and $ \kappa_{\mathrm{L}}$ are the mass density, specific heat, and thermal conductivity of the respective materials.

The model for the heat generation, $ H$, depends on the transport model employed. In the drift-diffusion case $ H$ equals the JOULE heat,

$\displaystyle H= \mathrm{grad}\left(\frac{\ensuremath{E_\mathrm{c}}}{{\mathrm{q...
...si\right)\cdot{\mathbf{J}}_p + R\cdot(\ensuremath{E_\mathrm{c}}- E_\mathrm{v}),$ (3.26)

whereas in the energy transport case the relaxation terms are used

$\displaystyle H = \frac{3\cdot {\mathrm{k_B}}}{2}\cdot\left( n\cdot\frac{T_n -T...
...{\varepsilon,n}} + p\cdot\frac{T_p -T_\mathrm{L}}{\tau_{\varepsilon,p}}\right).$ (3.27)

T. Ayalew: SiC Semiconductor Devices Technology, Modeling, and Simulation