next up previous contents
Next: 5.1.2 Equations for the Up: 5.1 Edge Elements Applications Previous: 5.1 Edge Elements Applications   Contents


5.1.1 The Wave Equation for the Electric Field

Differentiation of (4.3) with respect to time and substituting $ \vec{J }$ from (4.8) and $ \vec{H}$ from (4.7) gives

$\displaystyle \vec{\nabla}\times\frac{1}{\mu}\partial_t\vec{B} = \gamma \partial_t\vec{E} + \epsilon \partial_{tt}\vec{E}.$ (5.1)

With $ \vec{B}$ from (4.1) the wave equation for $ \vec{E}$ in the frequency domain is given by the expression

$\displaystyle \vec{\nabla}\times(\frac{1}{\mu}\vec{\nabla}\times\vec{E}) + (\jmath\omega\gamma - \omega^2\epsilon)\vec{E} = 0,$ (5.2)

where $ \omega$ is the angular frequency. The time convention $ e^{\jmath\omega{}t}$ is used and suppressed.




A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements