Physical Quantities

Symbol   Unit   Description
$ \ensuremath{\alpha}$   VK$ ^{-1}$   Seebeck coefficient
$ \ensuremath{\epsilon}$   AsV$ ^{-1}$ m$ ^{-1}$   Dielectric permittivity
$ \ensuremath{\ensuremath{\epsilon}_\ensuremath{\mathrm{r}}}$   1   Relative dielectric permittivity
$ \ensuremath {\ensuremath {\epsilon }_{\ensuremath {\mathrm {s}}}}$   1   Relative low frequency dielectric permittivity
$ \ensuremath{\ensuremath{\epsilon}_{\infty}}$   1   Relative high frequency dielectric permittivity
$ \ensuremath{\mathcal{E}}$   eV   Energy
$ \ensuremath{\ensuremath{\mathcal{E}}_0}$   eV   Reference energy
$ \ensuremath{\ensuremath{\mathcal{E}}_{\ensuremath{\mathrm{c}}}}$   eV   Conduction band edge energy
$ \ensuremath{\Delta \ensuremath{\mathcal{E}}_{\ensuremath{\mathrm{c}}}}$   eV   Conduction band edge narrowing
$ \ensuremath{\ensuremath{\mathcal{E}}_{\ensuremath{\mathrm{f}}}}$   eV   Fermi energy
$ \ensuremath{\ensuremath{\mathcal{E}}_{\ensuremath{\mathrm{g}}}}$   eV   Band gap energy
$ \ensuremath{\ensuremath{\mathcal{E}}_{\ensuremath{\mathrm{T}}}}$   eV   Trap energy
$ \ensuremath{\ensuremath{\mathcal{E}}_{\ensuremath{\mathrm{v}}}}$   eV   Valence band edge energy
$ \ensuremath{\Delta \ensuremath{\mathcal{E}}_{\ensuremath{\mathrm{v}}}}$   eV   Valence band edge narrowing
$ \kappa$   WK$ ^{-1}$ m$ ^{-1}$   Thermal conductivity
$ \ensuremath{\kappa_{\ensuremath{\nu}}}$   WK$ ^{-1}$ m$ ^{-1}$   Carrier contribution to thermal conductivity
$ \ensuremath{\kappa_{\mathrm{L}}}$   WK$ ^{-1}$ m$ ^{-1}$   Lattice contribution to thermal conductivity
$ \ensuremath{\kappa_{\ensuremath{n}}}$   WK$ ^{-1}$ m$ ^{-1}$   Electron contribution to thermal conductivity
$ \ensuremath{\kappa_{\ensuremath{p}}}$   WK$ ^{-1}$ m$ ^{-1}$   Hole contribution to thermal conductivity
$ \ensuremath{\eta}$   1   Conversion efficiency
$ \ensuremath{\ensuremath{\mu}_\nu}$   m$ ^{2}$ V$ ^{-1}$ s$ ^{-1}$   Carrier mobility
$ \ensuremath{\ensuremath{\mu}_{\ensuremath{n}}}$   m$ ^{2}$ V$ ^{-1}$ s$ ^{-1}$   Electron mobility
$ \ensuremath{\ensuremath{\mu}_{\ensuremath{p}}}$   m$ ^{2}$ V$ ^{-1}$ s$ ^{-1}$   Hole mobility
$ \ensuremath{\ensuremath{\mu}_\nu^\mathrm{u}}$   m$ ^{2}$ V$ ^{-1}$ s$ ^{-1}$   Energy flux mobility
$ \ensuremath{\ensuremath{\mu}_\ensuremath{n}^\mathrm{u}}$   m$ ^{2}$ V$ ^{-1}$ s$ ^{-1}$   Electron energy flux mobility
$ \ensuremath{\ensuremath{\mu}_\ensuremath{p}^\mathrm{u}}$   m$ ^{2}$ V$ ^{-1}$ s$ ^{-1}$   Hole energy flux mobility
$ \ensuremath{\nu}$   m$ ^{-3}$   Carrier concentration
$ \pi$   V   Peltier coefficient
$ \rho$   kg m$ ^{-3}$   Mass density
$ \ensuremath{\sigma}$   AV$ ^{-1}$ m$ ^{-1}$   Electric conductivity
$ \ensuremath{\tau_0}$   s   Relaxation time constant in power law approximation
$ \ensuremath{{\tau_{\!\ensuremath{\mathcal{E}}}}}$   s   Energy dependent microscopic relaxation time
$ \ensuremath{{\tau_\ensuremath{\ensuremath{\mathitbf{j}}}}}$   s   Macroscopic particle flux relaxation time
$ \ensuremath{{\tau_\ensuremath{\ensuremath{\mathitbf{u}}}}}$   s   Macroscopic energy flux relaxation time
$ \ensuremath{{\tau_\ensuremath{x}}}$   s   Relaxation time of quantity $ \ensuremath{x}$
$ \ensuremath{\varphi}$   V   Electrostatic potential
$ \ensuremath{\tilde{\varphi}}$   V   Effective electrostatic potential
$ \ensuremath{\ensuremath{\Phi}_{\ensuremath{\nu}}}$   V   Electrochemical potential
$ \ensuremath{\ensuremath{\Phi}_{\ensuremath{n}}}$   V   Electrochemical potential of electrons
$ \ensuremath{\ensuremath{\Phi}_{\ensuremath{p}}}$   V   Electrochemical potential of holes
$ \ensuremath{\ensuremath{\Phi}_{\ensuremath{\nu}}^\mathrm{c}}$   V   Chemical potential
$ \ensuremath{c_{\mathrm{L}}}$   JK$ ^{-1}$ m$ ^{-3}$   Lattice heat capacity
$ \ensuremath{c_{\ensuremath{n}}}$   JK$ ^{-1}$ m$ ^{-3}$   Heat capacity of the electron subsystem
$ \ensuremath{c_{\ensuremath{p}}}$   JK$ ^{-1}$ m$ ^{-3}$   Heat capacity of the hole subsystem
$ \ensuremath{c_{\mathrm{tot}}}$   JK$ ^{-1}$ m$ ^{-3}$   Total heat capacity
$ \ensuremath{\ensuremath{\mathitbf{F}}}$   N   Force vector
$ G$   s$ ^{-1}$   Net carrier generation rate
$ \ensuremath{H}$   Wm$ ^{-3}$   Heat source density
$ \ensuremath{\ensuremath{\mathitbf{J}}}$   s$ ^{-1}$   Particle flux vector
$ \ensuremath{\ensuremath{\mathitbf{J}}^\mathrm{q}}$   Js$ ^{-1}$   Heat flux vector
$ \ensuremath{\ensuremath{\mathitbf{j}}}$   m$ ^{-2}$ s$ ^{-1}$   Flux density vector
$ \ensuremath{\ensuremath{\mathitbf{j}}_\nu}$   m$ ^{-2}$ s$ ^{-1}$   Particle flux density vector
$ \ensuremath{\ensuremath{\mathitbf{j}}_{n}}$   m$ ^{-2}$ s$ ^{-1}$   Electron flux density vector
$ \ensuremath{\ensuremath{\mathitbf{j}}_{p}}$   m$ ^{-2}$ s$ ^{-1}$   Hole flux density vector
$ \ensuremath{\ensuremath{\mathitbf{j}}_\nu^\mathrm{q}}$   Jm$ ^{-2}$ s$ ^{-1}$   Heat flux density vector
$ \ensuremath{\ensuremath{\mathitbf{j}}_{n}^\mathrm{q}}$   Jm$ ^{-2}$ s$ ^{-1}$   Heat flux density vector of the electron subsystem
$ \ensuremath{\ensuremath{\mathitbf{j}}_{p}^\mathrm{q}}$   Jm$ ^{-2}$ s$ ^{-1}$   Heat flux density vector of the hole subsystem
$ \ensuremath{\ensuremath{\mathitbf{j}}_\nu^\mathrm{u}}$   Jm$ ^{-2}$ s$ ^{-1}$   Energy flux density vector
$ \ensuremath{\ensuremath{\mathitbf{j}}_{n}^\mathrm{u}}$   Jm$ ^{-2}$ s$ ^{-1}$   Electron energy flux density vector
$ \ensuremath{\ensuremath{\mathitbf{j}}_{p}^\mathrm{u}}$   Jm$ ^{-2}$ s$ ^{-1}$   Hole energy flux density vector
$ \ensuremath{\ensuremath{\mathitbf{J}}^\mathrm{q}}$   Js$ ^{-1}$   Heat flux vector
$ \ensuremath{\ensuremath{\mathitbf{k}}}$   m$ ^{-1}$   Wave number vector
$ m^*$   kg   Density of states effective mass
$ \ensuremath{m^*_\ensuremath{\mathrm{t}}}$   kg   Transversal effective mass
$ \ensuremath{m^*_\ensuremath{\mathrm{l}}}$   kg   Longitudinal effective mass
$ \ensuremath{m^*_\ensuremath{\mathrm{c}}}$   kg   Density of states effective mass of the conduction band
$ \ensuremath{m^*_\ensuremath{\mathrm{v}}}$   kg   Density of states effective mass of the valence band
$ \ensuremath{\ensuremath{m^*_\ensuremath{\mathrm{c,l}}}}$   kg   Longitudinal effective mass of the conduction band
$ \ensuremath{\ensuremath{m^*_\ensuremath{\mathrm{v,l}}}}$   kg   Longitudinal effective mass of the valence band
$ \ensuremath{\ensuremath{m^*_\ensuremath{\mathrm{c,t}}}}$   kg   Transversal effective mass of the conduction band
$ \ensuremath{\ensuremath{m^*_\ensuremath{\mathrm{v,t}}}}$   kg   Transversal effective mass of the valence band
$ \ensuremath{M_\mathrm{c,v}}$   1   Valley multiplicity
$ \ensuremath{n}$   m$ ^{-3}$   Electron density
$ \ensuremath{n_\mathrm{i}}$   m$ ^{-3}$   Intrinsic carrier concentration
$ \ensuremath{N_A}$   m$ ^{-3}$   Concentration of acceptors
$ \ensuremath{N_\mathrm{c}}$   m$ ^{-3}$   Effective density of states in the conduction band
$ \ensuremath{N_D}$   m$ ^{-3}$   Concentration of donors
$ \ensuremath{N_\mathrm{T}}$   m$ ^{-3}$   Trap density
$ \ensuremath{N_\ensuremath{\mathrm{tot}}}$   m$ ^{-3}$   Total dopant concentration
$ \ensuremath{N_\mathrm{v}}$   m$ ^{-3}$   Effective density of states in the valence band
$ \ensuremath{p}$   m$ ^{-3}$   Hole density
$ \ensuremath {\ensuremath {\mathitbf {p}}}$   kg ms$ ^{-1}$   Pulse vector
$ \ensuremath{P_\ensuremath{\mathrm{el}}}$   W   Electric power
$ \ensuremath{Q}$   J   Heat
$ \ensuremath {\ensuremath {\mathitbf {r}}}$   m   Space vector
$ {\ensuremath{r_\nu}}$   1   Scattering parameter
$ \ensuremath{r_n}$   1   Scattering parameter for electrons
$ \ensuremath{r_p}$   1   Scattering parameter for holes
$ R$   s$ ^{-1}$   Net carrier recombination rate
$ \ensuremath{R_\ensuremath{\mathrm{l}}}$   VA$ ^{-1}$   Load resistance
$ \ensuremath{R_\ensuremath{\mathrm{i}}}$   VA$ ^{-1}$   Inner resistance
$ \ensuremath{R_\ensuremath{\mathrm{th}}}$   KW$ ^{-1}$   Thermal resistance
$ \ensuremath{S}$   JK$ ^{-1}$   Entropy
$ \ensuremath{t}$   s   Time
$ \ensuremath{T}$   K   Temperature
$ \ensuremath{T_\ensuremath{\nu}}$   K   Carrier temperature
$ \ensuremath{T_{\mathrm{C}}}$   K   Temperature at the cooled end of a thermoelectric device
$ \ensuremath{T_{\mathrm{H}}}$   K   Temperature at the heated end of a thermoelectric device
$ \ensuremath{T_{\mathrm{L}}}$   K   Lattice temperature
$ \ensuremath{T_\ensuremath{n}}$   K   Electron temperature
$ \ensuremath{T_\ensuremath{p}}$   K   Hole temperature
$ \ensuremath{U}$   V   Voltage
$ \ensuremath{U_\ensuremath{\mathrm{c}}}$   V   Contact voltage
$ v$   ms$ ^{-1}$   Velocity
$ \ensuremath{\ensuremath{\mathitbf{v}}}$   ms$ ^{-1}$   Velocity vector
$ \ensuremath{v_{\rm {s}}}$   ms$ ^{-1}$   Average sound velocity
$ \ensuremath{v_{\rm {st}}}$   ms$ ^{-1}$   Transversal sound velocity
$ \ensuremath{v_{\rm {sl}}}$   ms$ ^{-1}$   Longitudinal sound velocity
$ \ensuremath{w}$   Jm$ ^{-3}$   Energy density
$ \ensuremath{X}$   1   Microscopic density
$ \ensuremath{X}_0$   1   Microscopic density in equilibrium
$ \ensuremath{x}$   m$ ^{-3}$   Macroscopic density
$ Z$   K$ ^{-1}$   Thermoelectric figure of merit

M. Wagner: Simulation of Thermoelectric Devices