User Tools

Site Tools


mihail_mixi_nedjalkov

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mihail_mixi_nedjalkov [2014/12/03 10:23] – [Biography] weinbubmihail_mixi_nedjalkov [2019/11/06 11:57] (current) – [Wigner Research] weinbub
Line 5: Line 5:
 Mihail Nedjalkov, born in Sofia, Bulgaria received a master's degree in semiconductor physics at the Sofia University "Kl. Ohridski", a PhD degree (1990), habilitation (2001) and D.Sc. degree (2011) at the Bulgarian Academy of Sciences (BAS). He is Associate Professor at the Institute of Information and Communication Technologies, BAS, and has held visiting research positions at the University of Modena (1994), University of Frankfurt (1998), Arizona State University (2004) and mainly at the Institute for Microelectronics, Technische Universität Wien. Nedjalkov has been supported by the following European and Austrian projects: EC Project NANOTCAD (2000-03), Österreichische Forschungsgemeinschaft MOEL 239 and 173 (2007-08), FWF (Austrian Science Fund) P-13333-TEC (1998-99) START (2005-06), and P21685 'Wigner-Boltzmann Particle Simulations' (2009-2014). He has served as a lecturer at the 2004 International School of Physics 'Enrico Fermi', Varenna, Italy. He is a member of the Italian Physical Society, APS and AMS reviewer. His research interests include physics and modeling of classical and quantum carrier transport in semiconductor materials, devices and nanostructures, collective phenomena, theory and application of stochastic methods.  Mihail Nedjalkov, born in Sofia, Bulgaria received a master's degree in semiconductor physics at the Sofia University "Kl. Ohridski", a PhD degree (1990), habilitation (2001) and D.Sc. degree (2011) at the Bulgarian Academy of Sciences (BAS). He is Associate Professor at the Institute of Information and Communication Technologies, BAS, and has held visiting research positions at the University of Modena (1994), University of Frankfurt (1998), Arizona State University (2004) and mainly at the Institute for Microelectronics, Technische Universität Wien. Nedjalkov has been supported by the following European and Austrian projects: EC Project NANOTCAD (2000-03), Österreichische Forschungsgemeinschaft MOEL 239 and 173 (2007-08), FWF (Austrian Science Fund) P-13333-TEC (1998-99) START (2005-06), and P21685 'Wigner-Boltzmann Particle Simulations' (2009-2014). He has served as a lecturer at the 2004 International School of Physics 'Enrico Fermi', Varenna, Italy. He is a member of the Italian Physical Society, APS and AMS reviewer. His research interests include physics and modeling of classical and quantum carrier transport in semiconductor materials, devices and nanostructures, collective phenomena, theory and application of stochastic methods. 
  
-===== Wigner-specific research =====+===== Wigner Motivation =====
  
 The  Wigner  function  resembles  many  concepts and  notions  of the The  Wigner  function  resembles  many  concepts and  notions  of the
Line 23: Line 23:
 first applications to carrier transport in multidimensional structures first applications to carrier transport in multidimensional structures
 are  already  a  fact  showing  promising  practical  aspects  of the are  already  a  fact  showing  promising  practical  aspects  of the
-approach.\\+approach.
 The  strong formal  similarity between the Wigner generation and annihilation of signed particles and The  strong formal  similarity between the Wigner generation and annihilation of signed particles and
 the physical  processes of absorption  and emission of phonons  by the the physical  processes of absorption  and emission of phonons  by the
 lattice motivates  the  extension of the approach to phonon transport.  lattice motivates  the  extension of the approach to phonon transport. 
 +
 +===== Wigner Research =====
 +(selection)
 +
 +  * [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], Mauro Ballicchia, [[Siegfried Selberherr]], [[Ivan Dimov]], and [[David K. Ferry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.014423|Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform]], Phys. Rev. B **99**,  014423 (2019)
 +  * M. Benam, [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-030-10692-8_29|A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **11189**, 263 (2019)
 +  * Mauro Ballicchia, [[David K. Ferry]], [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], [[https://www.mdpi.com/2076-3417/9/7/1344|Investigating Quantum Coherence by Negative Excursions of the Wigner Quasi-Distribution]], Appl. Sci. **9**, 1344 (2019)
 +  * [[Josef Weinbub]], Mauro Ballicchia, and [[Mihail (Mixi) Nedjalkov]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/pssr.201800111|Electron Interference in a Double‐Dopant Potential Structure]], Phys. Stat. Sol. RRL **12**,  1800111 (2018)
 +  * Mauro Ballicchia, [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]], [[https://pubs.rsc.org/en/content/articlelanding/2018/NR/C8NR06933F#!divAbstract|Electron Evolution Around a Repulsive Dopant in a Quantum Wire: Coherence Effects]], Nanoscale **10**, 23037 (2018)
 +  * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], [[http://iopscience.iop.org/book/978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Paul Ellinghaus]], [[Josef Weinbub]], Toufik Sadi, Asen Asenov, [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/pii/S0010465518300821?via%3Dihub|Stochastic Analysis of Surface Roughness Models in Quantum Wires]], Comp. Phys. Commun. **228**, 30 (2018)
 +  * [[Josef Weinbub]], [[David K. Ferry]], [[Irena Knezevic]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[http://www.iue.tuwien.ac.at/pdf/ib_2017/hashed_links/p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017)
 +  * [[Paul Ellinghaus]], [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]] and [[Siegfried Selberherr]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssr.201700102|Analysis of Lense-Governed Wigner Signed Particle Quantum Dynamics]], Phys. Stat. Sol. RRL **11**, 1700102 (2017)
 +  * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]], J.M. Sellier, [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-23413-7_97|Neumann Series Analysis of the Wigner Equation Solution]], in: Progress in Industrial Mathematics, The European Consortium for Mathematics in Industry **22**, 701 (2016)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], [[Paul Ellinghaus]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0732-y|The Wigner Equation in the Presence of Electromagnetic Potentials]], J. Comp. Electron. **14**, 888 (2015)
 +  * [[Josef Weinbub]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0730-0|Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method]], J. Comp. Electron. **14**, 922 (2015)
 +  * [[Paul Ellinghaus]], [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], and [[Ivan Dimov]], [[https://link.springer.com/article/10.1007%2Fs10825-014-0635-3|Distributed-Memory Parallelization of the Wigner Monte Carlo Method Using Spatial Domain Decomposition]], J. Comp. Electron. **14**, 151 (2015)
 +  * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0378475414001530?via%3Dihub|A Comparison of Approaches for the Solution of the Wigner Equation]], Math. Comp. Sim. **107**, 108 (2015)
 +  * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]], J.M. Sellier, and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0720-2|Boundary Conditions and the Wigner Equation Solution]], J. Comp. Electron. **14**, 859 (2015)
 +  * [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-15585-2_3|Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **8962**, 27 (2015)
 +  * [[Johann Cervenka]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-15585-2_17|Deterministic Solution of the Discrete Wigner Equation]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **8962**, 149 (2015
 +  * [[Johann Cervenka]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], Erasmus Langer, [[https://link.springer.com/chapter/10.1007%2F978-3-319-26520-9_29|Optimization of the Deterministic Solution of the Discrete Wigner Equation]], in: large Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 269 (2015)
 +  * J.M. Sellier, S. Amoroso, [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], Asen Asenov, and [[Ivan Dimov]], [[https://www.sciencedirect.com/science/article/pii/S0378437113011862?via%3Dihub|Electron Dynamics in Nanoscale Transistors by Means of Wigner and Boltzmann Approaches]], Physica A **398**, 194 (2014)
 +  * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-662-43880-0_20|The Role of Annihilation in a Wigner Monte Carlo Approach]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **8353**, 186 (2014)
 +  * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2014.20.issue-1/mcma-2013-0018/mcma-2013-0018.xml|A Benchmark Study of the Wigner Monte Carlo Method]], Mon. Carl. Meth. Appl. **20**, 43 (2014)
 +  * [[Mihail (Mixi) Nedjalkov]], P. Schwaha, [[Siegfried Selberherr]], J.M. Sellier, and [[Dragica Vasileska]], [[https://aip.scitation.org/doi/10.1063/1.4802931|Wigner Quasi-Particle Attributes - An Asymptotic Perspective]], Appl. Phys. Lett. **102**, 163113 (2013)
 +  * P. Schwaha, [[Damien Querlioz]], [[Philippe Dollfus]], J. Saint-Martin, [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-013-0480-9|Decoherence Effects in the Wigner Function Formalism]], J. Comput. Electron. **12**, 388 (2013)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], [[David K. Ferry]], [[Dragica Vasileska]], [[Philippe Dollfus]], [[Damien Querlioz]], [[Ivan Dimov]], and P. Schwaha, [[https://www.sciencedirect.com/science/article/pii/S0003491612001558?via%3Dihub|Physical Scales in the Wigner-Boltzmann Equation]], Ann. Phys. **328**, 220 (2012)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and Philipp Schwaha, [[https://link.springer.com/article/10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], J. Comp. Electron. **9**, 218 (2010)
 +  * [[Hans Kosina]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2004.10.issue-3-4/mcma.2004.10.3-4.359/mcma.2004.10.3-4.359.xml|Solution of the Space-dependent Wigner Equation Using a Particle Model]], Mon. Carl. Meth. Appl. **10**, 359 (2004)
 +  * [[Mihail (Mixi) Nedjalkov]], E. Atanassov, [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2004.10.issue-3-4/mcma.2004.10.3-4.461/mcma.2004.10.3-4.461.xml|Operator-Split Method for Variance Reduction in Stochastic Solutions of the Wigner Equation]], Mon. Carl. Meth. Appl. **10**, 461 (2004)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Siegfried Selberherr]], [[Christian Ringhofer]], and [[David K. Ferry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.70.115319|Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices]], Phys. Rev. B **70**, 115319 (2004)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], E. Ungersboeck, and [[Siegfried Selberherr]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/076|A Quasi-Particle Model of the Electron-Wigner Potential Interaction]], Semicon. Sci. Techn. **19**, 226 (2004)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0026269203000697?via%3Dihub|Stochastic Interpretation of the Wigner Transport in Nanostructures]], Microelectron. J. **34**, 443 (2003)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Robert Kosik]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1023%2FA%3A1020799224110|Space Dependent Wigner Equation Including Phonon Interaction]], J. Comput. Electron. **1**, 27 (2002)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Robert Kosik]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0167931702006251?via%3Dihub|A Wigner Equation with Quantum Electron-Phonon Interaction]], Microelectron. Engin. **63**, 199 (2002)
 ===== Affiliation(s) ===== ===== Affiliation(s) =====
  
-  * [[http://www.iue.tuwien.ac.at/|Institute for Microelectronics]], [[http://www.tuwien.ac.at/|TU Wien]], Austria, Europe +  * [[http://www.iue.tuwien.ac.at/|Institute for Microelectronics]], [[http://www.tuwien.ac.at/|TU Wien]] 
-  * [[http://www.iict.bas.bg/EN/structure.html|Institute of Information and Communication Technologies]], [[http://www.bas.bg/|Bulgarian Academy of Sciences]], Bulgaria, Europe+  * [[http://www.iict.bas.bg/EN/structure.html|Institute of Information and Communication Technologies]], [[http://www.bas.bg/|Bulgarian Academy of Sciences]]
  
  
-===== Email ===== 
-  
-[[mixi@iue.tuwien.ac.at]] 
  
 ===== Additional information ===== ===== Additional information =====
mihail_mixi_nedjalkov.1417602237.txt.gz · Last modified: 2014/12/03 10:23 by weinbub

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki