2.3.3 Principle of Detailed Balance

In equilibrium the distribution function is known and the left hand side of the Boltzmann equation is equal to zero2.19:
    $\displaystyle (1-f_\mathrm{eq}(\vec{r},\vec{k},t))\int S(\vec{k}^{'},\vec{k},\vec{r},t)f_\mathrm{eq}(\vec{r},\vec{k}^{'},t)\,d\vec{k}^{'}-$  
    $\displaystyle -f_\mathrm{eq}(\vec{r},\vec{k},t)\int (1-f_\mathrm{eq}(\vec{r},\vec{k}^{'},t))S(\vec{k},\vec{k}^{'},\vec{r},t)\,d\vec{k}^{'}=0,$ (2.60)

which is valid for any quasi-momenta $ \hbar\vec{k}$. To satisfy this equation for all quasi-momenta $ \hbar\vec{k}$ the following equality must be valid:

$\displaystyle f_\mathrm{eq}(\vec{r},\vec{k}^{'},t)(1-f_\mathrm{eq}(\vec{r},\vec...
...{k},t)(1-f_\mathrm{eq}(\vec{r},\vec{k}^{'},t))S(\vec{k},\vec{k}^{'},\vec{r},t).$ (2.61)

Using the explicit form of the Fermi-Dirac distribution function one obtains from (2.61):

$\displaystyle S(\vec{k}^{'},\vec{k},\vec{r},t)\exp\bigg[\frac{\epsilon(\vec{k})...
...k},\vec{k}^{'},\vec{r},t)\exp\bigg[\frac{\epsilon(\vec{k}^{'})}{k_{B}T}\biggr].$ (2.62)

Equation (2.62) is called the principle of detailed balance and relates the probabilities of forward and backward processes. For elastic processes, $ \epsilon(\vec{k})=\epsilon(\vec{k}^{'})$, (2.62) gives:

$\displaystyle S(\vec{k}^{'},\vec{k},\vec{r},t)=S(\vec{k},\vec{k}^{'},\vec{r},t),$ (2.63)

that is for elastic processes the scattering probabilities of forward and backward processes are equal. S. Smirnov: