H.2 Recursive Algorithm to Calculate $ G^<$

Following Appendix H.1, the algorithm to calculate the electron density (diagonal elements of $ G^<$) is discussed in terms of the DYSON equation for the lesser and the left-connected GREEN's functions. The solution to the matrix equation

$\displaystyle \left[ \begin{array}{cc} \ensuremath{{\underline{A}}}_{Z,Z} & \en...
...uremath{{\underline{G}}}^\mathrm{a}_{Z^\prime,Z^\prime} \end{array} \right] \ ,$ (H.12)

can be written as

\begin{displaymath}\begin{array}{lll} \ensuremath{{\underline{G}}}^< &=& \ensure...
...a}}}^< \ \ensuremath{{\underline{G}}}^\mathrm{a} \ ,\end{array}\end{displaymath} (H.13)

where $ \ensuremath{{\underline{G}}}^\mathrm{r0}$ and $ \ensuremath{{\underline{U}}}$ have been defined in (H.7) and (H.8), and $ \ensuremath{{\underline{G}}}^<$ and $ \ensuremath{{\underline{G}}}^a$ are readily identifiable from (H.12). Using the relation $ \ensuremath{{\underline{G}}}^\mathrm{a}={\ensuremath{{\underline{G}}}^\mathrm{...
...0}
\ensuremath{{\underline{U}}}^\dagger \ensuremath{{\underline{G}}}^\mathrm{a}$, (H.13) can be written as

\begin{displaymath}\begin{array}{lll} \ensuremath{{\underline{G}}}^< &=& \ensure...
...dagger\ \ensuremath{{\underline{G}}}^\mathrm{a0}\ , \end{array}\end{displaymath} (H.14)

where

\begin{displaymath}\begin{array}{lll}\displaystyle \ensuremath{{\underline{G}}}^...
...{\Sigma}}}^<\ \ensuremath{{\underline{G}}}^{a0} \ . \end{array}\end{displaymath} (H.15)

The left-connected lesser GREEN's function $ \ensuremath{{\underline{g}}}^<_{L_{q}}$ is defined by the first $ q$ blocks of (H.2)

\begin{displaymath}\begin{array}{l} \ensuremath{{\underline{A}}}_{_{1:q,1:q}} \ ...
...emath{{\underline{g}}}^\mathrm{a}_{L_{1:q,1:q}} \ . \end{array}\end{displaymath} (H.16)

$ \ensuremath{{\underline{g}}}^{<}_{L_{q+1}}$ is defined in a manner identical to $ \ensuremath{{\underline{g}}}^{<}_{L_{q}}$ except that the left-connected system is comprised of the first $ q+1$ blocks of (H.2). In terms of (H.12), the equation governing $ \ensuremath{{\underline{g}}}^<_{L_{q+1}}$ follows by setting $ Z=1:q$ and $ Z^\prime=q+1$. Using the DYSON equations for $ \ensuremath{{\underline{G}}}^\mathrm{r}$ and $ \ensuremath{{\underline{G}}}^<$, $ \ensuremath{{\underline{g}}}^{<}_{L_{q+1,q+1}}$ can be recursively obtained as [8]

\begin{displaymath}\begin{array}{l} \ensuremath{{\underline{g}}}^<_{L_{q+1,q+1}}...
...emath{{\underline{g}}}^\mathrm{a}_{L_{q+1,q+1}} \ , \end{array}\end{displaymath} (H.17)

which can be written in a more intuitive form as

\begin{displaymath}\begin{array}{l} \ensuremath{{\underline{g}}}^<_{L_{q+1,q+1}}...
...emath{{\underline{g}}}^\mathrm{a}_{L_{q+1,q+1}} \ , \end{array}\end{displaymath} (H.18)

where $ \ensuremath{{\underline{\sigma}}}^<_{_{q+1}} = \ensuremath{{\underline{A}}}_{_...
...{\underline{g}}}^{<}_{L_{q,q}}
\ensuremath{{\underline{A}}}^\dagger_{_{q,q+1}}$. Equation (H.18) has the physical meaning that $ \ensuremath{{\underline{g}}}^<_{L_{q+1,q+1}}$ has contributions due to four injection functions: (i) an effective self-energy due to the left-connected structure that ends at $ q$, which is represented by $ \ensuremath{{\underline{\sigma}}}^<_{_{q+1}}$, (ii) the diagonal self-energy component at grid point $ q+1$ that enters (H.2), and (iii) the two off-diagonal self-energy components involving grid points $ q$ and $ q+1$.

To express the full lesser GREEN's function in terms of the left-connected GREEN's function, one can consider (H.12) such that $ \ensuremath{{\underline{A}}}_Z=\ensuremath{{\underline{A}}}_{_{1:q,1:q}}$, $ \ensuremath{{\underline{A}}}_Z^\prime=\ensuremath{{\underline{A}}}_{_{q+1:N,q+1:N}}$ and $ \ensuremath{{\underline{A}}}_{Z,Z^\prime}=\ensuremath{{\underline{A}}}_{_{1:q,q+1:N}}$. Noting that the only non-zero block of $ \ensuremath{{\underline{A}}}_{_{1:q,q+1:N}}$ is $ \ensuremath{{\underline{A}}}_{_{q,q+1}}$ and using (H.14), one obtains

\begin{displaymath}\begin{array}{l} \ensuremath{{\underline{G}}}^<_{_{q,q}} = \e...
...,q+1}} \ensuremath{{\underline{G}}}^<_{_{q+1,q}}\ . \end{array}\end{displaymath} (H.19)

Using (H.14), $ \ensuremath{{\underline{G}}}^<_{_{q+1,q}}$ can be written in terms of $ \ensuremath{{\underline{G}}}^<_{_{q+1,q+1}}$ and other known GREEN's functions as

\begin{displaymath}\begin{array}{l} \ensuremath{{\underline{G}}}^<_{_{q+1,q}} = ...
...ensuremath{{\underline{g}}}^\mathrm{a}_{L_{q,q}} \ .\end{array}\end{displaymath} (H.20)

Substituting (H.20) in (H.19) and using (H.5), one obtains

\begin{displaymath}\begin{array}{lll} \ensuremath{{\underline{G}}}^<_{_{q,q}}&=&...
...remath{{\underline{g}}}^{<0}_{_{q+1,q}} \right] \ , \end{array}\end{displaymath} (H.21)

where

\begin{displaymath}\begin{array}{lll} \ensuremath{{\underline{g}}}^{<0}_{_{q,q+1...
...nsuremath{{\underline{g}}}^\mathrm{a0}_{_{q,q}} \ . \end{array}\end{displaymath} (H.22)

The terms inside the square brackets of (H.21) are HERMITian conjugates of each other. In view of the above equations, the algorithm to compute the diagonal blocks of $ \ensuremath{{\underline{G}}}^<$ is given by the following steps:

M. Pourfath: Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors