User Tools

Site Tools


mihail_mixi_nedjalkov

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
mihail_mixi_nedjalkov [2018/11/06 15:58]
weinbub [Wigner-specific research]
mihail_mixi_nedjalkov [2019/11/06 11:57]
weinbub [Wigner Research]
Line 5: Line 5:
 Mihail Nedjalkov, born in Sofia, Bulgaria received a master'​s degree in semiconductor physics at the Sofia University "Kl. Ohridski",​ a PhD degree (1990), habilitation (2001) and D.Sc. degree (2011) at the Bulgarian Academy of Sciences (BAS). He is Associate Professor at the Institute of Information and Communication Technologies,​ BAS, and has held visiting research positions at the University of Modena (1994), University of Frankfurt (1998), Arizona State University (2004) and mainly at the Institute for Microelectronics,​ Technische Universität Wien. Nedjalkov has been supported by the following European and Austrian projects: EC Project NANOTCAD (2000-03), Österreichische Forschungsgemeinschaft MOEL 239 and 173 (2007-08), FWF (Austrian Science Fund) P-13333-TEC (1998-99) START (2005-06), and P21685 '​Wigner-Boltzmann Particle Simulations'​ (2009-2014). He has served as a lecturer at the 2004 International School of Physics '​Enrico Fermi',​ Varenna, Italy. He is a member of the Italian Physical Society, APS and AMS reviewer. His research interests include physics and modeling of classical and quantum carrier transport in semiconductor materials, devices and nanostructures,​ collective phenomena, theory and application of stochastic methods. ​ Mihail Nedjalkov, born in Sofia, Bulgaria received a master'​s degree in semiconductor physics at the Sofia University "Kl. Ohridski",​ a PhD degree (1990), habilitation (2001) and D.Sc. degree (2011) at the Bulgarian Academy of Sciences (BAS). He is Associate Professor at the Institute of Information and Communication Technologies,​ BAS, and has held visiting research positions at the University of Modena (1994), University of Frankfurt (1998), Arizona State University (2004) and mainly at the Institute for Microelectronics,​ Technische Universität Wien. Nedjalkov has been supported by the following European and Austrian projects: EC Project NANOTCAD (2000-03), Österreichische Forschungsgemeinschaft MOEL 239 and 173 (2007-08), FWF (Austrian Science Fund) P-13333-TEC (1998-99) START (2005-06), and P21685 '​Wigner-Boltzmann Particle Simulations'​ (2009-2014). He has served as a lecturer at the 2004 International School of Physics '​Enrico Fermi',​ Varenna, Italy. He is a member of the Italian Physical Society, APS and AMS reviewer. His research interests include physics and modeling of classical and quantum carrier transport in semiconductor materials, devices and nanostructures,​ collective phenomena, theory and application of stochastic methods. ​
  
-===== Wigner-specific research ​=====+===== Wigner ​Motivation ​=====
  
 The  Wigner ​ function ​ resembles ​ many  concepts and  notions ​ of the The  Wigner ​ function ​ resembles ​ many  concepts and  notions ​ of the
Line 23: Line 23:
 first applications to carrier transport in multidimensional structures first applications to carrier transport in multidimensional structures
 are  already ​ a  fact  showing ​ promising ​ practical ​ aspects ​ of the are  already ​ a  fact  showing ​ promising ​ practical ​ aspects ​ of the
-approach.\\+approach.
 The  strong formal ​ similarity between the Wigner generation and annihilation of signed particles and The  strong formal ​ similarity between the Wigner generation and annihilation of signed particles and
 the physical ​ processes of absorption ​ and emission of phonons ​ by the the physical ​ processes of absorption ​ and emission of phonons ​ by the
 lattice motivates ​ the  extension of the approach to phonon transport. ​ lattice motivates ​ the  extension of the approach to phonon transport. ​
  
 +===== Wigner Research =====
 +(selection)
  
-D.K. Ferry, M. Nedjalkov: [[http://​iopscience.iop.org/​book/​978-0-7503-1671-2|The Wigner Function in Science and Technology]]IOP Publishing, 2018. +  * [[Mihail (Mixi) Nedjalkov]],​ [[Josef Weinbub]], Mauro Ballicchia, [[Siegfried Selberherr]],​ [[Ivan Dimov]], and [[David ​K. Ferry]][[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.99.014423|Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform]],​ Phys. Rev. B **99**, ​ 014423 (2019) 
- +  * M. Benam, [[Mihail (Mixi) ​Nedjalkov]], [[Siegfried Selberherr]],​ [[https://​link.springer.com/​chapter/​10.1007%2F978-3-030-10692-8_29|A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach]], in: Numerical Methods and Applications,​ Lecture Notes in Computer Science **11189**, 263 (2019) 
-M. Nedjalkov, ​J. Weinbub, ​PEllinghausS. Selberherr:"​The ​Wigner ​equation ​in the presence of electromagnetic potentials";​ Journal of Computational Electronics, (2015), doi: 10.1007/s10825-015-0732-y+  * Mauro Ballicchia, [[David K. Ferry]], [[Mihail (Mixi) Nedjalkov]],​ [[Josef Weinbub]], [[https://​www.mdpi.com/​2076-3417/​9/​7/​1344|Investigating Quantum Coherence by Negative Excursions of the Wigner Quasi-Distribution]],​ Appl. Sci. **9**, 1344 (2019) 
- +  * [[Josef Weinbub]], Mauro Ballicchia, and [[Mihail (Mixi) Nedjalkov]],​ [[https://​onlinelibrary.wiley.com/​doi/​full/​10.1002/​pssr.201800111|Electron Interference in a Double‐Dopant Potential Structure]],​ Phys. Stat. Sol. RRL **12**, ​ 1800111 (2018) 
-J. Weinbub, ​P. Ellinghaus, ​M. Nedjalkov: ​"Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method"; Journal of Computational Electronics, (2015), doi: 10.1007/​s10825-015-0730-0. ​ +  * Mauro Ballicchia, [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]],​ [[https://​pubs.rsc.org/​en/​content/​articlelanding/​2018/​NR/​C8NR06933F#​!divAbstract|Electron Evolution Around a Repulsive Dopant in a Quantum Wire: Coherence Effects]], Nanoscale **10**, 23037 (2018) 
- +  * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], ​[[http://​iopscience.iop.org/​book/​978-0-7503-1671-2|The Wigner Function in Science and Technology]] ​(IOP Publishing, 2018
-P. Ellinghaus, ​J. Weinbub, ​M. Nedjalkov, ​S. Selberherr, ​I. Dimov: +  * [[Mihail (Mixi) Nedjalkov]],​ [[Paul Ellinghaus]],​ [[Josef Weinbub]], Toufik Sadi, Asen Asenov, [[Ivan Dimov]], and [[Siegfried Selberherr]],​ [[https://​www.sciencedirect.com/​science/​article/​pii/​S0010465518300821?​via%3Dihub|Stochastic Analysis of Surface Roughness Models in Quantum Wires]], Comp. Phys. Commun. **228**, 30 (2018) 
-"Distributed-Memory Parallelization of the Wigner Monte Carlo Method Using Spatial Domain Decomposition"; +  * [[Josef Weinbub]], [[David KFerry]], [[Irena Knezevic]], [[Mihail (Mixi) ​Nedjalkov]]and [[Siegfried Selberherr]],​ [[http://​www.iue.tuwien.ac.at/​pdf/​ib_2017/​hashed_links/​p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017) 
-Journal of Computational Electronics, 14 (2015), 151 - 162 doi:​10.1007/​s10825-014-0635-3.  +  * [[Paul Ellinghaus]],​ [[Josef ​Weinbub]][[Mihail (Mixi) Nedjalkov]] and [[Siegfried Selberherr]],​ [[https://​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​pssr.201700102|Analysis of Lense-Governed Wigner Signed Particle Quantum Dynamics]]PhysStat. Sol. RRL **11**, 1700102 (2017) 
- +  * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]],​ J.M. Sellier, [[Siegfried ​Selberherr]], [[https://​link.springer.com/​chapter/​10.1007%2F978-3-319-23413-7_97|Neumann Series Analysis of the Wigner ​Equation Solution]], ​in: Progress in Industrial Mathematics,​ The European Consortium for Mathematics in Industry **22**701 (2016) 
-J. M. Sellier, ​M. Nedjalkov, ​I. Dimov, ​S. Selberherr: +  * [[Mihail (Mixi) Nedjalkov]][[Josef Weinbub]], [[Paul Ellinghaus]],​ and [[Siegfried Selberherr]],​ [[https://​link.springer.com/​article/​10.1007%2Fs10825-015-0732-y|The Wigner Equation in the Presence of Electromagnetic Potentials]], ​J. Comp. Electron. **14**, 888 (2015) 
-"A Comparison of Approaches for the Solution of the Wigner Equation"; +  * [[Josef ​Weinbub]][[Paul ​Ellinghaus]][[Mihail (Mixi) ​Nedjalkov]], [[https://​link.springer.com/​article/​10.1007%2Fs10825-015-0730-0|Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method]]J. Comp. Electron. **14**, 922 (2015) 
-Mathematics and Computers in Simulation, 107 (2015), ​108 119 doi:10.1016/j.matcom.2014.06.001.  +  * [[Paul ​Ellinghaus]][[Josef ​Weinbub]][[Mihail (Mixi) ​Nedjalkov]][[Siegfried ​Selberherr]]and [[Ivan ​Dimov]], [[https://​link.springer.com/​article/​10.1007%2Fs10825-014-0635-3|Distributed-Memory Parallelization of the Wigner Monte Carlo Method Using Spatial Domain Decomposition]]J. Comp. Electron. **14**, 151 (2015) 
- +  ​* ​J.M. Sellier, ​[[Mihail (Mixi) ​Nedjalkov]][[Ivan ​Dimov]]and [[Siegfried ​Selberherr]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0378475414001530?​via%3Dihub|A Comparison of Approaches for the Solution of the Wigner Equation]]Math. Comp. Sim. **107**, 108 (2015) 
-J. M. Sellier, S. Amoroso, ​M. Nedjalkov, ​S. Selberherr, ​A. Asenov, ​I. Dimov: +  * [[Ivan Dimov]][[Mihail (Mixi) Nedjalkov]],​ J.M. Sellier, and [[Siegfried Selberherr]],​ [[https://​link.springer.com/​article/​10.1007%2Fs10825-015-0720-2|Boundary Conditions and the Wigner Equation Solution]], J. Comp. Electron. **14**, 859 (2015) 
-"Electron Dynamics in Nanoscale Transistors by Means of Wigner and Boltzmann Approaches"; +  * [[Paul Ellinghaus]],​ [[Mihail (Mixi) Nedjalkov]],​ and [[Siegfried Selberherr]],​ [[https://​link.springer.com/​chapter/​10.1007%2F978-3-319-15585-2_3|Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method]], in: Numerical Methods and Applications,​ Lecture Notes in Computer Science **8962**, 27 (2015) 
-Physica A: Statistical Mechanics and its Applications, ​398 (2014), ​194 - 198 doi:10.1016/j.physa.2013.12.045.  +  * [[Johann Cervenka]], [[Paul Ellinghaus]],​ [[Mihail (Mixi) Nedjalkov]],​ [[https://link.springer.com/​chapter/​10.1007%2F978-3-319-15585-2_17|Deterministic Solution of the Discrete Wigner Equation]], in: Numerical Methods and Applications,​ Lecture Notes in Computer Science **8962**, 149 (2015 
- +  * [[Johann Cervenka]], [[Paul Ellinghaus]],​ [[Mihail (Mixi) Nedjalkov]],​ Erasmus Langer, [[https://​link.springer.com/​chapter/​10.1007%2F978-3-319-26520-9_29|Optimization of the Deterministic Solution of the Discrete Wigner Equation]], in: large Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 269 (2015) 
-J. M. Sellier, ​M. Nedjalkov, ​I. Dimov, ​S. Selberherr: +  ​* ​J.M. Sellier, S. Amoroso, ​[[Mihail (Mixi) ​Nedjalkov]][[Siegfried ​Selberherr]]Asen Asenov, ​and [[Ivan ​Dimov]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0378437113011862?​via%3Dihub|Electron Dynamics in Nanoscale Transistors by Means of Wigner and Boltzmann Approaches]], Physica A **398**, 194 (2014) 
-"A Benchmark Study of the Wigner Monte Carlo Method"; +  * J.M. Sellier[[Mihail (Mixi) Nedjalkov]],​ [[Ivan Dimov]], and [[Siegfried Selberherr]],​ [[https://link.springer.com/​chapter/​10.1007%2F978-3-662-43880-0_20|The Role of Annihilation in a Wigner Monte Carlo Approach]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **8353**, 186 (2014) 
-Monte Carlo Methods and Applications, 20 (2014), 43 - 51 doi:​10.1515/​mcma-2013-0018. ​ +  ​* ​J.M. Sellier, ​[[Mihail (Mixi) ​Nedjalkov]][[Ivan ​Dimov]]and [[Siegfried ​Selberherr]], [[https://​www.degruyter.com/​view/​j/​mcma.2014.20.issue-1/​mcma-2013-0018/​mcma-2013-0018.xml|A Benchmark Study of the Wigner Monte Carlo Method]]Mon. Carl. Meth. Appl. **20**, 43 (2014) 
- +  * [[Mihail (Mixi) ​Nedjalkov]], P. Schwaha, ​[[Siegfried ​Selberherr]], J.M. Sellier, ​and [[Dragica ​Vasileska]], [[https://​aip.scitation.org/​doi/​10.1063/​1.4802931|Wigner Quasi-Particle Attributes - An Asymptotic Perspective]]Appl. Phys. Lett. **102**, 163113 ​(2013) 
-M. Nedjalkov, P. Schwaha, ​S. Selberherr, J. M. Sellier, ​D. Vasileska: +  ​* ​P. Schwaha, ​[[Damien ​Querlioz]][[Philippe ​Dollfus]], J. Saint-Martin, ​[[Mihail (Mixi) ​Nedjalkov]]and [[Siegfried ​Selberherr]], [[https://​link.springer.com/​article/​10.1007%2Fs10825-013-0480-9|Decoherence Effects in the Wigner Function Formalism]]J. Comput. Electron. **12**, 388 (2013) 
-"Wigner Quasi-Particle Attributes - An Asymptotic Perspective"; +  * [[Mihail (Mixi) ​Nedjalkov]][[Siegfried ​Selberherr]][[David ​K. Ferry]][[Dragica ​Vasileska]][[Philippe ​Dollfus]][[Damien ​Querlioz]][[Ivan ​Dimov]]and P. Schwaha, [[https://​www.sciencedirect.com/​science/​article/​pii/​S0003491612001558?​via%3Dihub|Physical Scales in the Wigner-Boltzmann Equation]]Ann. Phys. **328**, 220 (2012) 
-Applied Physics Letters, 102 (2013), 163113-1 - 163113-4 doi:​10.1063/​1.4802931.  +  * [[Mihail (Mixi) Nedjalkov]][[Hans Kosina]], and Philipp Schwaha, [[https://link.springer.com/​article/​10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], JCompElectron. **9**, 218 (2010) 
- +  * [[Hans ​Kosina]][[Mihail (Mixi) ​Nedjalkov]]and [[Siegfried ​Selberherr]], [[https://​www.degruyter.com/​view/​j/​mcma.2004.10.issue-3-4/​mcma.2004.10.3-4.359/​mcma.2004.10.3-4.359.xml|Solution of the Space-dependent Wigner Equation Using a Particle Model]]Mon. Carl. Meth. Appl. **10**, 359 (2004) 
-P. Schwaha, ​D. Querlioz, ​P. Dollfus, J. Saint-Martin, ​M. Nedjalkov, ​S. Selberherr: +  * [[Mihail (Mixi) Nedjalkov]]E. Atanassov, [[Hans Kosina]], and [[Siegfried Selberherr]],​ [[https://​www.degruyter.com/​view/​j/​mcma.2004.10.issue-3-4/​mcma.2004.10.3-4.461/mcma.2004.10.3-4.461.xml|Operator-Split Method for Variance Reduction in Stochastic Solutions ​of the Wigner Equation]]MonCarlMeth. Appl**10**, 461 (2004) 
-"Decoherence Effects in the Wigner Function Formalism"; +  * [[Mihail (Mixi) ​Nedjalkov]][[Hans ​Kosina]][[Siegfried ​Selberherr]][[Christian ​Ringhofer]]and [[David ​K. Ferry]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.70.115319|Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices]]PhysRevB **70**, 115319 ​(2004) 
-Journal of Computational Electronics, 12 (2013), 388 - 396 doi:​10.1007/​s10825-013-0480-9.  +  * [[Mihail (Mixi) ​Nedjalkov]][[Hans ​Kosina]], E. Ungersboeckand [[Siegfried ​Selberherr]], [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​19/​4/​076|A Quasi-Particle Model of the Electron-Wigner Potential Interaction]]Semicon. Sci. Techn. **19**, 226 (2004) 
- +  * [[Mihail (Mixi) ​Nedjalkov]][[Hans ​Kosina]]and [[Siegfried ​Selberherr]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0026269203000697?​via%3Dihub|Stochastic Interpretation of the Wigner Transport in Nanostructures]]Microelectron. J. **34**, 443 (2003
-M. Nedjalkov, ​S. Selberherr, ​D.K. Ferry, ​D. Vasileska, ​P. Dollfus, ​D. Querlioz, ​I. Dimov, P. Schwaha: +  * [[Mihail (Mixi) ​Nedjalkov]][[Hans ​Kosina]][[Robert ​Kosik]]and [[Siegfried ​Selberherr]], [[https://​link.springer.com/​article/​10.1023%2FA%3A1020799224110|Space Dependent Wigner Equation Including Phonon Interaction]]J. Comput. Electron. **1**, 27 (2002) 
-"Physical Scales in the Wigner-Boltzmann Equation"; +  * [[Mihail (Mixi) ​Nedjalkov]][[Hans ​Kosina]][[Robert ​Kosik]]and [[Siegfried ​Selberherr]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0167931702006251?​via%3Dihub|A Wigner Equation with Quantum Electron-Phonon Interaction]]Microelectron. Engin. **63**, 199 (2002)
-Annals of Physics, 328 (2012), ​220 - 237 doi:10.1016/j.aop.2012.10.001 +
- +
-H. Kosina, ​Nedjalkov, ​S. Selberherr: +
-"Solution of the Space-dependent Wigner Equation Using a Particle Model"; +
-Monte Carlo Methods and Applications, 10 (2004), ​359 - 368 doi:10.1515/​mcma.2004.10.3-4.359 +
- +
-MNedjalkov, EAtanassov, HKosina, SSelberherr:​ +
-"Operator-Split Method for Variance Reduction in Stochastic Solutions ​for the Wigner Equation"; +
-Monte Carlo Methods and Applications10 (2004), 461 - 468 doi:10.1515/mcma.2004.10.3-4.461 +
- +
-M. Nedjalkov, ​H. Kosina, ​S. Selberherr, ​Ch. Ringhofer, ​D.K. Ferry: +
-"Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices"; +
-Physical Review B70 (2004), 1 - 16 doi:10.1103/​PhysRevB.70.115319 +
- +
-M. Nedjalkov, ​H. Kosina, E. UngersböckS. Selberherr: +
-"A Quasi-Particle Model of the Electron-Wigner Potential Interaction"; +
-Semiconductor Science and Technology, 19 (2004), 226 - 228 doi:​10.1088/​0268-1242/​19/​4/​076. ​ +
- +
-M. Nedjalkov, ​H. Kosina, ​S. Selberherr: +
-"Stochastic Interpretation of the Wigner Transport in Nanostructures"; +
-Microelectronics Journal, 34 (2003), 443 - 445 doi:​10.1016/​S0026-2692(03)00069-7. ​ +
- +
-M. Nedjalkov, ​H. Kosina, ​R. Kosik, ​S. Selberherr: +
-"​A ​Space Dependent Wigner Equation Including Phonon Interaction"; +
-Journal of Computational Electronics, 1 (2002), 27 - 31 doi:​10.1023/​A:​1020799224110. ​ +
- +
-M. Nedjalkov, ​H. Kosina, ​R. Kosik, ​S. Selberherr: +
-"A Wigner Equation with Quantum Electron-Phonon Interaction"; +
-Microelectronic Engineering, 63 (2002), 199 - 203 doi:​10.1016/​S0167-9317(02)00625-1. ​+
 ===== Affiliation(s) ===== ===== Affiliation(s) =====
  
-  * Senior Researcher, ​[[http://​www.iue.tuwien.ac.at/​|Institute for Microelectronics]],​ [[http://​www.tuwien.ac.at/​|TU Wien]] +  * [[http://​www.iue.tuwien.ac.at/​|Institute for Microelectronics]],​ [[http://​www.tuwien.ac.at/​|TU Wien]] 
-  * Associate Professor, ​[[http://​www.iict.bas.bg/​EN/​structure.html|Institute of Information and Communication Technologies]],​ [[http://​www.bas.bg/​|Bulgarian Academy of Sciences]]+  * [[http://​www.iict.bas.bg/​EN/​structure.html|Institute of Information and Communication Technologies]],​ [[http://​www.bas.bg/​|Bulgarian Academy of Sciences]]
  
  
-===== Email ===== 
-  
-[[mixi@iue.tuwien.ac.at]] 
  
 ===== Additional information ===== ===== Additional information =====
mihail_mixi_nedjalkov.txt · Last modified: 2019/11/06 11:57 by weinbub