Physical Quantities

Symbol   Unit   Description
$ \beta_n $   1   Electron kurtosis
$ \beta_\mathrm{Bulk}$   1   Electron kurtosis in the bulk
$ \ensuremath {\mathrm{q}}\ensuremath {\chi_\mathrm{S}}$   eV   Electron affinity in the semiconductor
$ D_n$   m$ ^2$s$ ^{-1}$   Electron diffusion coefficient
$ D_p$   m$ ^2$s$ ^{-1}$   Hole diffusion coefficient
$ E$   Vm$ ^{-1}$   Electric field
$ \ensuremath{E_\mathrm{diel}}$   Vm$ ^{-1}$   Electric field in the dielectric
$ {\mathcal{E}}$   eV   Energy
$ \ensuremath{{\mathcal{E}}_\mathrm{f}}$   eV   FERMI energy
$ \ensuremath {{\mathcal{E}}_\mathrm{c}}$   eV   Conduction band edge energy
$ \ensuremath {{\mathcal{E}}_\mathrm{v}}$   eV   Valence band edge energy
$ {\mathcal{E}}_{\mathrm{c},0}$   eV   Conduction band edge energy in the flat-band case
$ {\mathcal{E}}_{\mathrm{v},0}$   eV   Valence band edge energy in the flat-band case
$ \ensuremath{{\mathcal{E}}_\mathrm{g}}$   eV   Band gap energy
$ \ensuremath{{\mathcal{E}}_\mathrm{i}}$   eV   Intrinsic energy
$ \ensuremath {{\mathcal{E}}_\mathrm{image}}$   eV   Image force correction energy
$ {\mathcal{E}}_x$   eV   Energy component in the tunneling direction
$ {\mathcal{E}}_\rho$   eV   Energy component perpendicular to the tunneling direction
$ {\mathcal{E}}_i$   eV   Energy eigenvalue
$ \ensuremath {{\mathcal{E}}_\mathrm{im}}$   eV   Imaginary part of the energy eigenvalue
$ \ensuremath {{\mathcal{E}}_\mathrm{re}}$   eV   Real part of the energy eigenvalue
$ \ensuremath{{\mathcal{E}}_\mathrm{T}}$   eV   Trap energy level below the dielectric conduction band
$ \ensuremath{{\mathcal{E}}^{\prime}}$   eV   Trap energy
$ \phi$   V   Electrostatic potential
$ \ensuremath {\phi_\mathrm{surf}}$   V   Surface potential
$ \ensuremath {\Phi_\mathrm{f}}$   V   FERMI potential
$ \ensuremath {\mathrm{q}}\ensuremath{\Phi_\mathrm{B}}$   eV   Barrier height
$ \ensuremath {\mathrm{q}}\ensuremath{\Phi_\mathrm{W}}$   eV   Work function
$ \ensuremath {\mathrm{q}}\ensuremath {\Phi_\mathrm{S}}$   eV   Work function of the semiconductor
$ \ensuremath {\mathrm{q}}\ensuremath {\Phi_\mathrm{M}}$   eV   Work function of the metal
$ \ensuremath {\mathrm{q}}\ensuremath {\Phi_\mathrm{MS}}$   eV   Work function difference between metal and semiconductor
$ \ensuremath {\mathrm{q}}\Phi$   eV   Upper edge of a triangular energy barrier
$ \ensuremath {\mathrm{q}}\Phi_0$   eV   Lower edge of a triangular energy barrier
$ \ensuremath {\mathrm{q}}\ensuremath{\Phi_\mathrm{e}}$   eV   Electron energy barrier
$ \ensuremath {\mathrm{q}}\ensuremath{\Phi_\mathrm{h}}$   eV   Hole energy barrier
$ \ensuremath{f_\mathrm{P}}$   1   Distribution of phonons in energy
$ \ensuremath{f_\mathrm{T}}$   1   Trap occupancy
$ g$   m$ ^{-3}$eV$ ^{-1}$   Density of states
$ \ensuremath{\hbar\omega}$   eV   Phonon energy
$ \mathbf{J}$   Am$ ^{-2}$   Current density

Symbol   Unit   Description
$ \ensuremath{{\mathbf{J_n}}}$   Am$ ^{-2}$   Electron current density
$ \ensuremath{{\mathbf{J_p}}}$   Am$ ^{-2}$   Hole current density
$ k$   m$ ^{-1}$   Wave number
$ \mathbf{k}$   m$ ^{-1}$   Wave number vector
$ k_x$   m$ ^{-1}$   Wave number component in the tunneling direction
$ k_\rho$   m$ ^{-1}$   Wave number component perpendicular to the tunneling direction
$ \ensuremath {k_\mathrm{f}}$   m$ ^{-1}$   Radius of the FERMI sphere
$ \kappa $   AsV$ ^{-1}$m$ ^{-1}$   Dielectric permittivity
$ \ensuremath{\kappa_\mathrm{diel}}$   AsV$ ^{-1}$m$ ^{-1}$   Dielectric permittivity of the dielectric layer
$ \ensuremath{\kappa_\mathrm{si}}$   AsV$ ^{-1}$m$ ^{-1}$   Dielectric permittivity in silicon
$ \ensuremath{\kappa_\mathrm{sio2}}$   AsV$ ^{-1}$m$ ^{-1}$   Dielectric permittivity in silicon dioxide
$ \ensuremath{\kappa_{\mathrm{high-}\kappa}}$   AsV$ ^{-1}$m$ ^{-1}$   Dielectric permittivity in a high-$ \kappa $ dielectric
$ \mu_n$   m$ ^2$V$ ^{-1}$s$ ^{-1}$   Electron mobility
$ \mu_p$   m$ ^2$V$ ^{-1}$s$ ^{-1}$   Hole mobility
$ \mu_s$   m$ ^2$V$ ^{-1}$s$ ^{-1}$   Energy flux mobility
$ m$   kg   Mass
$ \ensuremath{m_\mathrm{diel}}$   kg   Carrier mass in the dielectric
$ \ensuremath{m_\mathrm{eff}}$   kg   Carrier effective mass in the semiconductor
$ n$   m$ ^{-3}$   Electron concentration
$ \ensuremath {n_\mathrm{i}}$   m$ ^{-3}$   Intrinsic concentration
$ N$   eV   Supply function
$ \ensuremath {N_\mathrm{D}}$   m$ ^{-3}$   Concentration of donors
$ \ensuremath {N_\mathrm{A}}$   m$ ^{-3}$   Concentration of acceptors
$ \ensuremath {N_\mathrm{poly}}$   m$ ^{-3}$   Concentration of dopants in the polysilicon
$ \ensuremath {N_\mathrm{c}}$   m$ ^{-3}$   Effective density of states of the conduction band
$ \ensuremath{N_\mathrm{T}}$   m$ ^{-3}$   Trap concentration
$ p$   m$ ^{-3}$   Hole concentration
$ P$   1   Number of phonons
$ \Psi$   m$ ^{-1/2}$   Wave function
$ \ensuremath{Q_\mathrm{T}}$   As   Trap charge state
$ \mathbf{r}$   m   Space vector
$ \rho$   1   Probability density
$ R$   s$ ^{-1}$m$ ^{-3}$   Net recombination rate
$ RC$   1   Reflection coefficient
$ \ensuremath{R_\mathrm{tun}}$   m$ ^{-3}$s$ ^{-1}$   Additional recombination term due to the tunneling current
$ S_n$   J m$ ^{-2}$ s$ ^{-1}$   Electron energy flux density
$ S$   1   HUANG-RHYS factor
$ t$   s   Time
$ \tau_{\mathcal{E}}$   s   Energy relaxation time
$ \tau_m$   s   Momentum relaxation time
$ \tau_s$   s   Energy flux relaxation time
$ \tau_\beta $   s   Kurtosis relaxation time

Symbol   Unit   Description
$ \ensuremath{\tau_{\mathrm{q}}}$   s   Life time of a quasi-bound state
$ \ensuremath{\tau_\mathrm{c}}$   s   Capture time
$ \ensuremath{\tau_\mathrm{e}}$   s   Emission time
$ \ensuremath{\tau_\mathrm{ca}}$   s   Capture time to the anode
$ \ensuremath{\tau_\mathrm{cc}}$   s   Capture time to the cathode
$ \ensuremath{\tau_\mathrm{ea}}$   s   Emission time to the anode
$ \ensuremath{\tau_\mathrm{ec}}$   s   Emission time to the cathode
$ \ensuremath{t_\mathrm{diel}}$   m   Thickness of a dielectric
$ \ensuremath {t_\mathrm{sio_2}}$   m   Thickness of a SiO$ _2$ dielectric
$ \ensuremath {t_{\mathrm{high-}\kappa}}$   m   Thickness of a high-$ \kappa $ dielectric
$ T$   K   Temperature
$ T_\mathrm{L}$   K   Lattice temperature
$ T_{n}$   K   Electron temperature
$ TC$   1   Transmission coefficient
$ v$   ms$ ^{-1}$   Velocity
$ \mathbf{v}$   ms$ ^{-1}$   Velocity vector
$ v_x$   ms$ ^{-1}$   Velocity component in the tunneling direction
$ v_\rho$   ms$ ^{-1}$   Velocity component perpendicular to the tunneling direction
$ \ensuremath{V_\mathrm{poly}}$   V   Voltage drop in the polysilicon
$ \ensuremath{V_\mathrm{GS}}$   V   Gate-source voltage
$ \ensuremath{V_\mathrm{DS}}$   V   Drain-source voltage
$ \ensuremath{V_\mathrm{CG}}$   V   Control gate voltage
$ \ensuremath{V_\mathrm{FG}}$   V   Floating gate voltage
$ \ensuremath{V_\mathrm{diel}}$   V   Voltage drop in the dielectric
$ \ensuremath{V_\mathrm{e}}$   Jm   Overlap integral
$ W$   eV   Potential energy
$ \ensuremath{W_\mathrm{c}}$   m$ ^2$s$ ^{-1}$   Capture rate
$ \ensuremath{W_\mathrm{e}}$   m$ ^2$s$ ^{-1}$   Emission rate
$ \ensuremath{x_\mathrm{T}}$   m   Trap cube side length

A. Gehring: Simulation of Tunneling in Semiconductor Devices