User Tools

Site Tools


This is an old revision of the document!

Mihail (Mixi) Nedjalkov


Mihail Nedjalkov, born in Sofia, Bulgaria received a master's degree in semiconductor physics at the Sofia University “Kl. Ohridski”, a PhD degree (1990), habilitation (2001) and D.Sc. degree (2011) at the Bulgarian Academy of Sciences (BAS). He is Associate Professor at the Institute of Information and Communication Technologies, BAS, and has held visiting research positions at the University of Modena (1994), University of Frankfurt (1998), Arizona State University (2004) and mainly at the Institute for Microelectronics, Technische Universität Wien. Nedjalkov has been supported by the following European and Austrian projects: EC Project NANOTCAD (2000-03), Österreichische Forschungsgemeinschaft MOEL 239 and 173 (2007-08), FWF (Austrian Science Fund) P-13333-TEC (1998-99) START (2005-06), and P21685 'Wigner-Boltzmann Particle Simulations' (2009-2014). He has served as a lecturer at the 2004 International School of Physics 'Enrico Fermi', Varenna, Italy. He is a member of the Italian Physical Society, APS and AMS reviewer. His research interests include physics and modeling of classical and quantum carrier transport in semiconductor materials, devices and nanostructures, collective phenomena, theory and application of stochastic methods.

Wigner-specific research

The Wigner function resembles many concepts and notions of the classical statistical mechanics. The analogy with the classical distribution function becomes even closer if a particle picture is associated to the Wigner formalism. General quantum phenomena may be modeled in terms of quasi-particles involving attributes such as drift, generation, sign, and annihilation on a phase space grid. These concepts provide both, a heuristic picture of quantum evolution numerical feasibility of the developed Monte Carlo method. The particle model is examined in an ultimate regime of a constant electric force, where classical and quantum dynamics become equivalent. It is interesting to see how the usual Newtonian motion in the momentum space of an initial peak of particles is resembled by processes of annihilation and generation of quasi-particles, which reside on a momentum grid and can not gain or lose momentum. The first applications to carrier transport in multidimensional structures are already a fact showing promising practical aspects of the approach.
The strong formal similarity between the Wigner generation and annihilation of signed particles and the physical processes of absorption and emission of phonons by the lattice motivates the extension of the approach to phonon transport.

D.K. Ferry, M. Nedjalkov: The Wigner Function in Science and Technology; IOP Publishing, 2018.

J. Weinbub, M. Ballicchia, M. Nedjalkov: Electron Interference in a Double-Dopant Potential Structure; Physica Status Solidi - Rapid Research Letters, 12, (2018), 1800111-1 - 1800111-4 doi:10.1002/pssr.201800111.

M. Nedjalkov, P. Ellinghaus, J. Weinbub, T. Sadi, A. Asenov, I. Dimov, S. Selberherr: Stochastic Analysis of Surface Roughness Models in Quantum Wires; Computer Physics Communications, 228, (2018), 30 - 37 doi:10.1016/j.cpc.2018.03.010.

P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr:Analysis of Lense-Governed Wigner Signed Particle Quantum Dynamics; Physica Status Solidi - Rapid Research Letters, 11, (2017), 1700102-1 - 1700102-5. doi: 10.1002/pssr.201700102.

M. Nedjalkov, J. Weinbub, P. Ellinghaus, S. Selberherr:“The Wigner equation in the presence of electromagnetic potentials”; Journal of Computational Electronics, (2015), doi: 10.1007/s10825-015-0732-y.

J. Weinbub, P. Ellinghaus, M. Nedjalkov: “Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method”; Journal of Computational Electronics, (2015), doi: 10.1007/s10825-015-0730-0.

P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr, I. Dimov: “Distributed-Memory Parallelization of the Wigner Monte Carlo Method Using Spatial Domain Decomposition”; Journal of Computational Electronics, 14 (2015), 151 - 162 doi:10.1007/s10825-014-0635-3.

