3.3.4 Normalization

When implementing the analytical expressions for the distribution function and the supply function into a device simulator it is necessary to assure consistency: the carrier concentration defined by the analytical distribution function must match the carrier concentration from the transport model used. Therefore, the normalization prefactor $ A$ has to be evaluated from

$\displaystyle n = \langle 1 \rangle = \frac{1}{4\pi^3} \int f(\mathbf{k}) \, \ensuremath {\mathrm{d}}^3 k \ .$ (3.37)

This equation can be transformed to spherical coordinates using $ k = (k_x^2 + k_y^2 + k_z^2)^{1/2}$

$\displaystyle n = \frac{1}{4\pi^3} \int_{-\pi}^{\pi}\,\ensuremath {\mathrm{d}}\...
...suremath {\mathrm{d}}\theta \int_0^\infty f(k)k^2\,\ensuremath {\mathrm{d}}k\ .$ (3.38)

For a parabolic dispersion relation we have $ \ensuremath {\mathrm{d}}k = \ensuremath{m_\mathrm{eff}}/k\hbar^2 \ensuremath {\mathrm{d}}
{\mathcal{E}}$ which finally leads to

$\displaystyle n = \int_0^\infty f({\mathcal{E}}) \frac{4\pi\sqrt{2\ensuremath{m...
...{eff}}^3}}{h^3} \sqrt{{\mathcal{E}}} \,\ensuremath {\mathrm{d}}{\mathcal{E}}\ ,$ (3.39)

where the integration is performed from the conduction band edge $ \ensuremath {{\mathcal{E}}_\mathrm{c}}=0$. For a MAXWELLian or heated MAXWELLian distribution (expressions (3.20) or (3.24)), the normalization constant evaluates to

$\displaystyle A= \frac{nh^3}{\displaystyle 4\pi ({\mathrm{k_B}}T_\nu)^{3/2} \, \Gamma\left(\frac{3}{2}\right) \sqrt{2\ensuremath{m_\mathrm{eff}}^3} } \,$ (3.40)

where $ T_\nu$ is either the lattice temperature (for the assumption of a MAXWELLian distribution) or the carrier temperature (for the assumption of a heated MAXWELLian distribution). Using the non-MAXWELLian distribution (3.27) the normalization constant evaluates to

$\displaystyle A = \displaystyle \frac{n h^3 b}{4\pi {\mathcal{E}_\mathrm{ref}}^...
...( \displaystyle \frac{3}{2b} \right) \sqrt{2\ensuremath{m_\mathrm{eff}}^3}} \ ,$ (3.41)

while for expression (3.28) it is

$\displaystyle A=\frac{nh^3}{\displaystyle 4\pi\left( \frac{{\mathcal{E}_\mathrm...
...Gamma\left(\frac{3}{2}\right)\right) \sqrt{2\ensuremath{m_\mathrm{eff}}^3}} \ .$ (3.42)

A. Gehring: Simulation of Tunneling in Semiconductor Devices