======= Publication History ======= ====== General / Inter-Disciplinary ====== ===== Books and Conference Proceedings ===== === 2019 === * [[Xavier Oriols]] and Jordi Mompart, [[http://www.panstanford.com/books/9789814800105.html|Applied Bohmian Mechanics - From Nanoscale Systems to Cosmology, 2nd Edition]], (Pan Stanford Publishing, 2019) * Dagmar Bruss and [[Gerd Leuchs]], [[https://www.wiley.com/en-us/Quantum+Information%3A+From+Foundations+to+Quantum+Technology+Applications%2C+2+Volume+Set%2C+2nd+Edition-p-9783527805792|Quantum Information: From Foundations to Quantum Technology Applications]], (Wiley, 2019) * [[David K. Ferry]], Stephen Goodnick, and [[Josef Weinbub]], [[http://www.iue.tuwien.ac.at/iwcn2019/wp-content/uploads/2019/06/IW2-2019-Book-of-Abstracts.pdf|Book of Abstracts of the 3rd International Wigner Workshop (IW2)]] (TU Wien, 2019) === 2018 === * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], [[http://iopscience.iop.org/book/978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018) === 2017 === * [[Apostol Vourdas]], [[https://www.springer.com/gp/book/9783319594941|Finite and Profinite Quantum Systems]] (Springer, 2017) * [[Maurice de Gosson]], [[http://www.worldscientific.com/worldscibooks/10.1142/q0089|The Wigner Transform]], Advanced Textbooks in Mathematics (World Scientific, 2017) * [[Josef Weinbub]], [[David K. Ferry]], [[Irena Knezevic]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[http://www.iue.tuwien.ac.at/pdf/ib_2017/hashed_links/p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017) === 2016 === * [[Olafur Jonasson]], [[https://homepages.cae.wisc.edu/~knezevic/pdfs/Olafur_Jonasson_Dissertation_2016.pdf|Quantum Transport in Semiconductor Heterostructures Using Density-Matrix and Wigner-Function Formalisms]], PhD thesis, University of Wisconsin-Madison (2016) * [[Paul Ellinghaus]], [[http://www.iue.tuwien.ac.at/phd/ellinghaus/|Two-Dimensional Wigner Monte Carlo Simulation for Time-Resolved Quantum Transport with Scattering]], Doctoral dissertation, TU Wien (2016) === 2015 === * [[David K. Ferry]] and [[Josef Weinbub]], [[http://www.iue.tuwien.ac.at/pdf/ib_2015/hashed_links/p54PCkrcQOaqwqr9Y_us.pdf|Booklet of the 1st International Wigner Workshop (IW2)]] (TU Wien, 2015) === 2014 === * T. L. Curtright, D. B. Fairlie and C. K. Zachos, [[https://www.worldscientific.com/worldscibooks/10.1142/8870|A Concise Treatise on Quantum Mechanics in Phase Space]] (World Scientific Publishing Co Pte Ltd, 2014) === 2013 === * [[Damien Querlioz]] and [[Philippe Dollfus]], [[https://onlinelibrary.wiley.com/doi/book/10.1002/9781118618479|The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence]] (John Wiley & Sons, 2013) === 2012 === * [[Xavier Oriols]] and Jordi Mompart, [[http://www.panstanford.com/books/9789814316392.html|Applied Bohmian Mechanics - From Nanoscale Systems to Cosmology]], (Pan Stanford Publishing, 2012) === 2010 === * D. Querlioz and P. Dollfus, [[https://onlinelibrary.wiley.com/doi/book/10.1002/9781118618479|The Wigner Monte Carlo Method for Nanoelectronic Devices]] (John Wiley & Sons, 2010) === 2005 === * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://doi.org/10.1142/5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005) === 2003 === * [[Christoph Jungemann]] and Bernd Meinerzhagen, [[https://www.springer.com/gp/book/9783211013618|Hierarchical Device Simulation]], (Springer, 2003) === 2001 === * [[Wolfgang Schleich]], [[https://onlinelibrary.wiley.com/doi/book/10.1002/3527602976|Quantum Optics in Phase Space]] (Wiley‐VCH Verlag Berlin GmbH, 2001) === 1998 === * [[Hans Georg Feichtinger]] and Thomas Strohmer, [[https://www.springer.com/gp/book/9780817639594|Gabor Analysis and Algorithms]], (Springer, 1998) === 1991 === * Y. S. Kim and M. E. Noz, [[https://doi.org/10.1142/1197|Phase Space Picture of Quantum Mechanics. Group Theoretical Approach]] (World Scientific, 1991) === 1974 === * S. R. Groot, [[https://cheap-library.com/book/23c997f932b9bc0e28708bdd792fda0a|La transformation de Weyl et la fonction de Wigner, une forme alternative de la mecanique quantique]] (Les Presses de l'Universitié de Montréal, 1974) ===== Journal Articles ===== ==== Reviews ==== === 2018 === * [[Josef Weinbub]] and [[David K. Ferry]], [[https://aip.scitation.org/doi/10.1063/1.5046663|Recent Advances in Wigner Function Approaches]], Appl. Phys. Rev. **5**, 041104 (2018) === 2016 === * Y. P. Kalmykov, W. T. Coffey and S. V. Titov, [[ https://doi.org/10.1002/9781119290971.ch2|Spin relaxation in phase space]], Adv. Chem. Phys.**161**, 41 (2016) === 2015 === * [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527600441.oe1013|The Wigner function in optics]], in: The Optics Encyclopedia (Wiley VCH, 2015) === 2011 === * [[Miguel A. Alonso]], [[https://www.osapublishing.org/aop/abstract.cfm?uri=aop-3-4-272|Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles]], Adv. Opt. Photon. **3**, 272 (2011) === 1995 === * H.-W. Lee, [[https://doi.org/10.1016/0370-1573(95)00007-4|Theory and application of the quantum phase-space distribution functions]], Phys. Rep. **259**, 147 (1995) === 1986 === * K. Takahashi, [[https://doi.org/10.1143/JPSJ.55.762|Wigner and Husimi Functions in Quantum Mechanics]], J. Phys. Soc. Jpn. **55**, 762 (1986) === 1984 === * M. Hillery, R. F. O'Connell, M.O. Scully, and E. P. Wigner, [[https://doi.org/10.1016/0370-1573(84)90160-1|Distribution functions in physics: Fundamentals]], Phys. Rep. **106**, 121 (1984) === 1983 === * V. I. Tatarskiĭ,[[https://doi.org/10.1070/PU1983v026n04ABEH004345|The Wigner representation of quantum mechanics]], Sov. Phys. Usp. **26**, 311 (1983) * P. Carruthers and F. Zachariasen, [[https://link.aps.org/doi/10.1103/RevModPhys.55.245|Quantum collision theory with phase-space distributions]], Rev. Mod. Phys. **55**, 245 (1983) === 1958 === * G. A. Baker, Jr., [[https://doi.org/10.1103/PhysRev.109.2198|Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space]], Phys. Rev. **109**, 2198 (1958) ==== Genesis ==== === 1949 === * J. E. Moyal, [[https://doi.org/10.1017/S0305004100000487|Quantum mechanics as a statistical theory]] Proc. Cambridge Phil. Soc. **45**, 99 (1949) === 1946 === * H. J. Groenewold, [[https://doi.org/10.1016/S0031-8914(46)80059-4|On the principles of elementary quantum mechanics]] Physica **12**, 405 (1946) === 1932 === * E. P. Wigner, [[https://link.aps.org/doi/10.1103/PhysRev.40.749|On the Quantum Correction For Thermodynamic Equilibrium]], Phys. Rev. **40**, 749 (1932) ====== Topics ====== ==== Classical, Semiclassical and Quantum Physics ==== === 2021 === * [[Michael te Vrugt]], Gyula I Tóth, [[Raphael Wittkowski]], [[https://arxiv.org/abs/2106.00137|Master equations for Wigner functions with spontaneous collapse and their relation to thermodynamic irreversibility]], arXiv:2106.00137 (2021) === 2020 === * [[Michael te Vrugt]], [[Raphael Wittkowski]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/andp.202000266|Orientational order parameters for arbitrary quantum systems]], Annalen der Physik **532**, 2000266 (2020) * [[Michael te Vrugt]], Hartmut Löwen, [[Raphael Wittkowski]], [[https://www.tandfonline.com/doi/full/10.1080/00018732.2020.1854965|Classical dynamical density functional theory: from fundamentals to applications]], Advances in Physics **69**, 121-247 (2020) === 2019 === * T. Ikeda, A.G. Dijkstra and [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/1.5086948|Modeling and analyzing a photo-driven molecular motor system: Ratchet dynamics and non-linear optical spectra]], J. Chem. Phys. **150**, 114103 (2019) * T. Ikeda and [[Yoshitaka Tanimura]], [[https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b01195|Low-Temperature Quantum Fokker–Planck and Smoluchowski Equations and Their Extension to Multistate Systems]], J. Chem. Theory Comput. **15**, 2517-2534 (2019) * Maxime Oliva and [[Ole Steuernagel]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.032104|Quantum Kerr oscillators' evolution in phase space: Wigner current, symmetries, shear suppression, and special states]], Phys. Rev. A **99**, 032104 (2019) * Maxime Oliva and [[Ole Steuernagel]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.020401|Dynamic Shear Suppression in Quantum Phase Space]], Phys. Rev. Lett. **122**, 020401 (2019) * Z. Xiao, T. Fuse, S. Ashhab, F. Yoshihara, [[Kouichi Semba]], M. Sasaki, M. Takeoka, and J. P. Dowling, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.013827|Fast amplification and rephasing of entangled cat states in a qubit-oscillator system]], Phys. Rev. A **99**, 013827 (2019) * T. Hahn, D. Groll, T. Kuhn and [[Daniel Wigger]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.024306|Influence of excited state decay and dephasing on phonon quantum state preparation]], Phys. Rev. B **100**, 024306 (2019) * [[Guillem Albareda Piquer]], Aaron Kelly, and Angel Rubio, [[https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.023803|Nonadiabatic quantum dynamics without potential energy surfaces]], Phys. Rev. Materials **3**, 023803 (2019) * Eric G. Arrais, Diego A. Wisniacki, Augusto J. Roncaglia, and [[Fabricio Toscano]], [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.052136|Work statistics for sudden quenches in interacting quantum many-body systems]], Phys. Rev. E **100**, 052136 (2019) * A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and [[Franco Nori]], [[https://www.nature.com/articles/s42254-018-0006-2|Ultrastrong coupling between light and matter]], Nature Rev. Phys. **1**, 19 (2019) * W. Qin, A. Miranowicz, G. Long, J.Q. You, and [[Franco Nori]], [[https://www.nature.com/articles/s41534-019-0172-9|Proposal to test quantum wave-particle superposition on massive mechanical resonators]], npj Quant. Inf. **5**, 58 (2019) * Hong-Bin Chen, Ping-Yuan Lo, Clemens Gneiting, Joonwoo Bae, Yueh-Nan Chen, and [[Franco Nori]], [[https://www.nature.com/articles/s41467-019-11502-4|Quantifying the nonclassicality of pure dephasing]], Nature Comm. **10**, 3794 (2019) * Gui-Lei Zhu, Xin-You Lü, Li-Li Zheng, Zhi-Ming Zhan, [[Franco Nori]], and Ying Wu, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.023825|Single-photon-triggered quantum chaos]], Phys. Rev. A **100**, 023825 (2019) * J. Tuorila, J. Stockburger, T. Ala-Nissila, [[Joachim Ankerhold]], and Mikko Möttönen, [[https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.013004|System-environment correlations in qubit initialization and control]], Phys. Rev. Res. **1**, 013004 (2019) * J. Gosner, B. Kubala, and [[Joachim Ankerhold]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.144524|Quantum properties of a strongly driven Josephson junction]], Phys. Rev. B **99**, 144524 (2019) * S. Dambach, [[Andrew Armour]], B. Kubala, and [[Joachim Ankerhold]], [[https://iopscience.iop.org/article/10.1088/1402-4896/ab2a90/meta|Josephson junction cavity systems as cousins of the quantum optical micromaser]], Phys. Script. **94**, 104001 (2019) * S. Dambacha, P. Egetmeyer, [[Joachim Ankerhold]], and B. Kubala, [[https://link.springer.com/article/10.1140%2Fepjst%2Fe2018-800062-8|Quantum thermodynamics with a Josephson-photonics setup]], Europ. Phys. J. Spec. Top. **227**, 2053 (2019) * Chao Song, Kai Xu, Hekang Li, et al., [[https://science.sciencemag.org/content/365/6453/574|Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits]], Science **365**, 574 (2019) * R.P. Rundle, [[Todd Tilma]], [[John Samson]], V.M. Dwyer, [[Raymond Bishop]], and [[Mark Everitt]], [[http://dx.doi.org/10.1103/PhysRevA.99.012115|General approach to quantum mechanics as a statistical theory]], Phys Rev A **99**, 012115 (2019) * B.I. Davies, R.P. Rundle, V.M. Dwyer, [[John Samson]], [[Todd Tilma]], and [[Mark Everitt]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.042102|Visualizing spin degrees of freedom in atoms and molecules]], Phys. Rev. A **100**, 042102 (2019) * Tian Zhang, [[Oscar C O Dahlsten]], and Vlatko Vedral, [[https://arxiv.org/abs/1903.06312|Constructing continuous-variable spacetime quantum states from measurement correlations]], arXiv (2019) === 2018 === * Jack Clarke and [[Michael R. Vanner]], [[https://iopscience.iop.org/article/10.1088/2058-9565/aada1d/meta|Growing macroscopic superposition states via cavity quantum optomechanics]], Quantum Science and Technology **4**, 014003 (2018) * K. E. Khosla, [[Michael R. Vanner]], N. Ares, and E. A. Laird, [[https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021052|Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator]], Phys. Rev. X **8**, 021052 (2018) * T. Ikeda and [[Yoshitaka Tanimura]], [[https://doi.org/10.1016/j.chemphys.2018.07.013|Phase-Space Wavepacket Dynamics of Internal Conversion via Conical Intersection: Multi-State Quantum Fokker-Planck Equation Approach]], Chem. Phys. **515**, 203-213 (2018) * V. M. Bastidas, B. Renoust, [[Kae Nemoto]], and W. J. Munro, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224307|Ergodic-localized junctions in periodically driven systems]], Phys. Rev. B **98**, 224307 (2018) * [[Omar Morandi]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aac3ef/meta|Quantum motion with trajectories: beyond the Gaussian beam approximation]], J. Phys. A: Math. Theor. **51**, 255301 (2018) * Demid V. Sychev, Alexander E. Ulanov, Egor S. Tiunov, Anastasia A. Pushkina, A. Kuzhamuratov, Valery Novikov, and [[Alexander Lvovsky]], [[https://www.nature.com/articles/s41467-018-06055-x|Entanglement and teleportation between polarization and wave-like encodings of an optical qubit]], Nature Comm. **9**, 3672 (2018) * L. Happ, [[Maxim A. Efremov]], H. Nha, and [[Wolfgang Schleich]], [[https://iopscience.iop.org/article/10.1088/1367-2630/aaac25|Sufficient condition for a quantum state to be genuinely quantum non-Gaussian]], New J. Phys. **20**, 039601 (2018) * Manuel R. Gonçalves, [[William B. Case]], Ady Arie, and [[Wolfgang Schleich]], [[https://link.springer.com/chapter/10.1007/978-3-319-64346-5_30|Single-Slit Focusing and Its Representations]], Expl. Worl. Las., 529 (2018) * R.P. Rundle, B.I. Davies, V.M. Dwyer, [[Todd Tilma]], and [[Mark Everitt]], [[https://arxiv.org/abs/1809.10564|Quantum State Spectroscopy of Atom-Cavity Systems]], arXiv (2018) * M. Filipovic and [[Wolfgang Belzig]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.115441|Shot noise of charge and spin transport in a junction with a precessing molecular spin]], Phys. Reg. B **97**, 115441 (2018) * Johannes Bulte, Adam Bednorz, [[Christoph Bruder]], and [[Wolfgang Belzig]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.140407|Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors]], Phys. Rev. Lett **120**, 140407 (2018) * R. Sala Mayato, P. Loughlin, and [[Leon Cohen]], [[https://doi.org/10.1016/j.physleta.2018.08.012|M-indeterminate distributions in quantum mechanics and the non-overlapping wave function paradox]], Phys. Lett. A **382**, 2914 (2018) * V. Filinov, A. Larkin, [[https://doi.org/10.3390/universe4120133|Quantum Dynamics of Charged Fermions in the Wigner Formulation of Quantum Mechanics]], Universe **4**, 133 (2018) * Humberto C. F. Lemos, Alexandre C. L. Almeida, Barbara Amaral, and Adélcio C. Oliveira, [[https://doi.org/10.1016/j.physleta.2018.01.023|Roughness as classicality indicator of a quantum state]], Phys. Lett. A **382**, 823 (2018) * Mauricio Reis and Adelcio C. Oliveira, [[https://ieeexplore.ieee.org/document/8610886|Roughness as Entanglement Witness: The two Coupled Cavity Model]], SBFoton IOPC **2018**, 1 (2018) * Alex E. Bernardini, [[https://link.aps.org/doi/10.1103/PhysRevA.98.052128|Testing nonclassicality with exact Wigner currents for an anharmonic quantum system]], Phys. Rev. A **98**, 052128 (2018) === 2017 === * T. Ikeda and [[Yoshitaka Tanimura]], [[https://doi.org/10.1063/1.4989537|Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchal Fokker-Planck Equation approach]], J. Chem. Phys. **146**, 014102 (2017) * X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317303290|Microwave photonics with superconducting quantum circuits]], Phys. Rep. **718-719**, 1 (2017) * J. Zhang, Y.X. Liu, R.B. Wu, K. Jacobs, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317300479|Quantum feedback: theory, experiments, and applications]], Phys. Rep. **679**, 1 (2017) * [[Andrew Armour]], B. Kubala, and [[Joachim Ankerhold]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.214509|Noise switching at a dynamical critical point in a cavity-conductor hybrid]], Phys. Rev. B **96**, 214509 (2017) * R.P. Rundle, P.W. Mills, [[Todd Tilma]], [[John Samson]], [[Mark Everitt]]: “Simple procedure for phase-space measurement and entanglement validation”, Phys Rev A.[[http://dx.doi.org/10.1103/PhysRevA.96.022117|10.1103/PhysRevA.96.022117]] [[https://arxiv.org/abs/1605.08922|arXiv]], 2017. * Alex E. Bernardini and Mariana Chinaglia, [[https://doi.org/10.1088/1742-6596/880/1/012038|Topological view of quantum tunneling coherent destruction]], J. Phys.: Conf. Ser. **880**, 012038 (2017) * Alex E. Bernardini and Orfeu Bertolami, [[https://doi.org/10.1209/0295-5075/120/20002|Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics]], EPL **120**, 20002 (2017) * A. Larkin, V. Filinov, [[https://www.doi.org/10.4236/jamp.2017.52035|Phase Space Path Integral Representation for Wigner Function]], Journal of Applied Mathematics and Physics **5**, 392 (2017) * Dimitris Kakofengitis and [[Ole Steuernagel]], [[https://link.springer.com/article/10.1140/epjp/i2017-11634-2|Wigner's quantum phase space current in weakly anharmonic weakly excited two-state systems]], European Physical Journal Plus. **132**, 381 (2017) * Dimitris Kakofengitis, Maxime Oliva, and [[Ole Steuernagel]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.022127|Wigner's representation of quantum mechanics in integral form and its applications]], Physical Review A. **95**, 022127 (2017) === 2016 === * R. Grossmann, A. Sakurai, and [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/10.7566/JPSJ.85.034803|Electron pumping under non-Markovian dissipation: The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016) * [[Daniel Wigger]], H. Gehring, V.M. Axt, [[Doris Reiter]] and T. Kuhn, [[https://link.springer.com/article/10.1007/s10825-016-0856-8|Quantum dynamics of optical phonons generated by optical excitations of a quantum dot]], J. Comput. Electron **15**, 1158 (2016) * [[Todd Tilma]], [[Mark Everitt]], [[John Samson]], W. J. Munro, and [[Kae Nemoto]]: “Wigner Functions for Arbitrary Quantum Systems”, Phys. Rev. Lett., Vol.117, 180401, DOI: [[http://dx.doi.org/10.1103/PhysRevLett.117.180401|10.1103/PhysRevLett.117.180401]], [[https://arxiv.org/abs/1601.07772|arXiv]], 2016. * A. S. Larkin, V. S. Filinov, and V. E. Fortov, [[https://doi.org/10.1002/ctpp.201500078|Path Integral Representation of the Wigner Function in Canonical Ensemble]], Contrib. Plasma Phys. **56**, 187 (2016) * Jonas F. G. Santos and Alex E. Bernardini, [[https://doi.org/10.1016/j.physa.2015.10.033|Gaussian fidelity distorted by external fields]], Phys. A **445**, 75 (2016) * Keyu Xia, Mattias Johnsson, [[Peter Knight]], and Jason Twamley, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.023601|Cavity-Free Scheme for Nondestructive Detection of a Single Optical Photon]], Phys. Rev. Lett. **116**, 023601 (2016) * Yin Long Lin and [[Oscar C O Dahlsten]], [[https://arxiv.org/abs/1607.01764|Tunnelling necessitates negative Wigner function]], arXiv (2016) === 2015 === * [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/1.4916647|Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations]], J. Chem. Phys. **142**, 144110 (2015) * Peter Degenfeld-Schonburg, Carlos Navarrete–Benlloch, and [[Michael J. Hartmann]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.053850|Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators]], Phys. Rev. A **91**, 053850 (2015) * Mehdi Abdi, Matthias Pernpeintner, Rudolf Gross, Hans Huebl, and [[Michael J. Hartmann]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.173602|Quantum State Engineering with Circuit Electromechanical Three-Body Interactions]], Phys. Rev. Lett. **114**, 173602 (2015) * Catarina Bastos, Alex E. Bernardini, and Jonas F. G. Santos, [[https://doi.org/10.1016/j.physa.2015.07.009|Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors]], Phys. A **438**, 340 (2015) * J. T. Mendonça, W. Horton, R. M. O. Galvão and Yves Elskens, [[https://doi.org/10.1017/S0022377814001032|Transport equations for lower hybrid waves in a turbulent plasma]], J. Plasma Physics **81**, 905810206 (2015) * O de los Santos-Sánchez, J Récamier and R Jáuregui, [[https://doi.org/10.1088/0031-8949/90/7/074018|Markovian master equation for nonlinear systems]], Phys. Scr. **90**, 074018 (2015) * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://link.springer.com/article/10.1140/epjd/e2015-50861-9|Bistability effect in the extreme strong coupling regime of the Jaynes-Cummings model]], Europ. Phys. J. D **69**, 60 (2015) * [[David K. Ferry]], [[http://link.springer.com/article/10.1007%2Fs10825-015-0731-z|Phase-Space Functions: Can They Give a Different View of Quantum Mechanics?]], J. Comp. Electron. **14**, 864 (2015) * [[David K. Ferry]], R. Akis, and R. Brunner, [[http://iopscience.iop.org/article/10.1088/0031-8949/2015/T165/014010/meta|Probing the Quantum - Classical Connection with Open Quantum Dots]], Phys. Script. **2015**, T165 (2015) === 2014 === * A. Sakurai and [[Yoshitaka Tanimura]], [[http://iopscience.iop.org/article/10.1088/1367-2630/16/1/015002/meta|Self-excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira-Leggett Hamiltonian]], New J. of Phys. **16**, 015002 (2014) * I. Georgescu, S. Ashhab, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.153|Quantum Simulation]], Rev. Mod. Phys. **86**, 153 (2014) * Miranowicz, J. Bajer, M. Paprzycka, Y.X. Liu, A.M. Zagoskin, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.033831|State-dependent photon blockade via quantum-reservoir engineering]], Phys. Rev. A **90**, 033831 (2014) * T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, and [[Christian Glattli]], [[https://www.nature.com/articles/nature13821|Quantum tomography of an electron]], Nature **514**, 603 (2014) * [[Mark Everitt]], Timothy P. Spiller, Gerard J. Milburn, Richard D. Wilson, and Alexandre M. Zagoskin, [[https://www.frontiersin.org/articles/10.3389/fict.2014.00001/full|Engineering dissipative channels for realizing Schrödinger cats in SQUIDs]], Front. ICT **1**, 1 (2014) * T. L. Curtright, D. B. Fairlie and C. K. Zachos, [[https://www.worldscientific.com/worldscibooks/10.1142/8870|A Concise Treatise on Quantum Mechanics in Phase Space]] (World Scientific Publishing Co Pte Ltd, 2014) * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9444-1|Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States]], J. Russ. Las. Res. **35**, 427 (2014) * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9395-6|Wigner Functions and Spin Tomograms for Qubit States]], J. Russ. Las. Res. **35**, 3 (2014) * [[Enno Giese]], Wolfgang Zeller, Stephan Kleinert, Matthias Meister, Vincenzo Tamma, [[Albert Roura]], and [[Wolfgang Schleich]], [[http://ebooks.iospress.nl/publication/38097|The interface of gravity and quantum mechanics illuminated by Wigner phase space]], Proc. Intern. School Phys “Enrico Fermi” **188**, 171 (2014) * D. Bakalov and [[Stephan Schiller]], [[https://link.springer.com/article/10.1007/s00340-013-5703-z|The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock]], Appl. Phys. B **114**, 213 (2014) === 2013 === * A. Kato and [[Yoshitaka Tanimura]], [[https://pubs.acs.org.ccindex.cn/doi/abs/10.1021/jp403056h|Quantum Suppression of Ratchet Rectification in a Brownian System Driven by a Biharmonic Force]], J. Phys. Chem. B **117**, 13132-13144 (2013) * A. Sakurai and [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/abs/10.7566/JPSJ.82.033707|An approach to quantum transport based on reduced hierarchy equations of motion: Application to resonant tunneling diode]], J. Phys. Soc. Jpn **82**, 033707 (2013) * [[Daniel Wigger]], [[Doris Reiter]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.085301|Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Rev. B **87**, 085301 (2013) * Z.L. Xiang, S. Ashhab, J.Q. You, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.623|Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems]], Rev. Mod. Phys. **85**, 623 (2013) * A. Miranowicz, M. Paprzycka, Y.X. Liu, J. Bajer, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.023809|Two-photon and three-photon blockades in driven nonlinear systems]], Phys. Rev. A **87**, 023809 (2013) * C. Wickles and [[Wolfgang Belzig]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.045308|Effective quantum theories for Bloch dynamics in inhomogeneous systems with nontrivial band structure]], Phys. Rev. B **88**, 045308 (2013) * R. Schmidt, J.T. Stockburger, and [[Joachim Ankerhold]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.052321|Almost local generation of Einstein-Podolsky-Rosen entanglement in nonequilibrium open systems]], Phys. Rev. A **88**, 052321 (2013) * V. Gramich, B. Kubala, S. Rohrer, and [[Joachim Ankerhold]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.247002|From Coulomb-Blockade to Nonlinear Quantum Dynamics in a Superconducting Circuit with a Resonator]], Phys. Rev. Lett. **111**, 247002 (2013) * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://iopscience.iop.org/article/10.1088/0953-4075/46/22/224010/meta|Optical Bistability in Strong-Coupling Cavity QED with a Few Atoms]], J. Phys. B Atom. Mol. Opt. Phys. **46**, 224010 (2013) * [[Stephan Schiller]] and Gerd Breitenbach, [[https://onlinelibrary.wiley.com/doi/abs/10.1002/phbl.19990550509|Die Vermessung optischer Quantenzustände]], Phys. Bl. **55**, 39 (2013) === 2012 === * Simon Rips, Martin Kiffner, Ignacio Wilson-Rae, and [[Michael J. Hartmann]], [[https://iopscience.iop.org/article/10.1088/1367-2630/14/2/023042|Steady-state negative Wigner functions of nonlinear nanomechanical oscillators]], New J. Phys. **14**, 023042 (2012) * R. Schmidt, S. Rohrer, [[Joachim Ankerhold]], and J.T. Stockburger, [[https://dx.doi.org/10.1088/0031-8949/2012/T151/014034|Cooling of quantum systems through optimal control and dissipation]], Phys. Script. **T151**, 014034 (2012) * Derek Harland, [[Mark Everitt]], [[Kae Nemoto]], [[Todd Tilma]], and TP Spiller, [[https://doi.org/10.1103/PhysRevA.86.062117|Towards a complete and continuous Wigner function for an ensemble of spins or qubits]], Phys. Rev. A **86**, 062117 (2012) === 2011 === * A. Sakurai and [[Yoshitaka Tanimura]], [[https://pubs.acs.org.ccindex.cn/doi/abs/10.1021/jp1095618|Does hbar play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations]], J. Phys. Chem. A **115**, 4009-4022 (2011) * [[Doris Reiter]], [[Daniel Wigger]], J.M. Daniels, T. Papenkort, A. Vagov, V.M. Axt and T. Kuhn, [[https://onlinelibrary.wiley.com/doi/full/10.1002/pssb.201000783|Fluctuation properties of phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Status Solidi B 248, No. 4, 825-828 (2011) * [[Doris Reiter]], [[Daniel Wigger]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.195327|Generation and dynamics of phononic cat states after optical excitation of a quantum dot]], Phys. Rev. B. 84, 195327 (2011) * A. Bednorz and [[Wolfgang Belzig]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.83.052113|Fourth moments reveal the negativity of the Wigner function]], Phys. Rev. A **83**, 052113 (2011) * A.R.R. Carvalho, A. Kenfack, [[Fabricio Toscano]], J.M. Rost, and [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0375960111012758?via%3Dihub|Gaussian representation of extended quantum states]], Phys. Lett. A **376**, 19 (2011) * J.Q. You and [[Franco Nori]], [[https://www.nature.com/articles/nature10122|Atomic physics and quantum optics using superconducting circuits]], Nature **474**, 589 (2011) * J. Ma, X. Wang, C. P. Sun, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157311002201|Quantum spin squeezing]], Phys. Rep. **509**, 89 (2011) * I. Buluta, S. Ashhab, and [[Franco Nori]], [[https://iopscience.iop.org/article/10.1088/0034-4885/74/10/104401/meta|Natural and artificial atoms for quantum computation]], Rep.. Prog. Phys. **74**, 104401 (2011) * [[Todd Tilma]] and [[Kae Nemoto]], [[https://iopscience.iop.org/article/10.1088/1751-8113/45/1/015302|SU(N)-symmetric quasi-probability distribution functions]], J. Phys. A. Math. and Theor. **45**, 015302 (2011) === 2010 === * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://www.sciencedirect.com/science/article/pii/S0375960110005700?via%3Dihub|Quantum measurement with chaotic apparatus]], Phys. Lett. A **374**, 2809 (2010) * S. Ashhab and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.042311|Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states]], Phys. Rev. A **81**, 042311 (2010) * Y.X. Liu, A. Miranowicz, Y.B. Gao, J. Bajer, C.P. Sun, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.032101|Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators]], Phys. Rev. A **82**, 032101 (2010) === 2009 === * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.79.032328|Quantum-classical crossover of a field mode]], Phys. Rev. A **79**, 032328 (2009) * I.Buluta and [[Franco Nori]], [[https://science.sciencemag.org/content/326/5949/108|Quantum Simulators]], Science **326**, 108 (2009) === 2007 === * [[Doris Reiter]], M. Glanemann, V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.205327|Spatiotemporal dynamics in optically excited quantum wire-dot systems: Capture, escape, and wave-front dynamics]], Phys. Rev. B. 75, 205327 (2007) === 2006 === * [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/abs/10.1143/JPSJ.75.082001|Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems]], J. Phys. Soc. Jpn. **75**, 082001 (2006) * Brad A. Rowland, [[Robert Wyatt]], [[https://doi.org/10.1016/j.cplett.2006.05.041|Local and non-local force analysis for Wigner function barrier scattering]] Chem. Phys. Lett. **426**, 209 (2006) === 2005 === * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://doi.org/10.1142/5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005) * J.Q. You and [[Franco Nori]], [[https://physicstoday.scitation.org/doi/10.1063/1.2155757?feed=most-cited|Superconducting circuits and quantum information]], Phys. Today **58**, 42 (2005) === 2004 === * [[Mark Everitt]], TD Clark, PB Stiffell, A Vourdas, JF Ralph, RJ Prance, and H Prance, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.043804|Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference]], Phys. Rev. A **69**, 043804 (2004) === 2003 === * Kyungsun Na, [[Robert Wyatt]], [[https://doi.org/10.1238/Physica.Regular.067a00169|Quantum Hydrodynamic Analysis of Decoherence]], Phys. Scr. **67**, 169 (2003) === 2002 === * Lorenzo Galleani and [[Leon Cohen]], [[https://www.sciencedirect.com/science/article/pii/S0375960102011386|The Wigner distribution for classical systems]], Phys. Lett. A **302**, 149 (2002) === 2001 === * [[Peter Domokos]], P. Horak and H. Ritsch, [[https://iopscience.iop.org/article/10.1088/0953-4075/34/2/306|Semiclassical Theory of Cavity-Assisted Atom Cooling]], J. Phys. B **34**, 187 (2001) * [[Alexander Lvovsky]], H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.050402|Quantum state reconstruction of the single-photon Fock state]], Phys. Rev. Lett. **87**, 050402 (2001) === 2000 === * [[Giovanni Manfredi]] and M.R. Feix, [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.62.4665|Entropy and Wigner functions]], Phys. Rev. E **62**, 4665 (2000) === 1998 === * [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0370157397000707|The Weyl representation in classical and quantum mechanics]], Phys. Rep. **295**, 265 (1998) * G. Breitenbach, F. Illuminati, [[Stephan Schiller]], and J. Mlynek, [[https://iopscience.iop.org/article/10.1209/epl/i1998-00456-2/fulltext/|Broadband detection of squeezed vacuum: A spectrum of quantum states]], Europhysics Letters **44**, 192 (1998) === 1997 === * S. Bose, K. Jacobs, and [[Peter Knight]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.56.4175|Preparation of nonclassical states in cavities with a moving mirror]], Phys. Rev. A **56**, 4175 (1997) === 1996 === * S. Szabo, P. Adam, J. Janszky and [[Peter Domokos]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.53.2698|Construction of Quantum States of the Radiation Field by Discrete Coherent–State Superpositions]], Phys. Rev. A **53**, 2698 (1996) * [[Stephan Schiller]], G. Breitenbach, S. F. Pereira, T. Müller, and J. Mlynek, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.2933|Quantum Statistics of the Squeezed Vacuum by Measurement of the Density Matrixin the Number State Representation]], Phys. Rev. Lett. **77**, 2933 (1996) ==== Gravitation and High Energy Physics ==== === 2018 === * Alex E. Bernardini, Pedro Leal, and Orfeu Bertolami, [[https://doi.org/10.1088/1475-7516/2018/02/025|Quantum to classical transition in the Hořava-Lifshitz quantum cosmology]], JCAP**02**, 025 (2018) === 2017 === * Giovanni Manfredi, [[Omar Morandi]], Lazar Friedland, Tobias Jenke, and Hartmut Abele, [[https://link.aps.org/doi/10.1103/PhysRevD.95.025016|Chirped-frequency excitation of gravitationally bound ultracold neutrons.]], Phys. Rev. D **95**, 025016 (2017) === 2015 === * Alex E. Bernardini, Salomon S. Mizrahi, [[https://doi.org/10.1088/0031-8949/90/7/074011|Coherent quantum squeezing due to the phase space noncommutativity]], Phys. Scr. **90**, 074011 (2015) === 1991 === * Y. S. Kim and M. E. Noz, [[https://doi.org/10.1142/1197|Phase Space Picture of Quantum Mechanics. Group Theoretical Approach]] (World Scientific, 1991) === 1983 === * P. Carruthers and F. Zachariasen, [[https://link.aps.org/doi/10.1103/RevModPhys.55.245|Quantum collision theory with phase-space distributions]], Rev. Mod. Phys. **55**, 245 (1983) * V. I. Tatarskiĭ,[[https://doi.org/10.1070/PU1983v026n04ABEH004345|The Wigner representation of quantum mechanics]], Sov. Phys. Usp. **26**, 311 (1983) === 1958 === * G. A. Baker, Jr., [[https://doi.org/10.1103/PhysRev.109.2198|Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space]], Phys. Rev. **109**, 2198 (1958) ==== Atomic Physics and Quantum Optics ==== === 2019 === * [[Stefano Olivares]], Alessia Allevi, Giovanni Caiazzo, M. G. A. Paris, and Maria Bondani, [[https://iopscience.iop.org/article/10.1088/1367-2630/ab4afb/meta|Quantum tomography of light states by photon-number-resolving detectors]], New. J. Phys. **21**, 103045 (2019) * Dmitry V. Strekalov and [[Gerd Leuchs]], [[https://link.springer.com/chapter/10.1007/978-3-319-98402-5_3|Nonlinear Interactions and Non-classical Light]], Quant. Photon., 51 (2019) * Yosuke Hashimoto, Takeshi Toyama, Jun-ichi Yoshikawa, Kenzo Makino, Fumiya Okamoto, Rei Sakakibara, Shuntaro Takeda, Peter van Loock, and [[Akira Furusawa]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.113603|All-Optical Storage of Phase-Sensitive Quantum States of Light]], Phys. Rev. Lett. **123**, 113603 (2019) * R Gutierrez-Cuevas, M R Dennis, and [[Miguel A. Alonso]], [[https://iopscience.iop.org/article/10.1088/2040-8986/ab2c52/meta|Generalized Gaussian beams in terms of Jones vectors]], J. Opt. **21**, 084001 (2019) === 2018 === * H. Le Jeannic, A. Cavaillès, K. Huang, R. Filip, and [[Julien Laurat]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.073603|Slowing Quantum Decoherence by Squeezing in Phase Space]], Phys. Rev. Lett. **120**, 073603 (2018) * A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. D. Shaw, V. B. Verma, S. W. Nam, and [[Julien Laurat]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.170403|Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light]], Phys. Rev. Lett. **121**, 170403 (2018) * C. Flühmann and V. Negnevitsky and M. Marinelli and J. P. Home, [[https://link.aps.org/doi/10.1103/PhysRevX.8.021001|Sequential Modular Position and Momentum Measurements of a Trapped Ion Mechanical Oscillator]], Phys. Rev. X **8**, 021001 (2018) * [[Enno Giese]], Robert Fickler, Wuhong Zhang, Lixiang Chen, and Robert W. Boyd, [[https://iopscience.iop.org/article/10.1088/1402-4896/aace12/meta|Influence of pump coherence on the quantum properties of spontaneous parametric down-conversion]], Phys. Script. **93**, 084001 (2018) * Richard Birrittella, M. El Baz, and [[Christopher C. Gerry]], [[https://www.osapublishing.org/josab/abstract.cfm?uri=josab-35-7-1514|Photon catalysis and quantum state engineering ]], J. Opt. Soc. Amer. B **35**, 1514 (2018) * J. T. Mendonça, H. Terças, and A. Gammal, [[https://link.aps.org/doi/10.1103/PhysRevA.97.063610|Quantum Landau damping in dipolar Bose-Einstein condensates]], Phys. Rev. A **97**, 063610 (2018) === 2016 === * C. Sparaciari, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.023810|Gaussian-state interferometry with passive and active elements]], Phys. Rev. A **93**, 023810 (2016) * S. Cialdi, C. Porto, D. Cipriani, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.043805|Full quantum state reconstruction of symmetric two-mode squeezed thermal states via spectral homodyne detection and a state-balancing detector]], Phys. Rev. A **93**, 043805 (2016) * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto, Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016) * Kenzo Makino, Yosuke Hashimoto, Jun-ichi Yoshikawa, Hideaki Ohdan, Takeshi Toyama, Peter van Loock, and [[Akira Furusawa]], [[https://advances.sciencemag.org/content/2/5/e1501772|Synchronization of Optical Photons for Quantum Information Processing]], Sci. Adv. **2**, e1501772 (2016) * D. Kienzler and C. Flühmann and V. Negnevitsky and H.-Y. Lo and M. Marinelli and D. Nadlinger and J. P. Home, [[https://link.aps.org/doi/10.1103/PhysRevLett.116.140402|Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets]], Phys. Rev. Lett **116**, 140402 (2016) * Juan Mauricio Torres, Jozsef Zsolt Bernad, and [[Gernot Alber]], [[https://link.springer.com/article/10.1007/s00340-016-6382-3|Unambiguous atomic Bell measurement assisted by multiphoton states]], Appl. Phys. B **122**, 117 (2016) === 2015 === * C. Sparaciari, [[Stefano Olivares]], and M. G. A. Paris, [[https://www.osapublishing.org/josab/abstract.cfm?uri=josab-32-7-1354|Bounds to precision for quantum interferometry with Gaussian states and operations]], J. Opt. Soc. Am. B **32**, 1354 (2015) * Richard Birrittella, Kezi Cheng, and [[Christopher C. Gerry]], [[https://www.sciencedirect.com/science/article/pii/S0030401815004447?via%3Dihub|Photon-Number Parity Oscillations in the Resonant Jaynes-Cummings Model]], Opt. Comm. **354**, 286 (2015) * K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and [[Julien Laurat]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.023602|Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources]], Phys. Rev. Lett. **115**, 023602 (2015) === 2014 === * M. Esposito, F. Benatti, R. Floreanini, [[Stefano Olivares]], F. Randi, K. Titimbo, M. Pividori, F. Novelli, F. Cilento, F. Parmigiani, and D. Fausti, [[http://iopscience.iop.org/article/10.1088/1367-2630/16/4/043004|Pulsed homodyne Gaussian quantum tomography with low detection efficiency]], New. J. Phys. **16**, 043004 (2014) * Olivier Morin, Kun Huang, Jianli Liu, Hanna Le Jeannic, Claude Fabre, and [[Julien Laurat]], [[https://www.nature.com/articles/nphoton.2014.137|Remote creation of hybrid entanglement between particle-like and wave-like optical qubits]], Nature Photon. **8**, 570 (2014) === 2013 === * A. Meda, [[Stefano Olivares]], I. P. Degiovanni, G. Brida, M. Genovese, and M. G. A. Paris, [[https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-16-3099|Revealing interference by continuous variable discordant states]], Optics Letters **38**, 3099 (2013) * M. G. Genoni, M. L. Palma, T. Tufarelli, [[Stefano Olivares]], M. S. Kim, and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.062104|Detecting quantum non-Gaussianity via the Wigner function]], Phys. Rev. A **87**, 062104 (2013) === 2012 === * [[Stefano Olivares]], [[http://link.springer.com/article/10.1140/epjst/e2012-01532-4|Quantum optics in the phase space - A tutorial on Gaussian states]]; Eur. Phys. J. Special Topics **203**, 3-24 (2012) === 2011 === * [[Stefano Olivares]] and M. G. A. Paris, [[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.170505|Fidelity matters: the birth of entanglement in the mixing of Gaussian states]], Phys. Rev. Lett. **107**, 170505 (2011) === 2009 === * S. Cho, [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://www.tandfonline.com/doi/full/10.1080/09500340903377766|Wigner functions for paraxial and nonparaxial fields]] J. Mod. Opt. **56**, 1843 (2009) * V. D'Auria, S. Fornaro, A. Porzio, S. Solimeno, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.020502|Full characterization of Gaussian bipartite entangled states by a single homodyne detector]], Phys. Rev. Lett. **102**, 020502 (2009) * R. Vasile, [[Stefano Olivares]], M. G. A. Paris, and S. Maniscalco, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.062324|Continuous-variable-entanglement dynamics in structured reservoirs]], Phys. Rev. A **80**, 062324 (2009) === 2008 === * Patrick Loughlin and [[Leon Cohen]], [[https://www.tandfonline.com/doi/full/10.1080/09500340802220745|Approximate wave function from approximate non-representable Wigner distributions]], J. Mod. Opt. **55**, 3379 (2008) === 2007 === * S. Maniscalco, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.75.062119|Entanglement oscillations in non-Markovian quantum channels]], Phys. Rev. A **75**, 062119 (2007) * [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-24-9-2590|Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions]] J. Opt. Soc. Am. A **24**, 2590 (2007) ==== Condensed Matter: Optical and Transport properties of Systems ==== === 2019 === * [[Nicola Zamponi]] and Ansgar Jüngel, [[https://arxiv.org/abs/1905.10186|Two spinorial drift-diffusion models for quantum electron transport in graphene]], arXiv:1905.10186 (2019) * [[Nicola Zamponi]], [[https://arxiv.org/abs/1905.10185|Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization]], arXiv:1905.10185 (2019) * [[Dmitry Karlovets]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aaf9d8|On Wigner function of a vortex electron]], J. Phys. A: Math. Theor. **52**, 05LT01 (2019) * [[Thierry Goudon]] and Alexis F. Vasseur, [[https://epubs.siam.org/doi/abs/10.1137/18M1184643|Statistical Stability for Transport in Random Media]], SIAM Multiscale Model. Simul. **17**, 507 (2019) * Matteo Acciai, Matteo Carrega, Jérôme Rech, Thibaut Jonckheere, [[Dario Ferraro]], Thierry Martin, and Maura Sassetti, [[https://iopscience.iop.org/article/10.1088/1742-6596/1182/1/012003/meta|Single-electron excitations and interactions in integer quantum Hall systems at ν = 2]], J. Phys. Conf. Ser. **1182**, 012003 (2019) * R. Bisognin, A. Marguerite, B. Roussel, M. Kumar, C. Cabart, C. Chapdelaine, A. Mohammad-Djafari, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, U. Gennser, Y. Jin, [[Pascal Degiovanni]], and [[Gwendal Fève]], [[https://www.nature.com/articles/s41467-019-11369-5|Quantum tomography of electrical currents]], Nat. Comm. **10**, 3379 (2019) * [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], Mauro Ballicchia, [[Siegfried Selberherr]], [[Ivan Dimov]], and [[David K. Ferry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.014423|Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform]], Phys. Rev. B **99**, 014423 (2019) * Mauro Ballicchia, [[David K. Ferry]], [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], [[https://www.mdpi.com/2076-3417/9/7/1344|Investigating Quantum Coherence by Negative Excursions of the Wigner Quasi-Distribution]], Appl. Sci. **9**, 1344 (2019) * Martin Koppenhöfer, [[Christoph Bruder]], and Niels Lörch, [[https://arxiv.org/abs/1906.05126|Heralded dissipative preparation of nonclassical states in a Kerr oscillator]], arXiv (2019) * Niels Lörch, Yaxing Zhang, [[Christoph Bruder]], and M. I. Dykman, [[https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.023023|Quantum state preparation for coupled period tripling oscillators]], Phys. Rev. Res. **1**, 023023 (2019) * David Picconi, Jeffrey A. Cina, and [[Irene Burghardt]], [[https://aip.scitation.org/doi/10.1063/1.5082650|Quantum dynamics and spectroscopy of dihalogens in solid matrices. I. Efficient simulation of the photodynamics of the embedded I2Kr18 cluster using the G-MCTDH method]], J. Chem. Phys. **150**, 064111 (2019) * David Picconi and [[Irene Burghardt]], [[https://pubs.rsc.org/en/content/articlehtml/2019/fd/c9fd00065h|Time-resolved spectra of I2 in a krypton crystal by G-MCTDH simulations: nonadiabatic dynamics, dissipation and environment driven decoherence]], Farad. Discuss. (2019) * Robert Binder and [[Irene Burghardt]], [[https://pubs.rsc.org/en/content/articlehtml/2019/fd/c9fd00066f|First-principles quantum simulations of exciton diffusion on a minimal oligothiophene chain at finite temperature]], Farad. Discuss. (2019) * David Picconi and [[Irene Burghardt]], [[https://aip.scitation.org/doi/full/10.1063/1.5099983|Open system dynamics using Gaussian-based multiconfigurational time-dependent Hartree wavefunctions: Application to environment-modulated tunneling]], J. Chem. Phys. **150**, 224106 (2019) * [[Giovanni Manfredi]], Paul-Antoine Hervieux, and Jerome Hurst, [[https://link.springer.com/article/10.1007/s41614-019-0034-0|Phase-space modeling of solid-state plasmas]], Rev. Mod. Plasm. Phys. **3**, 13 (2019) === 2018 === * Alexandre Roulet and [[Christoph Bruder]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.053601|Synchronizing the Smallest Possible System]], Phys. Rev. Lett. **121**, 053601 (2018) * Ehud Amitai, Martin Koppenhöfer, Niels Lörch, and [[Christoph Bruder]], [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.052203|Quantum effects in amplitude death of coupled anharmonic self-oscillators]], Phys. Rev. E **97**, 052203 (2018) * Tianji Ma, Matteo Bonfanti, Pierre Eisenbrandt, Rocco Martinazzo, and [[Irene Burghardt]], [[https://aip.scitation.org/doi/full/10.1063/1.5062608|Multi-configurational Ehrenfest simulations of ultrafast nonadiabatic dynamics in a charge-transfer complex ]], J. Chem. Phys. **149**, 244107 (2018) * [[Luigi Barletti]], Giovanni Frosali, and Elisa Giovanni, [[https://www.tandfonline.com/doi/full/10.1080/23324309.2018.1520732|Adding Decoherence to the Wigner Equation]], J. Comp. Theor. Trans. **47**, 209 (2018) * [[Josef Weinbub]], Mauro Ballicchia, and [[Mihail (Mixi) Nedjalkov]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/pssr.201800111|Electron Interference in a Double‐Dopant Potential Structure]], Phys. Stat. Sol. RRL **12**, 1800111 (2018) * Mauro Ballicchia, [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]], [[https://pubs.rsc.org/en/content/articlelanding/2018/NR/C8NR06933F#!divAbstract|Electron Evolution Around a Repulsive Dopant in a Quantum Wire: Coherence Effects]], Nanoscale **10**, 23037 (2018) === 2017 === * Talitha Weiss, Stefan Walter, and [[Florian Marquardt]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.041802|Quantum-coherent phase oscillations in synchronization]], Phys. Rev. A **95**, 041802(R) (2017) * [[Dmitry Karlovets]],[[https://link.springer.com/article/10.1007/JHEP03(2017)049|Scattering of wave packets with phases]], J. High Energy Physics **2017**, 49 (2017) * [[Dmitry Karlovets]] and V.G. Serbo, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.173601|Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms]], Phys. Rev. Lett. **119**, 173601 (2017) * [[Maciej Woloszyn]] and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.075440|Dissipative transport of thermalized electrons through a nanodevice]], Phys. Rev. B **96**, 075440 (2017) * [[Paul Ellinghaus]], [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]] and [[Siegfried Selberherr]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssr.201700102|Analysis of Lense-Governed Wigner Signed Particle Quantum Dynamics]], Phys. Stat. Sol. RRL **11**, 1700102 (2017). * T. Ikeda and Y. Tanimura, [[https://doi.org/10.1063/1.4989537|Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchal Fokker-Planck Equation approach]], J. Chem. Phys. **146**, 014102 (2017) * J. Hurst, P.-A. Hervieux, G. Manfredi,[[https://doi.org/10.1098/rsta.2016.0199|Phase space methods for the spin dynamics in condensed matter systems.]], Phil. Trans. Royal Soc. A **375**, 20160199 (2017) * [[Gerald J Iafrate]], V. N. Sokolov, and J. B. Krieger, [[https://link.aps.org/doi/10.1103/PhysRevB.96.144303|Quantum transport and the Wigner distribution function for Bloch electrons in spatially homogeneous electric and magnetic fields]], Phys. Rev. B **96**, 144303 (2017) * * A.S. Larkin, V.S. Filinov, V.E. Fortov, [[https://doi.org/10.1002/ctpp.201700082|Pauli blocking by effective pair pseudopotential in degenerate Fermi systems of particles]], Contrib. Plasma Phys. **57**, 187506 (2017) === 2016 === * [[Christian B. Mendl]], Jianfeng Lu, and Jani Lukkarinen, [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.062104|Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory]], Phys. Rev. E **94**, 062104 (2016) * Vittorio Peano, Martin Houde, [[Florian Marquardt]], and Aashish A. Clerk, [[https://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.041026|Topological Quantum Fluctuations and Traveling Wave Amplifiers]], Phys. Rev. X **6**, 041026 (2016) * R. Grossmann, A. Sakurai, and Y. Tanimura, [[https://journals.jps.jp/doi/10.7566/JPSJ.85.034803|Electron pumping under non-Markovian dissipation: The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016) * J. T. Mendonça and A Serbeto, [[https://doi.org/10.1088/0031-8949/91/9/095601|Photon and electron Landau damping in quantum plasmas]], Phys. Scr. ** 91**, 095601 (2016) * Y. P. Kalmykov, W. T. Coffey and S. V. Titov, [[ https://doi.org/10.1002/9781119290971.ch2|Spin relaxation in phase space]], Adv. Chem. Phys.**161**, 41 (2016) === 2015 === * [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], [[Paul Ellinghaus]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0732-y|The Wigner Equation in the Presence of Electromagnetic Potentials]], J. Comp. Electron. **14**, 888 (2015) * [[Olafur Jonasson]] and [[Irena Knezevic]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0734-9|Dissipative transport in superlattices within the Wigner function formalism]], J. Comp. Electron. **14**, 879 (2015) * Y. Tanimura, [[https://aip.scitation.org/doi/10.1063/1.4916647|Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations]], J. Chem. Phys. **142**, 144110 (2015) === 2014 === * Pierrat, Romain and Ambichl, Philipp and Gigan, Sylvain and Haber, Alexander and Carminati, Rémi and [[Stefan Rotter]], [[https://www.pnas.org/content/111/50/17765.short|Invariance Property of Wave Scattering Through Disordered Media]], Proceedings of the National Academy of Sciences **111**, 17765 (2014) * N. Crouseilles and [[Giovanni Manfredi]], [[https://www.sciencedirect.com/science/article/pii/S0010465513001963|Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit]], Comp. Phys. Comm. **185**, 448 (2014) === 2013 === * [[Dario Ferraro]], A. Feller, A. Ghibaudo, E. Thibierge, E. Bocquillon, [[Gwendal Fève]], Ch. Grenier, and [[Pascal Degiovanni]], [[https://journals.aps.org/prb/pdf/10.1103/PhysRevB.88.205303|Wigner function approach to single electron coherence in quantum Hall edge channels]], Phys. Rev. B **88**, 205303 (2013) * [[Xavier Oriols]] and [[David K. Ferry]], [[https://link.springer.com/article/10.1007%2Fs10825-013-0461-z|Quantum Transport Beyond DC]], J. Comp. Electron. **12**, 317 (2013) * Ansgar Jüngel, [[Nicola Zamponi]], [[http://dx.doi.org/10.4310/CMS.2013.v11.n3.a7|Two spinorial drift-diffusion models for quantum electron transport in graphene]], COMMUN. MATH. SCI. **11**, 807 (2013) === 2012 === * [[Omar Morandi]] and [[Ferdinand Schürrer]], [[https://iopscience.iop.org/article/10.1088/1751-8113/44/26/265301|Wigner model for quantum transport in graphene]], J. Phys. A: Math. Theor. **44**, 265301 (2012) * [[Nicola Zamponi]], [[https://www.aimsciences.org/article/doi/10.3934/krm.2012.5.203|Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization]], Kinet. Relat. Models **5**, 203 (2012) === 2011 === * [[Nicola Zamponi]] and [[Luigi Barletti]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/mma.1403|Quantum Electronic Transport in Graphene: A Kinetic and Fluid-Dynamic Approach]], Mathematical Methods in the Applied Sciences **34**, 807 (2011) * [[Omar Morandi]] and [[Ferdinand Schürrer]], [[http://caim.simai.eu/index.php/caim/article/view/360|Wigner model for Klein tunneling in graphene]], Comm. Appl. Indust. Math. **2**, (2011) * [[Nicola Zamponi]], [[Luigi Barletti]], [[ https://doi.org/10.1002/mma.1403|Quantum electronic transport in graphene: A kinetic and fluid‐dynamic approach]], MATH METHOD APPL SCI **34** 807 (2011) * [[Stefan Rotter]] and Ambichl, Philipp and Libisch, Florian, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.120602|Generating Particlelike Scattering States in Wave Transport]]", Physical Review Letters **106**, 120602 (2011) === 2010 === * R. Jasiak, [[Giovanni Manfredi]], and Paul-Antoine Hervieux, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.241401|Electron Thermalization and Quantum Decoherence in Thin Metal films]], Phys. Rev. B **81**, 241401(R) (2010) === 2009 === * [[Omar Morandi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.024301|Multiband Wigner-function formalism applied to the Zener band transition in a semiconductor]], Phys. Rev. B **80**, 024301 (2009) * R. Jasiak, [[Giovanni Manfredi]], and Paul-Antoine Hervieux, [[https://iopscience.iop.org/article/10.1088/1367-2630/11/6/063042|Quantum-classical transition in the electron dynamics of thin metal films]], New J. Phys. **11**, 063042 (2009) === 2008 === * F. Haas, B. Eliasson, P. K. Shukla, and [[Giovanni Manfredi]], [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.78.056407|Phase-space structures in quantum-plasma wave turbulence]], Phys. Rev. E **78**, 056407 (2008) === 2005 === * J. B. Krieger, A. A. Kiselev, and [[Gerald J Iafrate]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.195201|Quantum transport for a Bloch electron quasiparticle in an inhomogeneous electric field scattering from a random distribution of impurities: A Wigner approach]], Phys. Rev. B **72**, 195201 (2005) === 2001 === * M. Levanda and [[Victor Fleurov]], [[https://www.sciencedirect.com/science/article/pii/S0003491601961706?via%3Dihub|A Wigner Quasi-distribution Function for Charged Particles in Classical Electromagnetic Fields]], Ann. Phys. **292**, 199 (2001) === 1988 === * [[Gerald J Iafrate]], [[https://link.springer.com/chapter/10.1007%2F978-1-4899-2382-0_16|Quantum Transport and the Wigner Function]], The Physics of Submicron Semiconductor Devices, NATO ASI Series **180**, 521 (1988) ==== Engineering (Acoustics, Electronics, Seismology, Signals, etc.) ==== === 2021 === * R. Panda, S. Jain, R.K. Tripathy, R.R. Sharma, and [[Ram Bilas Pachori]], [[https://link.springer.com/article/10.1007/s00034-020-01537-0|Sliding mode singular spectrum analysis for the elimination of cross-terms in Wigner-Ville distribution]], Circ. Sys. Sig. Proc. **40**, 1207 (2021) === 2019 === * [[Joon-Ho Lee]], [[Mincheol Shin]], and Jeong Hyeon Seo, [[https://aip.scitation.org/doi/full/10.1063/1.5085569|Performance limitations of nanowire resonant-tunneling transistors with steep switching analyzed by Wigner transport simulation]], J. Appl. Phys. **125**, 174502 (2019) * R.R. Sharma, A. Kalyani, and [[Ram Bilas Pachori]], [[https://doi.org/10.1007/s11760-019-01549-7|An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution]], SIViP **2019**, 1 (2019) * Arnab K. Majee, Adithya Kommini, and [[Zlatan Aksamija]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/andp.201800510|Electronic Transport and Thermopower in 2D and 3D Heterostructures—A Theory Perspective]], Ann. Phys. **531**, 1800510 (2019) * R.R. Sharma, Avinash Kalyani, and [[Ram Bilas Pachori]], [[https://link.springer.com/article/10.1007%2Fs11760-019-01549-7|An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution]], Sig. Imag. Vid. Proc. (2019) === 2018 === * [[Kyoung-Youm Kim]], [[Ting-wei Tang]], and Saehwa Kim, [[https://aip.scitation.org/doi/full/10.1063/1.5055686|Accuracy balancing for the simulation of gate-all-around junctionless nanowire transistors using discrete Wigner transport equation ]], AIP Adv. **8**, 115105 (2018) * Rita Claudia Iotti and [[Fausto Rossi]], [[https://www.mdpi.com/1099-4300/20/10/726|Microscopic Theory of Energy Dissipation and Decoherence in Solid-State Quantum Devices: Need for Nonlocal Scattering Models ]], Entropy **20**, 726 (2018) * [[Mihail (Mixi) Nedjalkov]], [[Paul Ellinghaus]], [[Josef Weinbub]], Toufik Sadi, Asen Asenov, [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/pii/S0010465518300821?via%3Dihub|Stochastic Analysis of Surface Roughness Models in Quantum Wires]], Comp. Phys. Commun. **228**, 30 (2018) * [[David K. Ferry]] and Ian Welland, [[https://link.springer.com/article/10.1007%2Fs10825-017-1094-4|Relativistic Wigner Functions in Transition Metal Dichalcogenides]], J. Comp. Electron. **17**, 110 (2018) * [[Gabriele Gradoni]], L. R. Arnaut, [[Stephen Creagh]], [[Gregor Tanner]], M. H. Baharuddin, C. Smartt, and D. W. P. Thomas, [[https://ieeexplore.ieee.org/document/8046114/authors#authors|Wigner-Function-Based Propagation of Stochastic Field Emissions From Planar Electromagnetic Sources]], IEEE T. Electromag. Compa. **60**, 580 (2018) * R.R. Sharma and R.B. Pachori, [[https://doi.org/10.1007/s00034-018-0846-0|Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner-Ville distribution]], Circuits Syst Signal Process **37**, 3330 (2018) * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://ieeexplore.ieee.org/abstract/document/8605839/authors#authors|Role of Interfacial and Intrinsic Coulomb Impurities in Monolayer MoS2 FETs]], Proc. IEEE Nanotechnology Materials and Devices Conference (NMDC), (2018) * R.R. Sharma and [[Ram Bilas Pachori]], [[https://link.springer.com/article/10.1007/s00034-018-0846-0|Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner-Ville distribution]], Circ. Sys. Sig. Proc. **37**, 3330 (2018) * Chenglong Bao, George Barbastathis, Hui Ji, Zuowei Shen and [[Zhengyun Zhang]], [[https://epubs.siam.org/doi/abs/10.1137/17M1124097|Coherence Retrieval Using Trace Regularization]], SIAM J. Imag. Sci. **11**, 679 (2018) === 2017 === * [[Maciej Woloszyn]] and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.075440|Dissipative transport of thermalized electrons through a nanodevice]], Phys. Rev. B **96**, 075440 (2017) * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://ieeexplore.ieee.org/document/8013152|Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses]], IEEE T. Nanotech. **16**, 1028 (2017) * Rita Claudia Iotti and [[Fausto Rossi]], [[https://link.springer.com/article/10.1140/epjb/e2017-80462-3|Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments]], Europ. Phys. J. B **90**, 250 (2017) * Rita Claudia Iotti, Fabrizio Dolcini and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.115420|Wigner-function formalism applied to semiconductor quantum devices: Need for nonlocal scattering models]], Phys. Rev. B **96**, 115420 (2017) * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://www.ingentaconnect.com/contentone/asp/jctn/2017/00000014/00000003/art00013|Interplay Between a Gaussian Wave Packet and a Non-Reflecting Potential Analyzed Using the Wigner Equation]], J. Comput. Theor. Nanosci. **14**, 1329 (2017) * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://ieeexplore.ieee.org/abstract/document/8117451|Effects of uniaxial strain on polar optical phonon scattering and electron transport in monolayer MoS2 FETs]], Proc. IEEE International Conference on Nanotechnology (NANO), (2017) * Adithya Kommini and [[Zlatan Aksamija]], [[https://iopscience.iop.org/article/10.1088/1361-648X/aaa110/meta|Thermoelectric properties of periodic quantum structures in the Wigner–Rode formalism]], J. Phys. Cond. Matt. **30**, 044004 (2017) * [[Zlatan Aksamija]], [[https://www.taylorfrancis.com/books/e/9781315108223|Nanophononics: Thermal Generation, Transport, and Conversion at the Nanoscale]] (Jenny Stanford Publishing, 2017) * [[Zhengyun Zhang]], Chenglong Bao, Hui Ji, Zuowei Shen, George Barbastathis, [[https://doi.org/10.1364/JOSAA.34.002025|Apparent coherence loss in phase space tomography]], J. Opt. Soc. Am. A **34**, 2025 (2017) === 2016 === * U. Kaczor, B. Klimas, D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://www.degruyter.com/view/j/phys.2016.14.issue-1/phys-2016-0036/phys-2016-0036.xml|Phase-space description of the coherent state dynamics in a small one-dimensional system]], Open Phys. **14**, 354 (2016) * R.B. Pachori and A. Nishad, [[https://doi.org/10.1016/j.sigpro.2015.07.026|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]], Signal Process **120**, 288 (2016) * Rita Claudia Iotti, Fabrizio Dolcini, Arianna Montorsi and [[Fausto Rossi]], [[https://link.springer.com/article/10.1007/s10825-016-0858-6|Electron–phonon dissipation in quantum nanodevices]], J. Comput. Electron. **15**, 1170 (2016) * [[Shaikh S. Ahmed]], et al., [[https://ieeexplore.ieee.org/abstract/document/7853846/authors#authors|Multiscale-multiphysics modeling of nonclassical semiconductor devices]], Proc. International Conference on Electrical and Computer Engineering (ICECE), (2016) * [[Ram Bilas Pachori]] and A. Nishad, [[https://www.sciencedirect.com/science/article/pii/S0165168415002637|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]], Sig. Proc. **120**, 288 (2016) === 2015 === * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], D. Szydlowski, [[https://link.springer.com/article/10.1007/s10825-015-0733-x|Dynamical localisation of conduction electrons in one-dimensional disordered systems]], J. Comput. Electron. **14**, 916 (2015) * Roberto Rosati, Fabrizio Dolcini and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.235423|Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation]], Phys. Rev. B **92**, 235423 (2015) === 2014 === * [[Carlo Jacoboni]] and [[Paolo Bordone]], [[https://link.springer.com/article/10.1007/s10825-013-0510-7|Wigner transport equation with finite coherence length]], J. Comp. Electron. **13**, 257 (2014) * [[Olafur Jonasson]] and [[Irena Knezevic]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.165415|Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure]], Phys. Rev. B **90**, 165415 (2014) * [[Gabriele Gradoni]], [[Stephen Creagh]], and [[Gregor Tanner]], [[https://ieeexplore.ieee.org/document/6899092|A Wigner Function Approach for Describing the Radiation of Complex Sources]], Proc. IEEE International Symposium on Electromagnetic Compatibility (EMC) (2014) * [[Gabriele Gradoni]], [[Stephen Creagh]], and [[Gregor Tanner]], [[https://ieeexplore.ieee.org/document/6931029|Radiation of complex sources in reflecting environments: A Wigner function approach]], Proc. of IEEE International Symposium on Electromagnetic Compatibility (EMC) (2014) * J.M. Sellier, S. Amoroso, [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], Asen Asenov, and [[Ivan Dimov]], [[https://www.sciencedirect.com/science/article/pii/S0378437113011862?via%3Dihub|Electron Dynamics in Nanoscale Transistors by Means of Wigner and Boltzmann Approaches]], Physica A **398**, 194 (2014) === 2013 === * Rosati, Roberto and Dolcini, Fabrizio and Iotti, Rita Claudia and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.035401|Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme]], Phys. Rev. B **88**, 035401 (2013) * P. Jain and [[Ram Bilas Pachori]], [[https://www.sciencedirect.com/science/article/abs/pii/S0016003213000069|Marginal energy density over the low frequency range as a feature for voiced/non-voiced detection in noisy speech signals]], J. Frank. Ins. **350**, 678 (2013) * V. Bajaj and [[Ram Bilas Pachori]], [[https://www.sciencedirect.com/science/article/pii/S0169260713002265|Automatic classification of sleep stages based on the time-frequency image of EEG signals]], Comp. Meth. Prog. Biomed. **112**, 320 (2013) * Lei Tian, [[Zhengyun Zhang]], [[Jonathan Petruccelli]], and George Barbastathis, [[https://doi.org/10.1364/OE.21.010511|Wigner function measurement using a lenslet array]], Opt. Express **21**, 10511 (2013) * D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://iopscience.iop.org/article/10.1088/0268-1242/28/10/105022/pdf|Phase-space description of wave packet approach to electronic transport in nanoscale systems]], Semicond. Sci. Technol. **28**, 105022 (2013) * P. Wójcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://aip.scitation.org/doi/abs/10.1063/1.4811836?journalCode=apl|Spin filter effect at room temperature in GaN/GaMnN ferromagnetic resonant tunnelling diode]], Appl. Phys. Lett. **102**, 242411 (2013) === 2012 === * P. Wojcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165318|Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode]], Phys. Rev. B **86**, 165318 (2012) * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], and J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/27/11/115004/meta|Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode]], Semicond. Sci. Technol. **27**, 115004 (2012) * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://aip.scitation.org/doi/10.1063/1.4729895|Tuning of terahertz intrinsic oscillations in asymmetric triple-barrier resonant tunneling diodes]], J. Appl. Phys. **111**, 124310 (2012) === 2011 === * [[Sylvain Barraud]], [[https://aip.scitation.org/doi/10.1063/1.3654143|Dissipative quantum transport in silicon nanowires based on Wigner transport equation]], J. Appl. Phys. **110**, 093710 (2011) === 2010 === * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and Philipp Schwaha, [[https://link.springer.com/article/10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], J. Comp. Electron. **9**, 218 (2010) * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/25/12/125012|Intrinsic current oscillations in an asymmetric triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **25**, 125012 (2010) === 2009 === * [[Sylvain Barraud]], [[https://aip.scitation.org/doi/10.1063/1.3226856|Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism]], J. Appl. Phys. **106**, 063714 (2009) * Huu-Nha Nguyen, [[Damien Querlioz]], Sylvie Galdin-Retailleau, Arnaud Bournel, and [[Philippe Dollfus]], [[https://ieeexplore.ieee.org/document/5091161|Wigner Monte Carlo simulation of CNTFET: Comparison between semi-classical and quantum transport]], Proc. IWCE, 257 (2009) * [[Zhengyun Zhang]] and Marc Levoy, [[https://ieeexplore.ieee.org/document/5559007|Wigner distributions and how they relate to the light field]], Proc. IEEE International Conference on Computational Photography (ICCP), 1-10 (2009) * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], P. Wojcik, G.J. Morgan, [[https://iopscience.iop.org/article/10.1088/1742-6596/193/1/012130|Wigner distribution function description of a multilayered nanostructure with magnetic impurities]], J. Phys.: Conf. Ser. **193**, 012130 (2009) * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/24/9/095012|Self-consistent Wigner distribution function study of gate-voltage controlled triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **24**, 095012 (2009) * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.035127|Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field]], Phys. Rev. B **80**, 035127 (2009) === 2008 === * [[Damien Querlioz]], Jerome Saint-Martin, Arnaud Bournel, and [[Philippe Dollfus]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.78.165306|Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices]], Phys. Rev. B **78**, 165306 (2008) * Taj, David and [[Fausto Rossi]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssc.200776527|Quantum non-locality in systems with open boundaries: From the Wigner-function formalism to non-homogeneous Markovian master equations]], physica status solidi (c) **5**, 66 (2008) === 2007 === * [[Clemens Heitzinger]], [[Christian Ringhofer]], [[Shaikh S. Ahmed]], and [[Dragica Vasileska]], [[https://link.springer.com/article/10.1007/s10825-006-0058-x|3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions]], J. Comput. Electron. **6**, 15 (2007) * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://journals.aps.org/prb/pdf/10.1103/PhysRevB.76.214301|Effect of symmetry in the many-particle Wigner function]], Phys. Rev. B **76**, 214301 (2007) * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[http://eprints.whiterose.ac.uk/84429/|Effect of the Pauli Exclusion Principle in the Many-Electron Wigner Function]] (2007) * [[Ram Bilas Pachori]] and P. Sircar, [[https://www.sciencedirect.com/science/article/pii/S1051200406001436|A new technique to reduce cross terms in the Wigner distribution]], Dig. Sig. Proc. **17**, 466 (2007) * [[Hans Kosina]], [[https://www.worldscientific.com/doi/abs/10.1142/S0129156407004667|Nanoelectronic Device Simulation Based on the Wigner Function Formalism]], Int. J. High Speed Electron. Sys. **17**, 475 (2007) === 2006 === * Taj, D and Genovese, L and [[Fausto Rossi]], [[https://iopscience.iop.org/article/10.1209/epl/i2006-10047-3|Quantum-transport simulations with the Wigner-function formalism: Failure of conventional boundary-condition schemes]], Europhys. Lett. **74**, 1060 (2006) * Taj, David and Genovese, L and [[Fausto Rossi]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssc.200668052|Transport in quantum devices: modelling contacts in the Wigner formalism]], physica status solidi (c) **3**, 2419 (2006) * [[Harold Grubin]], [[https://www.scientific.net/AST.52.36|Transient Wigner function studies of DMS barrier devices]], Adv. Sci. Techn. **52**, 36 (2006) * V. Sverdlov, T. Grasser, [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-006-0041-6|Scattering and Space-Charge Effects in Wigner Monte Carlo Simulations of Single and Double Barrier Devices]], J. Comp. Electron. **5**, 447 (2006) * [[Damien Querlioz]], Jerome Saint-Martin , Van-Nam Do, Arnaud Bournel, and [[Philippe Dollfus]], [[https://ieeexplore.ieee.org/abstract/document/4011939|A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach]], IEEE T. Nanotechnol. **5**, 737 (2006) * [[Damien Querlioz]], [[Philippe Dollfus]], Van-Nam Do, Bournel, Arnaud, et al., [[https://link.springer.com/article/10.1007/s10825-006-0044-3|An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs]], J. Comput. Electron. **5**, 443 (2006) * [[Hans Kosina]], [[http://www.inderscience.com/offer.php?id=12762|Wigner function approach to nano device simulation]], Int. J. Comp. Sci. Eng. **2**, 100 (2006) === 2005 === * Patrick Loughlin and [[Leon Cohen]], [[https://asa.scitation.org/doi/10.1121/1.2001488|A Wigner approximation method for wave propagation]], J. Acoust. Soc. Amer **118**, 1268 (2005) * V. Sverdlov, A. Gehring, [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/pii/S003811010500198X?via%3Dihub|Quantum Transport in Ultra-Scaled Double-Gate MOSFETs: A Wigner Function-Based Monte Carlo Approach]], Sol. Stat. Electron. **49**, 1510 (2005) * Genovese, Luigi and Taj, David and [[Fausto Rossi]], [[https://arxiv.org/abs/cond-mat/0506757|Quantum Non-Locality in Systems with Open Boundaries: Failure of the Wigner-Function Formalism]], arXiv:cond-mat/0506757 (2005) * Chiara Manzini and [[Luigi Barletti]], [[https://www.sciencedirect.com/science/article/pii/S0362546X04003359|An analysis of the Wigner--Poisson problem with inflow boundary conditions]], Nonl. Anal. Theor. Meth. Appl. **60**, 77 (2005) * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://www.tandfonline.com/doi/abs/10.1080/00411450508951151|Multiband, non-parabolic Wigner-function approach to electron transport in semiconductors]], Trans. Theor Stat. Phys. **34**, 499 (2005) * A. Gehring and [[Hans Kosina]], [[https://link.springer.com/article/10.1007/s10825-005-7109-6|Wigner Function-Based Simulation of Quantum Transport in Scaled DG-MOSFETs Using a Monte Carlo Method]], J. Comp. Electron. **4**, 67 (2005) * [[Bartlomiej Spisak]], A. Paja, G.J. Morgan, [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200440024|Influence of spin–orbit interaction on the electrical conductivity of three-dimensional disordered systems]], phys. stat. sol. (b) **242**, 1460 (2005) === 2004 === * [[Carlo Jacoboni]] and [[Paolo Bordone]], [[https://iopscience.iop.org/article/10.1088/0034-4885/67/7/R01/meta|The Wigner-function approach to non-equilibrium electron transport]], Rep. Prog. Phys. **67**, 1033 (2004) * Zaccaria, Remo Proietti and [[Fausto Rossi]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/086|Generalized Weyl--Wigner formalism for the simulation of open quantum devices: a density-matrix approach]], Semicond. Sci. Techn. **19**, S257 (2004) * [[Harold Grubin]], [[https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5584/0000/Wigner-function-studies-of-spin-transport-in-dilute-magnetic-semiconductor/10.1117/12.582770.short?SSO=1|Wigner function studies of spin transport in dilute magnetic semiconductor barrier structures]], Proc. SPIE **5584** (2004) * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/082|Numerical simulation of intervalley transitions by the Wigner-function approach]], Semicond. Sci. Techn. **19**, S244 (2004) * Rossella Brunetti, Stefano Monastra, and [[Carlo Jacoboni]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/084|Quantum dynamics of polaron formation with the Wigner-function approach]], Semicond. Sci. Techn. **19**, S250 (2004) === 2003 === * [[Luigi Barletti]], [[https://www.tandfonline.com/doi/full/10.1081/TT-120024764|Wigner envelope functions for electron transport in semiconductor devices]], Trans. Theor Stat. Phys. **32**, 253 (2003) * [[Luigi Barletti]], [[http://www.bdim.eu/item?id=BUMI_2003_8_6B_3_693_0|A mathematical introduction to the Wigner formulation of quantum mechanics]], Bollettino dell'Unione Matematica Italiana **6**, 693 (2003) * Zaccaria, Remo Proietti and Iotti, Rita C and [[Fausto Rossi]], [[https://link.springer.com/article/10.1023/B:JCEL.0000011415.34531.b1|Microscopic Modelling of Quantum Open Systems: A Generalized Wigner-Function Approach]], J. Comput. Electron. **2**, 141 (2003) * [[Lucio Demeio]], [[Luigi Barletti]], [[Paolo Bordone]] and [[Carlo Jacoboni]], [[https://www.tandfonline.com/doi/full/10.1081/TT-120024766|Wigner function for multiband transport in semiconductors]], Trans. Theor Stat. Phys. **32**, 307 (2003) * [[Paolo Bordone]], Alberto Bertoni, Rossella Brunetti, and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0378475402002410|Monte Carlo simulation of quantum electron transport based on Wigner paths]], Math. Comput. Simul. **62**, 307 (2003) * [[Carlo Jacoboni]], Rossella Brunetti, and Stefano Monastra: "Quantum dynamics of polaron formation with the Wigner-function approach", Physical Review B, Vol.68, No.12, p.125205, 2003. * [[Bartlomiej Spisak]], A. Paja, [[https://www.worldscientific.com/doi/abs/10.1142/9789812704474_0036|New Approach to the Spin-Orbit Scattering of Electrons in Disordered Metallic Systems]], Proceedings of the 7th International School on Theoretical Physics, World Scientific, New Jersey-London-Hong Kong-Singapore 2003 === 2002 === * Zaccaria, Remo Proietti and [[Fausto Rossi]], [[https://arxiv.org/abs/cond-mat/0204637|Generalized Wigner Function Formulation for Quantum Systems with Open Boundaries]], arXiv:cond-mat/0204637 (2002) * Michalopoulou, Zoi-Heleni and [[Leon Cohen]], [[https://asa.scitation.org/doi/abs/10.1121/1.4778105|Wigner--Ville representations for acoustic source localization]], J. Acoust. Soc. Amer. **111**, 2386 (2002) * [[Lucio Demeio]], [[Luigi Barletti]], Andrea Bertoni, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0921452601013540|Wigner-function approach to multiband transport in semiconductors]], Phys. B Cond. Matt. **314**, 104 (2002) * [[Paolo Bordone]] and [[Carlo Jacoboni]], [[https://link.springer.com/article/10.1023/A:1020715827744|Wigner Paths for Quantum Transport]], J. Comput. Electron. **1**, 67 (2002) * [[Paolo Bordone]], Andrea Bertoni, and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0921452601013552|Infinite barriers and classical force in the Wigner-function approach to quantum electron transport]], Phys. B Cond. Matt. **314**, 123 (2002) * Patrick Loughli and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/0950034021000016784|Wigner distributions local properties of dispersive pulses]], J. Mod. Opt. **49**, 2645 (2002) * [[Harold Grubin]], R.C. Buggeln, [[https://link.springer.com/article/10.1023/A:1020751308180|RTD Relaxation Oscillations, the Time Dependent Wigner Equation and Phase Noise]], J. Comp. Electron. **1**, 33 (2002) === 2001 === * [[Luigi Barletti]] and Paul F Zweifel, [[https://www.tandfonline.com/doi/full/10.1081/TT-100105935|Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions]], Trans. Theor Stat. Phys. **30**, 507 (2001) * [[Carlo Jacoboni]], Rossella Brunetti, [[Paolo Bordone]], and Andrea Bertoni, [[https://www.worldscientific.com/doi/abs/10.1142/S0129156401000897|Quantum transport and its simulation with the Wigner-function approach]], Int. J. High Speed Electron. Sys. **11**, 387 (2001) * [[Carlo Jacoboni]], Andrea Bertoni, [[Paolo Bordone]], and Rossella Brunetti, [[https://www.sciencedirect.com/science/article/pii/S0378475400002470|Wigner-function formulation for quantum transport in semiconductors: theory and Monte Carlo approach]], Math. Comput. Simul. **55**, 67 (2001) === 1998 === * Sangchul Oh, Kyoung-Wan Park, [[Mincheol Shin]], Seongjae Lee, and El-Hang Lee, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.57.2368|Master Equation for the Wigner Function of Normal and Superconducting Single-electron Transistors]], Phys. Rev. B **57**, 57 (1998) * [[Harold Grubin]], [[https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3277/0000/Wigner-function-and-density-matrices-and-their-application-to-transport/10.1117/12.306157.short|Wigner function and density matrices and their application to transport properties of semiconductor devices]], Proc. SPIE **3277** (1998) === 1993 === * [[David K. Ferry]] and J.-R. Zhou, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.48.7944|Form of the Quantum Potential for use in Hydrodynamic Equations for Semiconductor Device Modeling]], Phys. Rev. B **48**, 7944 (1993) === 1989 === * [[Walter Poetz]], [[https://aip.scitation.org/doi/abs/10.1063/1.344257|Self‐consistent model of transport in quantum well tunneling structures]], J. Appl. Phys. **66**, 2458 (1989) === 1987 === * N. Kluksdahl, [[Walter Poetz]], U. Ravaioli and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/0749603687901753|Wigner function study of a double quantum barrier resonant tunnelling diode]], Superlatt. Microstruct. **3**, 41 (1987) === 1985 === * U. Ravaioli, M.A. Osman, [[Walter Poetz]], N. Kluksdahl and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/0378436385903171|Investigation of ballistic transport through resonant-tunnelling quantum wells using wigner function approach]]", Physica B+C **134**, 36 (1985) === 1981 === * [[Gerald J Iafrate]], [[Harold Grubin]], and [[David K. Ferry]], [[https://jphyscol.journaldephysique.org/articles/jphyscol/abs/1981/07/jphyscol198142C737/jphyscol198142C737.html|Utilization of Quantum Distribution Functions for Ultra-Submicron Device Transport]], J. Phys. Colloques **42**, 307 (1981) ==== Mathematical and Theoretical Physics ==== === 2019 === * [[Herbert Spohn]], [[https://link.springer.com/article/10.1007/s10955-019-02320-5|Generalized Gibbs Ensembles of the Classical Toda Chain]], Journal of Statistical Physics (2019) * Marcos Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aafdc2|Translations and reflections on the torus: identities for discrete Wigner functions and transforms]], J. Phys. A **52**, 095301 (2019) * Xiang-Guo Meng, Jian-Ming Liu, Ji-Suo Wang, and [[Hongyi Fan]], [[https://link.springer.com/article/10.1140/epjd/e2018-90224-6|New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications]], Europ. Phys. J. D **73**, 32 (2019) * [[Haiyan Jiang]], [[Tiao Lu]], and Xiangjiang Zhu, [[https://link.springer.com/article/10.1007/s11464-019-0750-3|Well-posedness of a non-local abstract Cauchy problem with a singular integral]], Front. Math. Chin. **14**, 77 (2019) * [[Franz Luef]] and Eirik Skrettingland, [[https://link.springer.com/article/10.1007/s00041-019-09663-3|Mixed-State Localization Operators: Cohen’s Class and Trace Class Operators]], J. Four. Anal. Appl. **25**, 2064 (2019) === 2018 === * [[Leon Cohen]], [[https://doi.org/10.1088/1402-4896/aad0fc|Transformation of quasi-distributions]], Phys. Scr. **93**, 094001 (2018) * Claude Bardos and [[Norbert J. Mauser]], [[https://www.ems-ph.org/journals/show_abstract.php?issn=1027-488X&vol=9&iss=109&rank=5|Kinetic Equations: A French History]], EMS Newsletter (2018) === 2017 === * Jonathan S. Ben‐Benjamin, Moochan B. Kim, [[Wolfgang Schleich]], [[William B. Case]], and [[Leon Cohen]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/prop.201600092|Working in phase‐space with Wigner and Weyl]], Fortschr. Phys. **65**, 1600092 (2017) * S Agyo, [[Ci Lei]], and A Vourdas, [[https://aip.scitation.org/doi/full/10.1063/1.4983917|The groupoid of bifractional transformations ]], J. Math. Phys. **58**, 052103 (2017) * [[Hans Kastrup]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.052111|Wigner functions for angle and orbital angular momentum: Operators and dynamics]], Phys. Rev. A **95**, 052111 (2017) === 2016 === * M. Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://iopscience.iop.org/article/10.1088/1751-8113/49/14/145302|Representation of superoperators in double phase space]], J. Phys A **49**, 145302 (2016) * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto, Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016) * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]], J.M. Sellier, [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-23413-7_97|Neumann Series Analysis of the Wigner Equation Solution]], in: Progress in Industrial Mathematics, The European Consortium for Mathematics in Industry **22**, 701 (2016) * [[Hans Kastrup]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.062113|Wigner functions for the pair angle and orbital angular momentum]], Phys. Rev. A **94**, 062113 (2016) === 2015 === * E. Colomés, Z. Zhan, and [[Xavier Oriols]], [[http://link.springer.com/article/10.1007/s10825-015-0737-6|Comparing Wigner, Husimi and Bohmian distributions: which one is a true probability distribution in phase space?]], J. Comp. Electro. **14**, 894 (2015) * P. Evangelides, [[Ci Lei]], and A. Vourdas, [[https://aip.scitation.org/doi/full/10.1063/1.4927256|Analytic representations with theta functions for systems on ℤ(d) and on 𝕊]], J. Math. Phys. **56**, 072108 (2015) * S Agyo, [[Ci Lei]], and A Vourdas, [[https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012007|Bi-fractional Wigner functions]], J. Phys.: Conf. Ser. **597**, 012007 (2015) * S Agyo, [[Ci Lei]], and A Vourdas, [[https://www.sciencedirect.com/science/article/pii/S0375960114011633|Interpolation between phase space quantities with bifractional displacement operators]], Phys. Lett. A **379**, 255 (2015) === 2014 === * [[Nuno Costa Dias]], [[Maurice de Gosson]], and [[João Nuno Prata]], [[https://www.ams.org/journals/proc/2014-142-09/S0002-9939-2014-12311-2/S0002-9939-2014-12311-2.pdf|Maximal covariance group of Wigner transforms and pseudo-differential operators]], Proc. Amer. Math. Soc. **142**, 3183 (2014) * [[Ruo Li]], [[Tiao Lu]], and [[Zhangpeng Sun]], [[https://epubs.siam.org/doi/abs/10.1137/130941754|Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution?]], SIAM J. Appl. Math. **74**, 885 (2014) * [[Ruo Li]], [[Tiao Lu]], and [[Zhangpeng Sun]], [[https://arxiv.org/abs/1406.4213v1|Convergence of semi-discrete stationary Wigner equation with inflow boundary conditions]], arXiv:1406.4213 (2014) === 2013 === * [[Alfredo Miguel Ozorio de Almeida]], R.O. Vallejos, and E. Zambrano, [[https://iopscience.iop.org/article/10.1088/1751-8113/46/13/135304/meta|Initial or final values for semiclassical evolutions in the Weyl-Wigner representation]], J. Phys. A **46**, 13504 (2013) * [[Nuno Costa Dias]], [[Maurice de Gosson]], and [[João Nuno Prata]], [[https://www.worldscientific.com/doi/abs/10.1142/S0129055X13430101|Metaplectic formulation of the Wigner transform and applications]], Rev. Math. Phys. **25**, 1343010 (2013) * Zhenning Cai, Yuwei Fan, [[Ruo Li]], [[Tiao Lu]], and Yanli Wang, [[https://aip.scitation.org/doi/full/10.1063/1.4748971|Quantum hydrodynamic model by moment closure of Wigner equation]], J. Math. Phys. **53**, 103503 (2012) === 2012 === * Earnshaw RA, Lei C, Li J, Mugassabi S and [[Apostol Vourdas]], [[https://www.sciencedirect.com/science/article/pii/S0378437111008958|Large scale data analysis using the Wigner function]], Physica A **391**, 2401-2407 (2012) * [[Anton Arnold]], I. Gamba, M.P. Gualdani, S. Mischler, C. Mouhot, C. Sparber, [[https://www.worldscientific.com/doi/abs/10.1142/S0218202512500340|The Wigner-Fokker-Planck equation: stationary states and large time behavior]], Math. Mod. Methods Appl. Sc. **22**, 1250034 (2012) * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://link.springer.com/article/10.1007/s11868-012-0054-9|Quantum Mechanics in Phase Space: The Schrodinger and the Moyal Representations]], J. Pseudodiff. Oper. Appl. **3**, 367 (2012) * [[Maurice de Gosson]] and Serge M. de Gosson, [[https://www.sciencedirect.com/science/article/pii/S0375960111013326?via%3Dihub|Weak values of a quantum observable and the cross-Wigner distribution]], Phys. Lett. A **376**, 293 (2012) === 2011 === * Timothy M. Coffey, [[Robert Wyatt]], and Wm. C. Schieve, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.230403|Reconstruction of the Time-Dependent Wave Function Exclusively from Position Data]], Phys. Rev. Lett. **107**, 230403 (2011) * K. Ma, [[Jian-Hua Wang]], Y. Yuan, [[http://iopscience.iop.org/article/10.1088/1674-1137/35/1/003|Wigner Function for the Dirac Oscillator in Spinor Space]], Chinese Physics C **35**, 11-15 (2011) * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0021782411000912|A Pseudo-Differential Calculus on Non-Standard Symplectic Space; Spectral and Regularity Results in Modulation Spaces]], J. Math. Pur. Appl. **96**, 423 (2011) * [[Maurice de Gosson]], [[https://link.springer.com/article/10.1007/s11868-011-0023-8|A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms]], J. Pseudo-Differ. Oper. Appl. **2**, 91 (2011) === 2010 === * R. Mack, J. P. Dahl, H. Moya-Cessa, W. T. Strunz, [[Reinhold Walser]], and [[Wolfgang Schleich]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.032119|Riemann ζ function from wave-packet dynamics]], Phys. Rev. A **82**, 032119 (2010) *[[Apostol Vourdas]], [[https://link.springer.com/article/10.1134/S1063778810020055|Wigner and Weyl functions for p-adic quantum mechanics]], Physics of atomic nuclei **73**, 237-241 (2010) * O. Brodier and [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0375960110004007?via%3Dihub|Markovian evolution of Gaussian states in the semiclassical limit]], Phys. Lett. A **374**, 2315 (2010) * [[Basil J. Hiley]], [[https://link.springer.com/article/10.1007/s10701-009-9320-y|On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?]], Found. Phys. **40**, 356 (2010) * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.3436581|A Deformation Quantization Theory for Noncommutative Quantum Mechanics]], J. Math. Phys. **51**, 072101 (2010) * Bastos, C., [[Nuno Costa Dias]], and [[João Nuno Prata]], [[https://link.springer.com/article/10.1007/s00220-010-1109-5|Wigner Measures in Noncommutative Quantum Mechanics]], Comm. Math. Phys. **299**, 709 (2010) === 2009 === * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0034487709000081|The Narcowich-Wigner spectrum of a pure state]], Rep. Math. Phys. **63**, 43 (2009) * Agissilaos G. Athanassoulis, [[Norbert J. Mauser]], and Thierry Paul, [[https://www.sciencedirect.com/science/article/pii/S0021782409000038|Coarse-scale representations and smoothed Wigner transforms]], J. Math. Pur. Appl. **91**, 296 (2009) * Remi Carles, Clotilde Fermanian Kammerer, [[Norbert J. Mauser]], and Hans Peter Stimming, [[https://www.aimsciences.org/journals/displayArticles.jsp?paperID=3858|On the time evolution of Wigner measures for Schrodinger equations]], Commun. Pure Appl. Anal. **8**, 559 (2009) === 2008 === * [[Fabricio Toscano]], A. Kenfack, A. R. R. Carvalho, J. M. Rost, and [[Alfredo Miguel Ozorio de Almeida]],[[https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2007.0263|Husimi-Wigner representation of chaotic eigenstates]], Proc. Roy. Soc. A **464**, 1503 (2008) * [[William B. Case]], [[http://aapt.scitation.org/doi/10.1119/1.2957889|Wigner functions and Weyl transforms for pedestrians]], Amer. J. Phys. **76**, 937 (2008) * Bastos, Catarina, Bertolami, Orfeu, [[Nuno Costa Dias]], and [[João Nuno Prata]], [[https://aip.scitation.org/doi/full/10.1063/1.2944996|Weyl--Wigner formulation of noncommutative quantum mechanics]], J. Math. Phys. **49**, 072101 (2008) === 2007 === * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/full/10.1063/1.2409495|Features of Moyal trajectories]], J. Math. Phys. **48**, 012109 (2007) * [[Basil J. Hiley]], [[https://www.worldscientific.com/doi/abs/10.1142/9789812771186_0017|Phase Space Description of Quantum Mechanics and Non-commutative Geometry: Wigner-Moyal and Bohm in a wider context]], in //Beyond the Quantum//, 203 (2007) === 2006 === * [[Leon Cohen]], [[https://www.tandfonline.com/doi/full/10.1080/09500340600952051|Wigner distribution for operators at different times]], J. Mod. Opt. **53**, 2377 (2006) * [[Nuno Costa Dias]], Mikovic, A., and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.2227259|Coherent States Expectation Values as Semiclassical Trajectories]], J. Math. Phys. **47**, 082101 (2006) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0003491605001922|Comment on Infinite Walls in Deformation Quantization]], Ann. Phys. **321**, 495 (2006) === 2005 === * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.1948327|Stargenfunctions, General Parametrized Systems and a Causal Formulation of Phase Space Quantum Mechanics]], J. Math. Phys. **46**, 072107 (2005) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.worldscientific.com/doi/abs/10.1142/S0217732305017822|Deformation quantization and Wigner functions]], Mod. Phys. Lett. A **20**, 1371 (2005) * [[Maurice de Gosson]], [[https://www.sciencedirect.com/science/article/pii/S0007449704001095|Cellules quantiques symplectiques et fonctions de Husimi-Wigner]], Bull. Sci. Math. **129**, 211 (2005) === 2004 === * [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/09500340408231835|Wigner quasi-distributions for arbitrary operators]], J. Mod. Opt. **51**, 2761 (2004) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0003491604000648|Admissible States in Quantum Phase Space]], Ann. Phys. **313**, 110 (2004) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.1641152|Time Dependent Transformations in Deformation Quantization]], J. Math. Phys. **45**, 887 (2004) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0003491603002690|Formal Solutions of Stargenvalue Equations]], Ann. Phys. **311**, 120 (2004) === 2003 === * Lorenzo Galleani and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/09500340308234579|Reply to:‘Comment on “wigner equation of motion for time-dependent potentials”’by besieris and davis]], J. Mod. Opt. **50**, 2275 (2003) * [[Hongyi Fan]], [[https://iopscience.iop.org/article/10.1088/0253-6102/40/4/409|General Wigner Transforms Studied by Virtue of Weyl Ordering of the Wigner Operator]], Commun. Theor. Phys. **40**, 409 (2003) * Christof Sparber, Peter A. Markowich, and [[Norbert J. Mauser]], [[https://content.iospress.com/articles/asymptotic-analysis/asy540|Wigner Functions versus WKB-Methods in Multivalued Geometrical Optics]], Asymp. Anal. **33**, 153 (2003) === 2002 === * [[Thierry Goudon]], [[https://epubs.siam.org/doi/abs/10.1137/S0036142901388366|Analysis of a semidiscrete version of the Wigner equation]], SIAM J. Num. Anal. **40**, 2007 (2002) * Lorenzo Galleani and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/0950034021000011518|Wigner distribution for random systems]], J. Mod. Opt. **49**, 2657 (2002) * [[Leon Cohen]] and Patrick Loughli, [[https://www.tandfonline.com/doi/abs/10.1080/09500340110087642|Generalized Wigner distributions, moments and conditional correspondence rules]], J. Mod. Opt. **49**, 539 (2002) * Lorenzo Galleani and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/09500340110088515|Wigner equation of motion for time-dependent potentials]], J. Mod. Opt. **49**, 561 (2002) * [[Anton Arnold]], J. Carrillo, E. Dhamo, [[https://www.sciencedirect.com/science/article/pii/S0022247X0200327X|On the periodic Wigner-Poisson-Fokker-Planck system]], J. Math. Anal. Appl. **275**, 263 (2002) * Lorenzo Galleani and [[Leon Cohen]], [[https://link.springer.com/article/10.1155/S1110865702000458|Approximation of the Wigner distribution for dynamical systems governed by differential equations]], EURASIP J. Appl. Sig. Proc. **2002**, 67 (2002) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0375960102011751|Bohmian Trajectories and Quantum Phase Space Distributions]], Phys. Lett. A **302**, 261 (2002) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/abs/10.1063/1.1504885|Wigner functions with boundaries]], J. Math. Phys. **43**, 4602 (2002) === 2001 === * [[Fabricio Toscano]], Marcus A. M. de Aguiar, and [[Alfredo Miguel Ozorio de Almeida]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.59|Scars of the Wigner function]], Phys. Rev. Lett. **86**, 59 (2001) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0375960101007472|Causal Interpretation and Quantum Phase Space]], Phys. Lett. A **291**, 355 (2001) * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.1415086|Generalized Weyl--Wigner map and Vey quantum mechanics]], J. Math. Phys. **42**, 5565 (2001) === 2000 === * G. Giakasa, L.K. Stergioulas, and [[Apostol Vourdas]], [[https://www.sciencedirect.com/science/article/pii/S002192909900216X|Time-frequency analysis and filtering of kinematic signals with impacts using the Wigner function: accurate estimation of the second derivative]], Journal Biomech. **33**, 567-574 (2000) * [[Anton Arnold]], H. Lange, P.F. Zweifel, [[https://aip.scitation.org/doi/10.1063/1.1318732|A discrete-velocity, stationary Wigner equation]], J. Math. Phys. **41**, 7167 (2000) === 1999 === * S. Chountasis, [[Apostol Vourdas]], and C. Bendjaballah, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.60.3467|Fractional fourier operators and generalized Wigner functions]], Physical Review A **60**, 3467 (1999) * S. Chountasis, L. K. Stergioulas, and [[Apostol Vourdas]], [[https://www.tandfonline.com/doi/abs/10.1080/09500349908231397|Quantum filtering of noise in the Wigner function]], Journal Mod. Optics **46**, 2131-2134 (1999) * [[Jan Naudts]], [[https://link.springer.com/article/10.1023/A:1026614130824|Off-Shell Relativistic Quantum Mechanics and Formulation of Dirac's Equation Using Characteristic Matrices]], Int. J. Theor. Phys. **38**, 431 (1999) === 1998 === * S. Chountasis and [[Apostol Vourdas]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.58.1794|Weyl and Wigner functions in an extended phase space formalism]], Physical Review A **58**, 1794-1798 (1998) === 1996 === * [[Anton Arnold]], [[Christian Ringhofer]], [[https://epubs.siam.org/doi/abs/10.1137/S003614299223882X?journalCode=sjnaam|An operator splitting method for the Wigner-Poisson problem]], SIAM J. Num. Anal. **33**, 1622 (1996) === 1995 === * H.-W. Lee, [[https://doi.org/10.1016/0370-1573(95)00007-4|Theory and application of the quantum phase-space distribution functions]], Phys. Rep. **259**, 147 (1995) === 1986 === * K. Takahashi, [[https://doi.org/10.1143/JPSJ.55.762|Wigner and Husimi Functions in Quantum Mechanics]], J. Phys. Soc. Jpn. **55**, 762 (1986) === 1982 === * [[Gerald J Iafrate]], [[Harold Grubin]], and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/0375960182900974|The Wigner distribution function]], Phys. Lett. A **87**, 145 (1982) === 1974 === * S. R. Groot, [[https://cheap-library.com/book/23c997f932b9bc0e28708bdd792fda0a|La transformation de Weyl et la fonction de Wigner, une forme alternative de la mecanique quantique]] (Les Presses de l'Universitié de Montréal, 1974) ==== Quantum Information and Processing ==== === 2018 === * O de los Santos-Sánchez, [[https://doi.org/10.1088/1751-8121/aac9e4|Qubit-nonlinear-oscillator systems: from the moderate-coupling limit to the ultrastrong-coupling regime]], J. Phys. A: Math. Theor. **51**, 305303 (2018) === 2017 === * Robert Raussendorf, Dan E. Browne, Nicolas Delfosse, Cihan Okay, and Juan Bermejo-Vega, [[https://link.aps.org/doi/10.1103/PhysRevA.95.052334|Contextuality and Wigner-function negativity in qubit quantum computation]], Phys. Rev. A **95**, 052334 (2017) === 2015 === * Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, and Robert Raussendorf, [[https://link.aps.org/doi/10.1103/PhysRevX.5.021003|Wigner Function Negativity and Contextuality in Quantum Computation on Rebits]], Phys. Rev. X **5**, 021003 (2015) ==== Numerical Methods ==== === 2020 === * [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/5.0011599|Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM)]], J. Chem. Phys. **153**, 020901 (2020) === 2019 === * Zhenzhu Chen, [[Sihong Shao]], and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999119304553|A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences]], J. Comput. Phys. **396**, 54 (2019) * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/document/8794705|Complex Absorbing Potential Formalism Accounting for Open Boundary Conditions Within the Wigner Transport Equation]], IEEE Trans. Nanotechnology **18**, 830 (2019) * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://content.sciendo.com/view/journals/caim/10/1/article-p20.xml|Wigner Monte Carlo simulation without discretization error of the tunneling rectangular barrier]], Commun. Appl. Ind. Math. **10**, 20 (2019) * [[Orazio Muscato]] and Wolfgang Wagner, [[https://www.aimsciences.org/article/doi/10.3934/krm.2019003|A stochastic algorithm without time discretization error for the Wigner equation]], Kin. Rel. Mod. **12**, 59 (2019) * Yunfeng Xiong and [[Sihong Shao]], [[http://www.global-sci.com/intro/article_detail/cicp/12832.html|The Wigner Branching Random Walk: Efficient Implementation and Performance Evaluation]], Commun. Comput. Phys **25**, 871 (2019) * [[Sihong Shao]] and Yunfeng Xiong, [[http://global-sci.com/intro/article_detail/nmtma/12690.html|A branching random walk method for many-body Wigner quantum dynamics]], Numer. Math. Theor. Meth. Appl. **12**, 21 (2019) * Zhenzhu Chen, Yunfeng Xiong, and [[Sihong Shao]], [[https://link.springer.com/article/10.1007/s10915-018-0853-0|Numerical Methods for the Wigner Equation with Unbounded Potential]], J. Sci. Comput. **79**, 345 (2019) * M. Benam, [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-030-10692-8_29|A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **11189**, 263 (2019) === 2018 === * A S Larkin, V S Filinov and V E Fortov [[https://doi.org/10.1088/1751-8121/aa98d0|Peculiarities of the momentum distribution functions of strongly correlated charged fermions]], J. Phys. A: Math. Theor. **51**, 035002 (2018) * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/abstract/document/8464085|Numerical Analysis of the Transient Behavior of the Non-Equilibrium Quantum Liouville Equation]], IEEE Trans. Nanotechnology **17**, 1197(2018) === 2017 === *[[Maarten Van de Put]], Bart Soree, and [[Wim Magnus]], [[https://www.sciencedirect.com/science/article/pii/S002199911730640X|Efficient solution of the Wigner–Liouville equation using a spectral decomposition of the force field]], J. Comp. Phys. **350**, 314 (2017) * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://iopscience.iop.org/article/10.1088/1742-6596/906/1/012011/meta|Efficient Monte Carlo-based algorithms for the Wigner transport equation]], J. Phys. Conf. Ser. **906**, 012011 (2017) * Andrea Thomann and Alfio Borzì, [[https://doi.org/10.1002/num.22072|Stability and accuracy of a pseudospectral scheme for the Wigner function equation]], Numer. Meth. Part. Differ. Equat. **33**, 62 (2017) * Khuram Shahzad Khalid, Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/abstract/document/8023854|Self-Energy Concept for the Numerical Solution of the Liouville-von Neumann Equation]], IEEE Trans. Nanotechnology **16**, 1053 (2017) === 2016 === * Yunfeng Xiong, Zhenzhu Chen, and [[Sihong Shao]], [[https://doi.org/10.1137/15M1051373|An advective-spectral-mixed method for time-dependent many-body Wigner simulations]], SIAM J. Sci. Comput **38**, B491 (2016) * [[Orazio Muscato]] and Wolfgang Wagner, [[https://epubs.siam.org/doi/10.1137/16M105798X|A Class of Stochastic Algorithms for the Wigner Equation]], SIAM J. Sci. Comp. **38**, A1483 (2016) * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/document/7501465|Application of a slowly varying Envelope Function onto the Analysis of the Wigner Transport Equation]], IEEE Trans. Nanotechnology **15**, 801 (2016) * [[Dirk Schulz]] and Azhar Mahmood, [[https://ieeexplore.ieee.org/document/7339425|Approximation of a Phase Space Operator for the Numerical Solution of the Wigner Equation]], IEEE J. Quantum Electron. **52**, 8700109 (2016) === 2015 === * [[Sihong Shao]] and Jean Michel Sellier, [[https://doi.org/10.1016/j.jcp.2015.08.002|Comparison of deterministic and stochastic methods for time-dependent Wigner simulations]], J. Comput. Phys. **300**, 167 (2015) * [[Christian B. Mendl]], [[https://www.worldscientific.com/doi/abs/10.1142/S0129183115501132|Matrix-valued quantum lattice Boltzmann method]], Int. J Mod. Phys. C **26**, 1550113 (2015) * Martin L. R. Fürst, Markus Kotulla, [[Christian B. Mendl]], and [[Herbert Spohn]], [[https://iopscience.iop.org/article/10.1088/1751-8113/48/9/095204/meta|Quantum Boltzmann equation for spin-dependent reactions in the kinetic regime]], J. Phys. A: Math. Theo. **48**, 095204 (2015) * [[Josef Weinbub]], [[Paul Ellinghaus]], and [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-26520-9_34|Parallelization of the Two-Dimensional Wigner Monte Carlo Method]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 309 (2015) * [[Josef Weinbub]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0730-0|Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method]], J. Comp. Electron. **14**, 922 (2015) * [[Paul Ellinghaus]], [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], and [[Ivan Dimov]], [[https://link.springer.com/article/10.1007%2Fs10825-014-0635-3|Distributed-Memory Parallelization of the Wigner Monte Carlo Method Using Spatial Domain Decomposition]], J. Comp. Electron. **14**, 151 (2015) * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0378475414001530?via%3Dihub|A Comparison of Approaches for the Solution of the Wigner Equation]], Math. Comp. Sim. **107**, 108 (2015) * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]], J.M. Sellier, and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0720-2|Boundary Conditions and the Wigner Equation Solution]], J. Comp. Electron. **14**, 859 (2015) * [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-15585-2_3|Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **8962**, 27 (2015) * [[Johann Cervenka]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-15585-2_17|Deterministic Solution of the Discrete Wigner Equation]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **8962**, 149 (2015 * [[Johann Cervenka]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], Erasmus Langer, [[https://link.springer.com/chapter/10.1007%2F978-3-319-26520-9_29|Optimization of the Deterministic Solution of the Discrete Wigner Equation]], in: large Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 269 (2015) * [[Antonius Dorda]] and [[Ferdinand Schürrer]], [[https://www.sciencedirect.com/science/article/pii/S0021999114008432?via%3Dihub|A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes]], J. Comp. Phys. **284**, 95 (2015) * [[Maarten Van de Put]], [[Wim Magnus]], and Bart Soree, [[http://meetings.aps.org/Meeting/MAR15/Event/238491|A spectral force based version of the Wigner-Liouville equation]], Bull. Amer. Phys. Soc. **60** (2015) === 2014 === * [[Haiyan Jiang]], Tiao Lu, and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999113007572|A device adaptive inflow boundary condition for Wigner equations of quantum transport]], J. Comput. Phys. **258**, 773 (2014) * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-662-43880-0_20|The Role of Annihilation in a Wigner Monte Carlo Approach]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **8353**, 186 (2014) * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2014.20.issue-1/mcma-2013-0018/mcma-2013-0018.xml|A Benchmark Study of the Wigner Monte Carlo Method]], Mon. Carl. Meth. Appl. **20**, 43 (2014) * J.M. Sellier and [[Ivan Dimov]], [[https://www.sciencedirect.com/science/article/pii/S0021999114002526|A Wigner Monte Carlo approach to density functional theory]], J. Comp. Phys. **270**, 265 (2014) * [[Maarten Van de Put]], Bart Soree, and [[Wim Magnus]], [[http://meetings.aps.org/Meeting/MAR14/Session/S45.7|An envelope function expansion of the Wigner transport equation]], Bull. Amer. Phys. Soc. **59** (2014) === 2013 === * [[Mihail (Mixi) Nedjalkov]], P. Schwaha, [[Siegfried Selberherr]], J.M. Sellier, and [[Dragica Vasileska]], [[https://aip.scitation.org/doi/10.1063/1.4802931|Wigner Quasi-Particle Attributes - An Asymptotic Perspective]], Appl. Phys. Lett. **102**, 163113 (2013) * P. Schwaha, [[Damien Querlioz]], [[Philippe Dollfus]], J. Saint-Martin, [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-013-0480-9|Decoherence Effects in the Wigner Function Formalism]], J. Comput. Electron. **12**, 388 (2013) * Dries Sels, Fons Brosens, and [[Wim Magnus]], [[https://www.sciencedirect.com/science/article/pii/S0378437112008412|Wigner distribution functions for complex dynamical systems: A path integral approach]], Phys. A: Statis. Mech. Appl. **392**, 326 (2013) === 2012 === * [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], [[David K. Ferry]], [[Dragica Vasileska]], [[Philippe Dollfus]], [[Damien Querlioz]], [[Ivan Dimov]], and P. Schwaha, [[https://www.sciencedirect.com/science/article/pii/S0003491612001558?via%3Dihub|Physical Scales in the Wigner-Boltzmann Equation]], Ann. Phys. **328**, 220 (2012) * Earnshaw R.A., [[Ci Lei]], Li J., Mugassabi S. and Vourdas A., [[https://www.sciencedirect.com/science/article/pii/S0378437111008958|Large-scale data analysis using the Wigner function]], Phys. A: Statis. Mech. Appl. **391**, 2401 (2012) * Dries Sels, Fons Brosens, and [[Wim Magnus]], [[https://www.sciencedirect.com/science/article/abs/pii/S037596011200045X|On the path integral representation of the Wigner function and the Barker--Murray ansatz]], Phys. Lett. A **376**, 809 (2012) === 2011 === * [[Sihong Shao]], Tiao Lu, and [[Wei Cai]], [[https://www.cambridge.org/core/journals/communications-in-computational-physics/article/adaptive-conservative-cell-average-spectral-element-methods-for-transient-wigner-equation-in-quantum-transport/71FE2A189AAB8391E03EA9D1A6F06923|Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport]], Commun. Comput. Phys **9**, 711 (2011) * [[Haiyan Jiang]], [[Wei Cai]], and Raphael Tsu, [[https://www.sciencedirect.com/science/article/pii/S0021999110006662|Accuracy of the Frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes]], J. Comput. Phys. **230**, 2031 (2011) === 2010 === * [[Haiyan Jiang]] and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999110000811|Effect of boundary treatments on quantum transport current in the Green’s function and Wigner distribution methods for a nano-scale DG-MOSFET]], J. Comput. Phys. **229**, 4461 (2010) * [[Damien Querlioz]], Jerome Saint-Martin, and [[Philippe Dollfus]], [[https://link.springer.com/article/10.1007/s10825-010-0319-6|Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation]], J. Comput. Electron. **9**, 224 (2010) === 2009 === * [[Damien Querlioz]], Huu-Nha Nguyen, Jerome Saint-Martin, Arnaud Bournel, Sylvie Galdin-Retailleau, and [[Philippe Dollfus]], [[https://link.springer.com/article/10.1007/s10825-009-0281-3|Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport]], J. Comput. Electron. **8**, 324 (2009) * Fons Brosens and [[Wim Magnus]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200844424|Carrier transport in nanodevices: revisiting the Boltzmann and Wigner distribution functions]], Phys. Stat. Sol. (b) **246**, 1656 (2009) * Fons Brosens and [[Wim Magnus]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200844424|Carrier transport in nanodevices: revisiting the Boltzmann and Wigner distribution functions]], Phys. Stat. Sol. (b) **246**, 1656 (2009) === 2008 === * [[Kyoung-Youm Kim]], [[https://iopscience.iop.org/article/10.1143/JJAP.47.358|Nonuniform mesh application to discrete Wigner transport equation]], Jap. J. Appl. Phys. **47**, 358 (2008) === 2007 === * [[Kyoung-Youm Kim]], [[https://aip.scitation.org/doi/full/10.1063/1.2818363?showFTTab=true&containerItemId=content%2Faip%2Fjournal%2Fjap|A discrete formulation of the Wigner transport equation]], J. Appl. Phys. **102**, 113705 (2007) === 2004 === * [[Hans Kosina]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2004.10.issue-3-4/mcma.2004.10.3-4.359/mcma.2004.10.3-4.359.xml|Solution of the Space-dependent Wigner Equation Using a Particle Model]], Mon. Carl. Meth. Appl. **10**, 359 (2004) * [[Mihail (Mixi) Nedjalkov]], E. Atanassov, [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2004.10.issue-3-4/mcma.2004.10.3-4.461/mcma.2004.10.3-4.461.xml|Operator-Split Method for Variance Reduction in Stochastic Solutions of the Wigner Equation]], Mon. Carl. Meth. Appl. **10**, 461 (2004) * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Siegfried Selberherr]], [[Christian Ringhofer]], and [[David K. Ferry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.70.115319|Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices]], Phys. Rev. B **70**, 115319 (2004) * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], E. Ungersboeck, and [[Siegfried Selberherr]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/076|A Quasi-Particle Model of the Electron-Wigner Potential Interaction]], Semicon. Sci. Techn. **19**, 226 (2004) === 2003 === * [[Christoph Jungemann]] and Bernd Meinerzhagen, [[https://www.springer.com/gp/book/9783211013618|Hierarchical Device Simulation]], (Springer, 2003) * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0026269203000697?via%3Dihub|Stochastic Interpretation of the Wigner Transport in Nanostructures]], Microelectron. J. **34**, 443 (2003) === 2002 === * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Robert Kosik]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1023%2FA%3A1020799224110|Space Dependent Wigner Equation Including Phonon Interaction]], J. Comput. Electron. **1**, 27 (2002) * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Robert Kosik]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0167931702006251?via%3Dihub|A Wigner Equation with Quantum Electron-Phonon Interaction]], Microelectron. Engin. **63**, 199 (2002) * L. Shifren and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/S0921452601013928?via%3Dihub|Wigner Function Quantum Monte Carlo]], Phys. B Cond. Matt. **314**, 72 (2002) === 2001 === * L. Shifren and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/S0375960101003449?via%3Dihub|Particle Monte Carlo Simulation of Wigner Function Tunneling]], Phys. Lett. A **285**, 217 (2001) * [[Kyoung-Youm Kim]] and Byoungho Lee, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.64.115304|Wigner-function formulation in anisotropic semiconductor quantum wells]], Phys. Rev. B **64**, 115304 (2001)