J. M. Sellier, M. Nedjalkov, I. Dimov, S. Selberherr: “A Comparison of Approaches for the Solution of the Wigner Equation”; Mathematics and Computers in Simulation, 107 (2015), 108 - 119 doi:10.1016/j.matcom.2014.06.001.

J. M. Sellier, S. Amoroso, M. Nedjalkov, S. Selberherr, A. Asenov, I. Dimov: “Electron Dynamics in Nanoscale Transistors by Means of Wigner and Boltzmann Approaches”; Physica A: Statistical Mechanics and its Applications, 398 (2014), 194 - 198 doi:10.1016/j.physa.2013.12.045.

J. M. Sellier, M. Nedjalkov, I. Dimov, S. Selberherr: “A Benchmark Study of the Wigner Monte Carlo Method”; Monte Carlo Methods and Applications, 20 (2014), 43 - 51 doi:10.1515/mcma-2013-0018.

M. Nedjalkov, P. Schwaha, S. Selberherr, J. M. Sellier, D. Vasileska: “Wigner Quasi-Particle Attributes - An Asymptotic Perspective”; Applied Physics Letters, 102 (2013), 163113-1 - 163113-4 doi:10.1063/1.4802931.

P. Schwaha, D. Querlioz, P. Dollfus, J. Saint-Martin, M. Nedjalkov, S. Selberherr: “Decoherence Effects in the Wigner Function Formalism”; Journal of Computational Electronics, 12 (2013), 388 - 396 doi:10.1007/s10825-013-0480-9.

M. Nedjalkov, S. Selberherr, D.K. Ferry, D. Vasileska, P. Dollfus, D. Querlioz, I. Dimov, P. Schwaha: “Physical Scales in the Wigner-Boltzmann Equation”; Annals of Physics, 328 (2012), 220 - 237 doi:10.1016/j.aop.2012.10.001.

H. Kosina, M Nedjalkov, S. Selberherr: “Solution of the Space-dependent Wigner Equation Using a Particle Model”; Monte Carlo Methods and Applications, 10 (2004), 359 - 368 doi:10.1515/mcma.2004.10.3-4.359.

M. Nedjalkov, E. Atanassov, H. Kosina, S. Selberherr: “Operator-Split Method for Variance Reduction in Stochastic Solutions for the Wigner Equation”; Monte Carlo Methods and Applications, 10 (2004), 461 - 468 doi:10.1515/mcma.2004.10.3-4.461.

M. Nedjalkov, H. Kosina, S. Selberherr, Ch. Ringhofer, D.K. Ferry: “Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices”; Physical Review B, 70 (2004), 1 - 16 doi:10.1103/PhysRevB.70.115319.

M. Nedjalkov, H. Kosina, E. Ungersböck, S. Selberherr: “A Quasi-Particle Model of the Electron-Wigner Potential Interaction”; Semiconductor Science and Technology, 19 (2004), 226 - 228 doi:10.1088/0268-1242/19/4/076.

M. Nedjalkov, H. Kosina, S. Selberherr: “Stochastic Interpretation of the Wigner Transport in Nanostructures”; Microelectronics Journal, 34 (2003), 443 - 445 doi:10.1016/S0026-2692(03)00069-7.

M. Nedjalkov, H. Kosina, R. Kosik, S. Selberherr: “A Space Dependent Wigner Equation Including Phonon Interaction”; Journal of Computational Electronics, 1 (2002), 27 - 31 doi:10.1023/A:1020799224110.

M. Nedjalkov, H. Kosina, R. Kosik, S. Selberherr: “A Wigner Equation with Quantum Electron-Phonon Interaction”; Microelectronic Engineering, 63 (2002), 199 - 203 doi:10.1016/S0167-9317(02)00625-1.



Additional information

mihail_mixi_nedjalkov.1541520167.txt.gz · Last modified: 2018/11/06 16:02 by weinbub