User Tools

Site Tools


publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
publications [2019/11/09 10:31]
weinbub [Classical, Semiclassical and Quantum Physics]
publications [2020/03/07 12:00]
weinbub [Condensed Matter: Optical and Transport properties of Systems]
Line 11: Line 11:
   * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]],​ [[http://​iopscience.iop.org/​book/​978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)   * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]],​ [[http://​iopscience.iop.org/​book/​978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)
 === 2017 === === 2017 ===
 +  * [[Apostol Vourdas]], [[https://​www.springer.com/​gp/​book/​9783319594941|Finite and Profinite Quantum Systems]] (Springer, 2017)
   * [[Maurice de Gosson]], [[http://​www.worldscientific.com/​worldscibooks/​10.1142/​q0089|The Wigner Transform]],​ Advanced Textbooks in Mathematics (World Scientific, 2017)   * [[Maurice de Gosson]], [[http://​www.worldscientific.com/​worldscibooks/​10.1142/​q0089|The Wigner Transform]],​ Advanced Textbooks in Mathematics (World Scientific, 2017)
   * [[Josef Weinbub]], [[David K. Ferry]], [[Irena Knezevic]], [[Mihail (Mixi) Nedjalkov]],​ and [[Siegfried Selberherr]],​ [[http://​www.iue.tuwien.ac.at/​pdf/​ib_2017/​hashed_links/​p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017)   * [[Josef Weinbub]], [[David K. Ferry]], [[Irena Knezevic]], [[Mihail (Mixi) Nedjalkov]],​ and [[Siegfried Selberherr]],​ [[http://​www.iue.tuwien.ac.at/​pdf/​ib_2017/​hashed_links/​p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017)
Line 50: Line 51:
   * Y. P. Kalmykov, ​ W. T. Coffey and S. V. Titov, [[ https://​doi.org/​10.1002/​9781119290971.ch2|Spin relaxation in phase space]], Adv. Chem. Phys.**161**,​ 41 (2016)   * Y. P. Kalmykov, ​ W. T. Coffey and S. V. Titov, [[ https://​doi.org/​10.1002/​9781119290971.ch2|Spin relaxation in phase space]], Adv. Chem. Phys.**161**,​ 41 (2016)
 === 2015 === === 2015 ===
-  * J.C. Petruccelli and [[Miguel A. Alonso]], [[https://​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​9783527600441.oe1013|The Wigner function in optics]], in: The Optics Encyclopedia (Wiley VCH, 2015)+  * [[Jonathan ​Petruccelli]] and [[Miguel A. Alonso]], [[https://​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​9783527600441.oe1013|The Wigner function in optics]], in: The Optics Encyclopedia (Wiley VCH, 2015)
 === 2011 === === 2011 ===
   * [[Miguel A. Alonso]], [[https://​www.osapublishing.org/​aop/​abstract.cfm?​uri=aop-3-4-272|Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles]],​ Adv. Opt. Photon. **3**, 272 (2011)   * [[Miguel A. Alonso]], [[https://​www.osapublishing.org/​aop/​abstract.cfm?​uri=aop-3-4-272|Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles]],​ Adv. Opt. Photon. **3**, 272 (2011)
Line 80: Line 81:
 ==== Classical, Semiclassical and Quantum Physics ====  ==== Classical, Semiclassical and Quantum Physics ==== 
 === 2019 ===  === 2019 === 
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://​pubs.acs.org/​doi/​abs/​10.1021/​acs.jctc.8b01195|Low-Temperature Quantum Fokker–Planck and Smoluchowski Equations and Their Extension to Multistate Systems]], J. Chem. Theory Comput. **15**, 2517-2534 (2019)
 +  * Maxime Oliva and [[Ole Steuernagel]],​ [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.99.032104|Quantum Kerr oscillators'​ evolution in phase space: Wigner current, symmetries, shear suppression,​ and special states]], Phys. Rev. A **99**, 032104 (2019)
 +  * Maxime Oliva and [[Ole Steuernagel]],​ [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.122.020401|Dynamic Shear Suppression in Quantum Phase Space]], Phys. Rev. Lett. **122**, 020401 (2019)
 +  * Z. Xiao, T. Fuse, S. Ashhab, F. Yoshihara, [[Kouichi Semba]], M. Sasaki, M. Takeoka, and J. P. Dowling, [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.99.013827|Fast amplification and rephasing of entangled cat states in a qubit-oscillator system]], Phys. Rev. A **99**, 013827 (2019)
 +  * T. Hahn, D. Groll, T. Kuhn and [[Daniel Wigger]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.100.024306|Influence of excited state decay and dephasing on phonon quantum state preparation]],​ Phys. Rev. B **100**, 024306 (2019)
 +  * [[Guillem Albareda Piquer]], Aaron Kelly, and Angel Rubio, [[https://​journals.aps.org/​prmaterials/​abstract/​10.1103/​PhysRevMaterials.3.023803|Nonadiabatic quantum dynamics without potential energy surfaces]], Phys. Rev. Materials **3**, 023803 (2019)
 +  * Eric G. Arrais, Diego A. Wisniacki, Augusto J. Roncaglia, and [[Fabricio Toscano]], [[https://​journals.aps.org/​pre/​abstract/​10.1103/​PhysRevE.100.052136|Work statistics for sudden quenches in interacting quantum many-body systems]], Phys. Rev. E **100**, 052136 (2019)
 +  * A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and [[Franco Nori]], [[https://​www.nature.com/​articles/​s42254-018-0006-2|Ultrastrong coupling between light and matter]], Nature Rev. Phys. **1**, 19 (2019)
 +  * W. Qin, A. Miranowicz, G. Long, J.Q. You, and [[Franco Nori]], [[https://​www.nature.com/​articles/​s41534-019-0172-9|Proposal to test quantum wave-particle superposition on massive mechanical resonators]],​ npj Quant. Inf. **5**, 58 (2019)
 +  * Hong-Bin Chen, Ping-Yuan Lo, Clemens Gneiting, Joonwoo Bae, Yueh-Nan Chen, and [[Franco Nori]], [[https://​www.nature.com/​articles/​s41467-019-11502-4|Quantifying the nonclassicality of pure dephasing]],​ Nature Comm. **10**, 3794 (2019)
 +  * Gui-Lei Zhu, Xin-You Lü, Li-Li Zheng, Zhi-Ming Zhan, [[Franco Nori]], and Ying Wu, [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.100.023825|Single-photon-triggered quantum chaos]], Phys. Rev. A **100**, 023825 (2019)
   * J. Tuorila, J. Stockburger,​ T. Ala-Nissila,​ [[Joachim Ankerhold]],​ and Mikko Möttönen, [[https://​journals.aps.org/​prresearch/​abstract/​10.1103/​PhysRevResearch.1.013004|System-environment correlations in qubit initialization and control]], Phys. Rev. Res. **1**, 013004 (2019)   * J. Tuorila, J. Stockburger,​ T. Ala-Nissila,​ [[Joachim Ankerhold]],​ and Mikko Möttönen, [[https://​journals.aps.org/​prresearch/​abstract/​10.1103/​PhysRevResearch.1.013004|System-environment correlations in qubit initialization and control]], Phys. Rev. Res. **1**, 013004 (2019)
   * J. Gosner, B. Kubala, and [[Joachim Ankerhold]],​ [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.99.144524|Quantum properties of a strongly driven Josephson junction]], Phys. Rev. B **99**, 144524 (2019)   * J. Gosner, B. Kubala, and [[Joachim Ankerhold]],​ [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.99.144524|Quantum properties of a strongly driven Josephson junction]], Phys. Rev. B **99**, 144524 (2019)
Line 90: Line 102:
  
 === 2018 === === 2018 ===
 +  * Jack Clarke and [[Michael R. Vanner]], [[https://​iopscience.iop.org/​article/​10.1088/​2058-9565/​aada1d/​meta|Growing macroscopic superposition states via cavity quantum optomechanics]],​ Quantum Science and Technology **4**, 014003 (2018)
 +  * K. E. Khosla, [[Michael R. Vanner]], N. Ares, and E. A. Laird, [[https://​journals.aps.org/​prx/​abstract/​10.1103/​PhysRevX.8.021052|Displacemon Electromechanics:​ How to Detect Quantum Interference in a Nanomechanical Resonator]],​ Phys. Rev. X **8**, 021052 (2018)
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://​doi.org/​10.1016/​j.chemphys.2018.07.013|Phase-Space Wavepacket Dynamics of Internal Conversion via Conical Intersection:​ Multi-State Quantum Fokker-Planck Equation Approach]], Chem. Phys. **515**, 203-213 (2018)
 +  * V. M. Bastidas, B. Renoust, [[Kae Nemoto]], and W. J. Munro, [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.98.224307|Ergodic-localized junctions in periodically driven systems]], Phys. Rev. B **98**, 224307 (2018)
   * [[Omar Morandi]], [[https://​iopscience.iop.org/​article/​10.1088/​1751-8121/​aac3ef/​meta|Quantum motion with trajectories:​ beyond the Gaussian beam approximation]],​ J. Phys. A: Math. Theor. **51**, 255301 (2018)   * [[Omar Morandi]], [[https://​iopscience.iop.org/​article/​10.1088/​1751-8121/​aac3ef/​meta|Quantum motion with trajectories:​ beyond the Gaussian beam approximation]],​ J. Phys. A: Math. Theor. **51**, 255301 (2018)
   * Demid V. Sychev, Alexander E. Ulanov, Egor S. Tiunov, Anastasia A. Pushkina, A. Kuzhamuratov,​ Valery Novikov, and [[Alexander Lvovsky]], [[https://​www.nature.com/​articles/​s41467-018-06055-x|Entanglement and teleportation between polarization and wave-like encodings of an optical qubit]], Nature Comm. **9**, 3672 (2018)   * Demid V. Sychev, Alexander E. Ulanov, Egor S. Tiunov, Anastasia A. Pushkina, A. Kuzhamuratov,​ Valery Novikov, and [[Alexander Lvovsky]], [[https://​www.nature.com/​articles/​s41467-018-06055-x|Entanglement and teleportation between polarization and wave-like encodings of an optical qubit]], Nature Comm. **9**, 3672 (2018)
Line 106: Line 122:
  
 === 2017 === === 2017 ===
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://​doi.org/​10.1063/​1.4989537|Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy:​ The multi-state quantum hierarchal Fokker-Planck Equation approach]], J. Chem. Phys. **146**, 014102 (2017)
 +  * X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, and [[Franco Nori]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0370157317303290|Microwave photonics with superconducting quantum circuits]], Phys. Rep. **718-719**,​ 1 (2017)
 +  * J. Zhang, Y.X. Liu, R.B. Wu, K. Jacobs, and [[Franco Nori]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0370157317300479|Quantum feedback: theory, experiments,​ and applications]],​ Phys. Rep. **679**, 1 (2017)
   * [[Andrew Armour]], B. Kubala, and [[Joachim Ankerhold]],​ [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.96.214509|Noise switching at a dynamical critical point in a cavity-conductor hybrid]], Phys. Rev. B **96**, 214509 (2017)   * [[Andrew Armour]], B. Kubala, and [[Joachim Ankerhold]],​ [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.96.214509|Noise switching at a dynamical critical point in a cavity-conductor hybrid]], Phys. Rev. B **96**, 214509 (2017)
   * R.P. Rundle, P.W. Mills, [[Todd Tilma]], [[John Samson]], [[Mark Everitt]]: “Simple procedure for phase-space measurement and entanglement validation”, ​ Phys Rev A.[[http://​dx.doi.org/​10.1103/​PhysRevA.96.022117|10.1103/​PhysRevA.96.022117]] [[https://​arxiv.org/​abs/​1605.08922|arXiv]],​ 2017.   * R.P. Rundle, P.W. Mills, [[Todd Tilma]], [[John Samson]], [[Mark Everitt]]: “Simple procedure for phase-space measurement and entanglement validation”, ​ Phys Rev A.[[http://​dx.doi.org/​10.1103/​PhysRevA.96.022117|10.1103/​PhysRevA.96.022117]] [[https://​arxiv.org/​abs/​1605.08922|arXiv]],​ 2017.
   * Alex E. Bernardini and Mariana Chinaglia, [[https://​doi.org/​10.1088/​1742-6596/​880/​1/​012038|Topological view of quantum tunneling coherent destruction]],​ J. Phys.: Conf. Ser.  **880**, 012038 (2017)   * Alex E. Bernardini and Mariana Chinaglia, [[https://​doi.org/​10.1088/​1742-6596/​880/​1/​012038|Topological view of quantum tunneling coherent destruction]],​ J. Phys.: Conf. Ser.  **880**, 012038 (2017)
   * Alex E. Bernardini and Orfeu Bertolami, [[https://​doi.org/​10.1209/​0295-5075/​120/​20002|Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics]],​ EPL **120**, 20002 (2017)   * Alex E. Bernardini and Orfeu Bertolami, [[https://​doi.org/​10.1209/​0295-5075/​120/​20002|Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics]],​ EPL **120**, 20002 (2017)
-  * A. Larkin, V. Filinov, [[https://​www.doi.org/​10.4236/​jamp.2017.52035|Phase Space Path Integral Representation for Wigner Function]], ​JAMP **5**, 392 (2017)+  * A. Larkin, V. Filinov, [[https://​www.doi.org/​10.4236/​jamp.2017.52035|Phase Space Path Integral Representation for Wigner Function]], ​Journal of Applied Mathematics and Physics ​**5**, 392 (2017) 
 +  * Dimitris Kakofengitis and [[Ole Steuernagel]],​ [[https://​link.springer.com/​article/​10.1140/​epjp/​i2017-11634-2|Wigner'​s quantum phase space current in weakly anharmonic weakly excited two-state systems]], European Physical Journal Plus. **132**, 381 (2017) 
 +  * Dimitris Kakofengitis,​ Maxime Oliva, and [[Ole Steuernagel]],​ [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.95.022127|Wigner'​s representation of quantum mechanics in integral form and its applications]],​ Physical Review A. **95**, 022127 ​(2017)
  
 === 2016 === === 2016 ===
 +  * R. Grossmann, A. Sakurai, and [[Yoshitaka Tanimura]], [[https://​journals.jps.jp/​doi/​10.7566/​JPSJ.85.034803|Electron pumping under non-Markovian dissipation:​ The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016) ​
 +  * [[Daniel Wigger]], H. Gehring, V.M. Axt, [[Doris Reiter]] and T. Kuhn, [[https://​link.springer.com/​article/​10.1007/​s10825-016-0856-8|Quantum dynamics of optical phonons generated by optical excitations of a quantum dot]], J. Comput. Electron **15**, 1158 (2016)
   * [[Todd Tilma]], [[Mark Everitt]], [[John Samson]], W. J. Munro, and [[Kae Nemoto]]: “Wigner Functions for Arbitrary Quantum Systems”, ​ Phys. Rev. Lett., Vol.117, 180401, DOI: [[http://​dx.doi.org/​10.1103/​PhysRevLett.117.180401|10.1103/​PhysRevLett.117.180401]],​ [[https://​arxiv.org/​abs/​1601.07772|arXiv]],​ 2016.   * [[Todd Tilma]], [[Mark Everitt]], [[John Samson]], W. J. Munro, and [[Kae Nemoto]]: “Wigner Functions for Arbitrary Quantum Systems”, ​ Phys. Rev. Lett., Vol.117, 180401, DOI: [[http://​dx.doi.org/​10.1103/​PhysRevLett.117.180401|10.1103/​PhysRevLett.117.180401]],​ [[https://​arxiv.org/​abs/​1601.07772|arXiv]],​ 2016.
   * A. S. Larkin, V. S. Filinov, and V. E. Fortov, [[https://​doi.org/​10.1002/​ctpp.201500078|Path Integral Representation of the Wigner Function in Canonical Ensemble]], Contrib. Plasma Phys. **56**, 187 (2016)   * A. S. Larkin, V. S. Filinov, and V. E. Fortov, [[https://​doi.org/​10.1002/​ctpp.201500078|Path Integral Representation of the Wigner Function in Canonical Ensemble]], Contrib. Plasma Phys. **56**, 187 (2016)
Line 120: Line 143:
  
 === 2015 === === 2015 ===
 +  * [[Yoshitaka Tanimura]], [[https://​aip.scitation.org/​doi/​10.1063/​1.4916647|Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations]],​ J. Chem. Phys. **142**, 144110 (2015)
   * Peter Degenfeld-Schonburg,​ Carlos Navarrete–Benlloch,​ and [[Michael J. Hartmann]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.91.053850|Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators]],​ Phys. Rev. A **91**, 053850 (2015)   * Peter Degenfeld-Schonburg,​ Carlos Navarrete–Benlloch,​ and [[Michael J. Hartmann]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.91.053850|Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators]],​ Phys. Rev. A **91**, 053850 (2015)
   * Mehdi Abdi, Matthias Pernpeintner,​ Rudolf Gross, Hans Huebl, and [[Michael J. Hartmann]], [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.114.173602|Quantum State Engineering with Circuit Electromechanical Three-Body Interactions]],​ Phys. Rev. Lett. **114**, 173602 (2015)   * Mehdi Abdi, Matthias Pernpeintner,​ Rudolf Gross, Hans Huebl, and [[Michael J. Hartmann]], [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.114.173602|Quantum State Engineering with Circuit Electromechanical Three-Body Interactions]],​ Phys. Rev. Lett. **114**, 173602 (2015)
Line 131: Line 155:
  
 === 2014 === === 2014 ===
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[http://​iopscience.iop.org/​article/​10.1088/​1367-2630/​16/​1/​015002/​meta|Self-excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira-Leggett Hamiltonian]],​ New J. of Phys. **16**, 015002 (2014)
 +  * I. Georgescu, S. Ashhab, and [[Franco Nori]], [[https://​journals.aps.org/​rmp/​abstract/​10.1103/​RevModPhys.86.153|Quantum Simulation]],​ Rev. Mod. Phys. **86**, 153 (2014)
 +  * Miranowicz, J. Bajer, M. Paprzycka, Y.X. Liu, A.M. Zagoskin, and [[Franco Nori]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.90.033831|State-dependent photon blockade via quantum-reservoir engineering]],​ Phys. Rev. A **90**, 033831 (2014)
   * T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, and [[Christian Glattli]], [[https://​www.nature.com/​articles/​nature13821|Quantum tomography of an electron]], Nature **514**, 603 (2014) ​   * T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, and [[Christian Glattli]], [[https://​www.nature.com/​articles/​nature13821|Quantum tomography of an electron]], Nature **514**, 603 (2014) ​
   * [[Mark Everitt]], Timothy P. Spiller, Gerard J. Milburn, Richard D. Wilson, and Alexandre M. Zagoskin, [[https://​www.frontiersin.org/​articles/​10.3389/​fict.2014.00001/​full|Engineering dissipative channels for realizing Schrödinger cats in SQUIDs]], Front. ICT **1**, 1 (2014)   * [[Mark Everitt]], Timothy P. Spiller, Gerard J. Milburn, Richard D. Wilson, and Alexandre M. Zagoskin, [[https://​www.frontiersin.org/​articles/​10.3389/​fict.2014.00001/​full|Engineering dissipative channels for realizing Schrödinger cats in SQUIDs]], Front. ICT **1**, 1 (2014)
Line 136: Line 163:
   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'​ko,​ [[http://​dx.doi.org/​10.1007/​s10946-014-9444-1|Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States]], ​ J. Russ. Las. Res. **35**, 427 (2014)   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'​ko,​ [[http://​dx.doi.org/​10.1007/​s10946-014-9444-1|Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States]], ​ J. Russ. Las. Res. **35**, 427 (2014)
   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'​ko,​ [[http://​dx.doi.org/​10.1007/​s10946-014-9395-6|Wigner Functions and Spin Tomograms for Qubit States]], J. Russ. Las. Res. **35**, 3 (2014)   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'​ko,​ [[http://​dx.doi.org/​10.1007/​s10946-014-9395-6|Wigner Functions and Spin Tomograms for Qubit States]], J. Russ. Las. Res. **35**, 3 (2014)
-  * [[Enno Giese]], Wolfgang Zeller, Stephan Kleinert, Matthias Meister, Vincenzo Tamma, Albert Roura, and [[Wolfgang Schleich]], [[http://​ebooks.iospress.nl/​publication/​38097|The interface of gravity and quantum mechanics illuminated by Wigner phase space]], Proc. Intern. School Phys “Enrico Fermi” **188**, 171 (2014)+  * [[Enno Giese]], Wolfgang Zeller, Stephan Kleinert, Matthias Meister, Vincenzo Tamma, ​[[Albert Roura]], and [[Wolfgang Schleich]], [[http://​ebooks.iospress.nl/​publication/​38097|The interface of gravity and quantum mechanics illuminated by Wigner phase space]], Proc. Intern. School Phys “Enrico Fermi” **188**, 171 (2014) 
 +  * D. Bakalov and [[Stephan Schiller]], [[https://​link.springer.com/​article/​10.1007/​s00340-013-5703-z|The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock]], Appl. Phys. B **114**, 213 (2014)
  
 === 2013 === === 2013 ===
 +  * A. Kato and [[Yoshitaka Tanimura]], [[https://​pubs.acs.org.ccindex.cn/​doi/​abs/​10.1021/​jp403056h|Quantum Suppression of Ratchet Rectification in a Brownian System Driven by a Biharmonic Force]], J. Phys. Chem. B **117**, 13132-13144 (2013)
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[https://​journals.jps.jp/​doi/​abs/​10.7566/​JPSJ.82.033707|An approach to quantum transport based on reduced hierarchy equations of motion: Application to resonant tunneling diode]], J. Phys. Soc. Jpn **82**, 033707 (2013)
 +  * [[Daniel Wigger]], [[Doris Reiter]], V.M. Axt and T. Kuhn, [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.87.085301|Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Rev. B **87**, 085301 (2013)
 +  * Z.L. Xiang, S. Ashhab, J.Q. You, and [[Franco Nori]], [[https://​journals.aps.org/​rmp/​abstract/​10.1103/​RevModPhys.85.623|Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems]], Rev. Mod. Phys. **85**, 623 (2013)
 +  * A. Miranowicz, M. Paprzycka, Y.X. Liu, J. Bajer, and [[Franco Nori]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.87.023809|Two-photon and three-photon blockades in driven nonlinear systems]], Phys. Rev. A **87**, 023809 (2013)
   * C. Wickles and [[Wolfgang Belzig]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.88.045308|Effective quantum theories for Bloch dynamics in inhomogeneous systems   * C. Wickles and [[Wolfgang Belzig]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.88.045308|Effective quantum theories for Bloch dynamics in inhomogeneous systems
 with nontrivial band structure]],​ Phys. Rev. B **88**, 045308 (2013) with nontrivial band structure]],​ Phys. Rev. B **88**, 045308 (2013)
Line 144: Line 177:
   * V. Gramich, B. Kubala, S. Rohrer, and [[Joachim Ankerhold]],​ [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.111.247002|From Coulomb-Blockade to Nonlinear Quantum Dynamics in a Superconducting Circuit with a Resonator]],​ Phys. Rev. Lett. **111**, 247002 (2013)   * V. Gramich, B. Kubala, S. Rohrer, and [[Joachim Ankerhold]],​ [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.111.247002|From Coulomb-Blockade to Nonlinear Quantum Dynamics in a Superconducting Circuit with a Resonator]],​ Phys. Rev. Lett. **111**, 247002 (2013)
   * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://​iopscience.iop.org/​article/​10.1088/​0953-4075/​46/​22/​224010/​meta|Optical Bistability in Strong-Coupling Cavity QED with a Few Atoms]], ​ J. Phys. B Atom. Mol. Opt. Phys. **46**, 224010 (2013)   * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://​iopscience.iop.org/​article/​10.1088/​0953-4075/​46/​22/​224010/​meta|Optical Bistability in Strong-Coupling Cavity QED with a Few Atoms]], ​ J. Phys. B Atom. Mol. Opt. Phys. **46**, 224010 (2013)
 +  * [[Stephan Schiller]] and Gerd Breitenbach,​ [[https://​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​phbl.19990550509|Die Vermessung optischer Quantenzustände]],​ Phys. Bl. **55**, 39 (2013)
  
 === 2012 === === 2012 ===
   * Simon Rips, Martin Kiffner, Ignacio Wilson-Rae, and [[Michael J. Hartmann]], [[https://​iopscience.iop.org/​article/​10.1088/​1367-2630/​14/​2/​023042|Steady-state negative Wigner functions of nonlinear nanomechanical oscillators]],​ New J. Phys. **14**, 023042 (2012)   * Simon Rips, Martin Kiffner, Ignacio Wilson-Rae, and [[Michael J. Hartmann]], [[https://​iopscience.iop.org/​article/​10.1088/​1367-2630/​14/​2/​023042|Steady-state negative Wigner functions of nonlinear nanomechanical oscillators]],​ New J. Phys. **14**, 023042 (2012)
   * R. Schmidt, S. Rohrer, [[Joachim Ankerhold]],​ and J.T. Stockburger,​ [[https://​dx.doi.org/​10.1088/​0031-8949/​2012/​T151/​014034|Cooling of quantum systems through optimal control and dissipation]],​ Phys. Script. **T151**, 014034 (2012)   * R. Schmidt, S. Rohrer, [[Joachim Ankerhold]],​ and J.T. Stockburger,​ [[https://​dx.doi.org/​10.1088/​0031-8949/​2012/​T151/​014034|Cooling of quantum systems through optimal control and dissipation]],​ Phys. Script. **T151**, 014034 (2012)
-  * Derek Harland, [[Mark Everitt]], Kae Nemoto, [[Todd Tilma]], and TP Spiller, [[https://​doi.org/​10.1103/​PhysRevA.86.062117}Towards a complete and continuous Wigner function for an ensemble of spins or qubits]], Phys. Rev. A **86**, 062117 (2012)+  * Derek Harland, [[Mark Everitt]], ​[[Kae Nemoto]], [[Todd Tilma]], and TP Spiller, [[https://​doi.org/​10.1103/​PhysRevA.86.062117|Towards a complete and continuous Wigner function for an ensemble of spins or qubits]], Phys. Rev. A **86**, 062117 (2012)
  
 === 2011 === === 2011 ===
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[https://​pubs.acs.org.ccindex.cn/​doi/​abs/​10.1021/​jp1095618|Does hbar play a role in multidimensional spectroscopy?​ Reduced hierarchy equations of motion approach to molecular vibrations]],​ J. Phys. Chem. A **115**, 4009-4022 (2011)
 +  * [[Doris Reiter]], [[Daniel Wigger]], J.M. Daniels, T. Papenkort, A. Vagov, V.M. Axt and T. Kuhn, [[https://​onlinelibrary.wiley.com/​doi/​full/​10.1002/​pssb.201000783|Fluctuation properties of phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Status Solidi B 248, No. 4, 825-828 (2011)
 +  * [[Doris Reiter]], [[Daniel Wigger]], V.M. Axt and T. Kuhn, [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.84.195327|Generation and dynamics of phononic cat states after optical excitation of a quantum dot]], Phys. Rev. B. 84, 195327 (2011)
   * A. Bednorz and [[Wolfgang Belzig]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.83.052113|Fourth moments reveal the negativity of the Wigner function]], Phys. Rev. A **83**, 052113 (2011)   * A. Bednorz and [[Wolfgang Belzig]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.83.052113|Fourth moments reveal the negativity of the Wigner function]], Phys. Rev. A **83**, 052113 (2011)
-  * [[Todd Tilma]] and K. Nemoto, [[https://​iopscience.iop.org/​article/​10.1088/​1751-8113/​45/​1/​015302|SU(N)-symmetric quasi-probability distribution functions]],​ J. Phys. A. Math. and Theor. **45**, 015302 (2011)+  ​* A.R.R. Carvalho, A. Kenfack, [[Fabricio Toscano]], J.M. Rost, and [[Alfredo Miguel Ozorio de Almeida]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0375960111012758?​via%3Dihub|Gaussian representation of extended quantum states]], Phys. Lett. A **376**, 19 (2011)  
 +  * J.Q. You and [[Franco Nori]], [[https://​www.nature.com/​articles/​nature10122|Atomic physics and quantum optics using superconducting circuits]], Nature **474**, 589 (2011) 
 +  * J. Ma, X. Wang, C. P. Sun, and [[Franco Nori]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0370157311002201|Quantum spin squeezing]],​ Phys. Rep. **509**, 89 (2011) 
 +  * I. Buluta, S. Ashhab, and [[Franco Nori]], [[https://​iopscience.iop.org/​article/​10.1088/​0034-4885/​74/​10/​104401/​meta|Natural and artificial atoms for quantum computation]],​ Rep.. Prog. Phys. **74**, 104401 (2011) 
 +  ​* [[Todd Tilma]] and [[Kae Nemoto]], [[https://​iopscience.iop.org/​article/​10.1088/​1751-8113/​45/​1/​015302|SU(N)-symmetric quasi-probability distribution functions]],​ J. Phys. A. Math. and Theor. **45**, 015302 (2011)
  
 === 2010 === === 2010 ===
   * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://​www.sciencedirect.com/​science/​article/​pii/​S0375960110005700?​via%3Dihub|Quantum measurement with chaotic apparatus]],​ Phys. Lett. A **374**, 2809 (2010)   * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://​www.sciencedirect.com/​science/​article/​pii/​S0375960110005700?​via%3Dihub|Quantum measurement with chaotic apparatus]],​ Phys. Lett. A **374**, 2809 (2010)
 +  * S. Ashhab and [[Franco Nori]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.81.042311|Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states]], Phys. Rev. A **81**, 042311 (2010)
 +  * Y.X. Liu, A. Miranowicz, Y.B. Gao, J. Bajer, C.P. Sun, and [[Franco Nori]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.82.032101|Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators]],​ Phys. Rev. A **82**, 032101 (2010)
  
 === 2009 === === 2009 ===
   * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.79.032328|Quantum-classical crossover of a field mode]], Phys. Rev. A **79**, 032328 (2009)  ​   * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.79.032328|Quantum-classical crossover of a field mode]], Phys. Rev. A **79**, 032328 (2009)  ​
 +  * I.Buluta and [[Franco Nori]], [[https://​science.sciencemag.org/​content/​326/​5949/​108|Quantum Simulators]],​ Science **326**, 108 (2009)
 +
 +=== 2007 ===
 +  * [[Doris Reiter]], M. Glanemann, V.M. Axt and T. Kuhn, [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.75.205327|Spatiotemporal dynamics in optically excited quantum wire-dot systems: Capture, escape, and wave-front dynamics]], Phys. Rev. B. 75, 205327 ​ (2007)
 +
 +=== 2006 ===
 +  * [[Yoshitaka Tanimura]], [[https://​journals.jps.jp/​doi/​abs/​10.1143/​JPSJ.75.082001|Stochastic Liouville, Langevin, Fokker-Planck,​ and master equation approaches to quantum dissipative systems]], J. Phys. Soc. Jpn. **75**, 082001 (2006)
 +  * Brad A. Rowland, [[Robert Wyatt]], [[https://​doi.org/​10.1016/​j.cplett.2006.05.041|Local and non-local force analysis for Wigner function barrier scattering]] Chem. Phys. Lett. **426**, 209 (2006) ​
  
 === 2005 === === 2005 ===
   * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://​doi.org/​10.1142/​5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005)   * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://​doi.org/​10.1142/​5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005)
 +  * J.Q. You and [[Franco Nori]], [[https://​physicstoday.scitation.org/​doi/​10.1063/​1.2155757?​feed=most-cited|Superconducting circuits and quantum information]],​ Phys. Today **58**, 42 (2005)
  
 === 2004 === === 2004 ===
   * [[Mark Everitt]], TD Clark, PB Stiffell, A Vourdas, JF Ralph, RJ Prance, and H Prance, [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.69.043804|Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference]],​ Phys. Rev. A **69**, 043804 (2004)   * [[Mark Everitt]], TD Clark, PB Stiffell, A Vourdas, JF Ralph, RJ Prance, and H Prance, [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.69.043804|Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference]],​ Phys. Rev. A **69**, 043804 (2004)
 +
 +=== 2003 ===
 +  * Kyungsun Na, [[Robert Wyatt]], [[https://​doi.org/​10.1238/​Physica.Regular.067a00169|Quantum Hydrodynamic Analysis of Decoherence]],​ Phys. Scr. **67**, 169 (2003)
  
 === 2002 === === 2002 ===
Line 176: Line 231:
   * [[Giovanni Manfredi]] and M.R. Feix, [[https://​journals.aps.org/​pre/​abstract/​10.1103/​PhysRevE.62.4665|Entropy and Wigner functions]],​ Phys. Rev. E **62**, 4665 (2000)   * [[Giovanni Manfredi]] and M.R. Feix, [[https://​journals.aps.org/​pre/​abstract/​10.1103/​PhysRevE.62.4665|Entropy and Wigner functions]],​ Phys. Rev. E **62**, 4665 (2000)
  
-=== 1997 ===+=== 1998 === 
 +  * [[Alfredo Miguel Ozorio de Almeida]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0370157397000707|The Weyl representation in classical and quantum mechanics]],​ Phys. Rep. **295**, 265 (1998) 
 +  * G. Breitenbach,​ F. Illuminati, [[Stephan Schiller]], and J. Mlynek, [[https://​iopscience.iop.org/​article/​10.1209/​epl/​i1998-00456-2/​fulltext/​|Broadband detection of squeezed vacuum: A spectrum of quantum states]], Europhysics Letters **44**, 192 (1998)
  
 +=== 1997 ===
   * S. Bose, K. Jacobs, and [[Peter Knight]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.56.4175|Preparation of nonclassical states in cavities with a moving mirror]], Phys. Rev. A **56**, 4175 (1997)   * S. Bose, K. Jacobs, and [[Peter Knight]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.56.4175|Preparation of nonclassical states in cavities with a moving mirror]], Phys. Rev. A **56**, 4175 (1997)
  
Line 183: Line 241:
 === 1996 === === 1996 ===
   * S. Szabo, P. Adam, J. Janszky and [[Peter Domokos]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.53.2698|Construction of Quantum States of the Radiation Field by Discrete Coherent–State Superpositions]],​ Phys. Rev. A **53**, 2698 (1996)   * S. Szabo, P. Adam, J. Janszky and [[Peter Domokos]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.53.2698|Construction of Quantum States of the Radiation Field by Discrete Coherent–State Superpositions]],​ Phys. Rev. A **53**, 2698 (1996)
 +  * [[Stephan Schiller]], G. Breitenbach,​ S. F. Pereira, T. Müller, and J. Mlynek, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.77.2933|Quantum Statistics of the Squeezed Vacuum by Measurement of the Density Matrixin the Number State Representation]],​ Phys. Rev. Lett. **77**, 2933 (1996)
  
 ==== Gravitation and High Energy Physics ====  ==== Gravitation and High Energy Physics ==== 
Line 208: Line 267:
  
 === 2019 === === 2019 ===
 +  * [[Stefano Olivares]], Alessia Allevi, Giovanni Caiazzo, M. G. A. Paris, and Maria Bondani, [[https://​iopscience.iop.org/​article/​10.1088/​1367-2630/​ab4afb/​meta|Quantum tomography of light states by photon-number-resolving detectors]],​ New. J. Phys. **21**, 103045 (2019)
   * Dmitry V. Strekalov and [[Gerd Leuchs]], [[https://​link.springer.com/​chapter/​10.1007/​978-3-319-98402-5_3|Nonlinear Interactions and Non-classical Light]], Quant. Photon., 51 (2019)   * Dmitry V. Strekalov and [[Gerd Leuchs]], [[https://​link.springer.com/​chapter/​10.1007/​978-3-319-98402-5_3|Nonlinear Interactions and Non-classical Light]], Quant. Photon., 51 (2019)
   * Yosuke Hashimoto, Takeshi Toyama, Jun-ichi Yoshikawa, Kenzo Makino, Fumiya Okamoto, Rei Sakakibara, Shuntaro Takeda, Peter van Loock, and [[Akira Furusawa]], [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.123.113603|All-Optical Storage of Phase-Sensitive Quantum States of Light]], Phys. Rev. Lett. **123**, 113603 (2019)   * Yosuke Hashimoto, Takeshi Toyama, Jun-ichi Yoshikawa, Kenzo Makino, Fumiya Okamoto, Rei Sakakibara, Shuntaro Takeda, Peter van Loock, and [[Akira Furusawa]], [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.123.113603|All-Optical Storage of Phase-Sensitive Quantum States of Light]], Phys. Rev. Lett. **123**, 113603 (2019)
Line 221: Line 281:
  
 === 2016 === === 2016 ===
 +  * C. Sparaciari, [[Stefano Olivares]], and M. G. A. Paris, [[http://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.93.023810|Gaussian-state interferometry with passive and active elements]], Phys. Rev. A **93**, 023810 (2016)
 +  * S. Cialdi, C. Porto, D. Cipriani, [[Stefano Olivares]], and M. G. A. Paris, [[http://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.93.043805|Full quantum state reconstruction of symmetric two-mode squeezed thermal states via spectral homodyne detection and a state-balancing detector]], Phys. Rev. A **93**, 043805 (2016)
   * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto,​ Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016)   * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto,​ Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016)
   * Kenzo Makino, Yosuke Hashimoto, Jun-ichi Yoshikawa, Hideaki Ohdan, Takeshi Toyama, Peter van Loock, and [[Akira Furusawa]], [[https://​advances.sciencemag.org/​content/​2/​5/​e1501772|Synchronization of Optical Photons for Quantum Information Processing]],​ Sci. Adv. **2**, e1501772 (2016) ​   * Kenzo Makino, Yosuke Hashimoto, Jun-ichi Yoshikawa, Hideaki Ohdan, Takeshi Toyama, Peter van Loock, and [[Akira Furusawa]], [[https://​advances.sciencemag.org/​content/​2/​5/​e1501772|Synchronization of Optical Photons for Quantum Information Processing]],​ Sci. Adv. **2**, e1501772 (2016) ​
Line 227: Line 289:
  
 === 2015 === === 2015 ===
 +  * C. Sparaciari, [[Stefano Olivares]], and M. G. A. Paris, [[https://​www.osapublishing.org/​josab/​abstract.cfm?​uri=josab-32-7-1354|Bounds to precision for quantum interferometry with Gaussian states and operations]],​ J. Opt. Soc. Am. B **32**, 1354 (2015)
   * Richard Birrittella,​ Kezi Cheng, and [[Christopher C. Gerry]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0030401815004447?​via%3Dihub|Photon-Number Parity Oscillations in the Resonant Jaynes-Cummings Model]], Opt. Comm. **354**, 286 (2015) ​   * Richard Birrittella,​ Kezi Cheng, and [[Christopher C. Gerry]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0030401815004447?​via%3Dihub|Photon-Number Parity Oscillations in the Resonant Jaynes-Cummings Model]], Opt. Comm. **354**, 286 (2015) ​
   * K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and [[Julien Laurat]], [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.115.023602|Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources]],​ Phys. Rev. Lett. **115**, 023602 (2015)   * K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and [[Julien Laurat]], [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.115.023602|Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources]],​ Phys. Rev. Lett. **115**, 023602 (2015)
  
 === 2014 === === 2014 ===
 +  * M. Esposito, F. Benatti, R. Floreanini, [[Stefano Olivares]], F. Randi, K. Titimbo, M. Pividori, F. Novelli, F. Cilento, F. Parmigiani, and D. Fausti, [[http://​iopscience.iop.org/​article/​10.1088/​1367-2630/​16/​4/​043004|Pulsed homodyne Gaussian quantum tomography with low detection efficiency]],​ New. J. Phys. **16**, 043004 (2014)
   * Olivier Morin, Kun Huang, Jianli Liu, Hanna Le Jeannic, Claude Fabre, and [[Julien Laurat]], [[https://​www.nature.com/​articles/​nphoton.2014.137|Remote creation of hybrid entanglement between particle-like and wave-like optical qubits]], Nature Photon. **8**, 570 (2014)   * Olivier Morin, Kun Huang, Jianli Liu, Hanna Le Jeannic, Claude Fabre, and [[Julien Laurat]], [[https://​www.nature.com/​articles/​nphoton.2014.137|Remote creation of hybrid entanglement between particle-like and wave-like optical qubits]], Nature Photon. **8**, 570 (2014)
 +
 +=== 2013 ===
 +  * A. Meda, [[Stefano Olivares]], I. P. Degiovanni, G. Brida, M. Genovese, and M. G. A. Paris, [[https://​www.osapublishing.org/​ol/​abstract.cfm?​uri=ol-38-16-3099|Revealing interference by continuous variable discordant states]], Optics Letters **38**, 3099 (2013)
 +  * M. G. Genoni, M. L. Palma, T. Tufarelli, [[Stefano Olivares]], M. S. Kim, and M. G. A. Paris, [[http://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.87.062104|Detecting quantum non-Gaussianity via the Wigner function]], Phys. Rev. A **87**, 062104 (2013)
 +
 +=== 2012 ===
 +  * [[Stefano Olivares]], [[http://​link.springer.com/​article/​10.1140/​epjst/​e2012-01532-4|Quantum optics in the phase space - A tutorial on Gaussian states]]; Eur. Phys. J. Special Topics **203**, 3-24 (2012)
 +
 +=== 2011 ===
 +  * [[Stefano Olivares]] and M. G. A. Paris, [[http://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.107.170505|Fidelity matters: the birth of entanglement in the mixing of Gaussian states]], Phys. Rev. Lett. **107**, 170505 (2011)
 +
 +=== 2009 ===
 +  * S. Cho, [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://​www.tandfonline.com/​doi/​full/​10.1080/​09500340903377766|Wigner functions for paraxial and nonparaxial fields]] J. Mod. Opt. **56**, 1843 (2009)
 +  * V. D'​Auria,​ S. Fornaro, A. Porzio, S. Solimeno, [[Stefano Olivares]], and M. G. A. Paris, [[http://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.102.020502|Full characterization of Gaussian bipartite entangled states by a single homodyne detector]], Phys. Rev. Lett. **102**, 020502 (2009)
 +  * R. Vasile, [[Stefano Olivares]], M. G. A. Paris, and S. Maniscalco, [[http://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.80.062324|Continuous-variable-entanglement dynamics in structured reservoirs]],​ Phys. Rev. A **80**, 062324 (2009)
  
 === 2008 === === 2008 ===
   * Patrick Loughlin and [[Leon Cohen]], [[https://​www.tandfonline.com/​doi/​full/​10.1080/​09500340802220745|Approximate wave function from approximate non-representable Wigner distributions]],​ J.  Mod. Opt. **55**, 3379 (2008)   * Patrick Loughlin and [[Leon Cohen]], [[https://​www.tandfonline.com/​doi/​full/​10.1080/​09500340802220745|Approximate wave function from approximate non-representable Wigner distributions]],​ J.  Mod. Opt. **55**, 3379 (2008)
 +
 +=== 2007 ===
 +  * S. Maniscalco, [[Stefano Olivares]], and M. G. A. Paris, [[http://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.75.062119|Entanglement oscillations in non-Markovian quantum channels]], Phys. Rev. A **75**, 062119 (2007)
 +  * [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://​www.osapublishing.org/​josaa/​abstract.cfm?​uri=josaa-24-9-2590|Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions]] J. Opt. Soc. Am. A **24**, 2590 (2007)
 +
  
  
Line 261: Line 345:
   * [[Josef Weinbub]], Mauro Ballicchia, and [[Mihail (Mixi) Nedjalkov]],​ [[https://​onlinelibrary.wiley.com/​doi/​full/​10.1002/​pssr.201800111|Electron Interference in a Double‐Dopant Potential Structure]],​ Phys. Stat. Sol. RRL **12**, ​ 1800111 (2018)   * [[Josef Weinbub]], Mauro Ballicchia, and [[Mihail (Mixi) Nedjalkov]],​ [[https://​onlinelibrary.wiley.com/​doi/​full/​10.1002/​pssr.201800111|Electron Interference in a Double‐Dopant Potential Structure]],​ Phys. Stat. Sol. RRL **12**, ​ 1800111 (2018)
   * Mauro Ballicchia, [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]],​ [[https://​pubs.rsc.org/​en/​content/​articlelanding/​2018/​NR/​C8NR06933F#​!divAbstract|Electron Evolution Around a Repulsive Dopant in a Quantum Wire: Coherence Effects]], Nanoscale **10**, 23037 (2018)   * Mauro Ballicchia, [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]],​ [[https://​pubs.rsc.org/​en/​content/​articlelanding/​2018/​NR/​C8NR06933F#​!divAbstract|Electron Evolution Around a Repulsive Dopant in a Quantum Wire: Coherence Effects]], Nanoscale **10**, 23037 (2018)
 +
 === 2017 === === 2017 ===
 +  * Talitha Weiss, Stefan Walter, and [[Florian Marquardt]],​ [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.95.041802|Quantum-coherent phase oscillations in synchronization]],​ Phys. Rev. A **95**, 041802(R) (2017)
   * [[Dmitry Karlovets]],​[[https://​link.springer.com/​article/​10.1007/​JHEP03(2017)049|Scattering of wave packets with phases]], J. High Energy Physics **2017**, 49 (2017)   * [[Dmitry Karlovets]],​[[https://​link.springer.com/​article/​10.1007/​JHEP03(2017)049|Scattering of wave packets with phases]], J. High Energy Physics **2017**, 49 (2017)
   * [[Dmitry Karlovets]] and V.G. Serbo, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.119.173601|Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms]], Phys. Rev. Lett. **119**, 173601 (2017)   * [[Dmitry Karlovets]] and V.G. Serbo, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.119.173601|Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms]], Phys. Rev. Lett. **119**, 173601 (2017)
Line 273: Line 359:
  
 === 2016 === === 2016 ===
 +  * [[Christian B. Mendl]], Jianfeng Lu, and Jani Lukkarinen, [[https://​journals.aps.org/​pre/​abstract/​10.1103/​PhysRevE.94.062104|Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory]], Phys. Rev. E **94**, 062104 (2016)
 +  * Vittorio Peano, Martin Houde, [[Florian Marquardt]],​ and Aashish A. Clerk, [[https://​journals.aps.org/​prx/​abstract/​10.1103/​PhysRevX.6.041026|Topological Quantum Fluctuations and Traveling Wave Amplifiers]],​ Phys. Rev. X **6**, 041026 (2016)
   * R. Grossmann, A. Sakurai, ​ and Y. Tanimura, [[https://​journals.jps.jp/​doi/​10.7566/​JPSJ.85.034803|Electron pumping under non-Markovian dissipation:​ The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016)   * R. Grossmann, A. Sakurai, ​ and Y. Tanimura, [[https://​journals.jps.jp/​doi/​10.7566/​JPSJ.85.034803|Electron pumping under non-Markovian dissipation:​ The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016)
   * J. T. Mendonça and A Serbeto, [[https://​doi.org/​10.1088/​0031-8949/​91/​9/​095601|Photon and electron Landau ​   * J. T. Mendonça and A Serbeto, [[https://​doi.org/​10.1088/​0031-8949/​91/​9/​095601|Photon and electron Landau ​
Line 284: Line 372:
  
 === 2014 === === 2014 ===
 +  * Pierrat, Romain and Ambichl, Philipp and Gigan, Sylvain and Haber, Alexander and Carminati, Rémi and [[Stefan Rotter]], [[https://​www.pnas.org/​content/​111/​50/​17765.short|Invariance Property of Wave Scattering Through Disordered Media]], Proceedings of the National Academy of Sciences **111**, 17765 (2014)
   * N. Crouseilles and [[Giovanni Manfredi]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0010465513001963|Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit]], Comp. Phys. Comm. **185**, 448 (2014)   * N. Crouseilles and [[Giovanni Manfredi]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0010465513001963|Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit]], Comp. Phys. Comm. **185**, 448 (2014)
  
Line 289: Line 378:
   * [[Dario Ferraro]], A. Feller, A. Ghibaudo, E. Thibierge, E. Bocquillon, [[Gwendal Fève]], Ch. Grenier, and [[Pascal Degiovanni]],​ [[https://​journals.aps.org/​prb/​pdf/​10.1103/​PhysRevB.88.205303|Wigner function approach to single electron coherence in quantum Hall edge channels]], Phys. Rev. B **88**, 205303 (2013)   * [[Dario Ferraro]], A. Feller, A. Ghibaudo, E. Thibierge, E. Bocquillon, [[Gwendal Fève]], Ch. Grenier, and [[Pascal Degiovanni]],​ [[https://​journals.aps.org/​prb/​pdf/​10.1103/​PhysRevB.88.205303|Wigner function approach to single electron coherence in quantum Hall edge channels]], Phys. Rev. B **88**, 205303 (2013)
   * [[Xavier Oriols]] and [[David K. Ferry]], [[https://​link.springer.com/​article/​10.1007%2Fs10825-013-0461-z|Quantum Transport Beyond DC]], J. Comp. Electron. **12**, 317 (2013)   * [[Xavier Oriols]] and [[David K. Ferry]], [[https://​link.springer.com/​article/​10.1007%2Fs10825-013-0461-z|Quantum Transport Beyond DC]], J. Comp. Electron. **12**, 317 (2013)
 +  * Ansgar Jüngel, [[Nicola Zamponi]], [[http://​dx.doi.org/​10.4310/​CMS.2013.v11.n3.a7|Two spinorial drift-diffusion models for quantum electron transport in graphene]], COMMUN. MATH. SCI. **11**, 807 (2013)
 +
  
 === 2012 === === 2012 ===
   * [[Omar Morandi]] and [[Ferdinand Schürrer]],​ [[https://​iopscience.iop.org/​article/​10.1088/​1751-8113/​44/​26/​265301|Wigner model for quantum transport in graphene]], J. Phys. A: Math. Theor. **44**, 265301 (2012)   * [[Omar Morandi]] and [[Ferdinand Schürrer]],​ [[https://​iopscience.iop.org/​article/​10.1088/​1751-8113/​44/​26/​265301|Wigner model for quantum transport in graphene]], J. Phys. A: Math. Theor. **44**, 265301 (2012)
 +  * [[Nicola Zamponi]], [[https://​www.aimsciences.org/​article/​doi/​10.3934/​krm.2012.5.203|Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization]],​ Kinet. Relat. Models **5**, 203 (2012)
  
 === 2011 === === 2011 ===
 +  * [[Nicola Zamponi]] and [[Luigi Barletti]], [[https://​onlinelibrary.wiley.com/​doi/​full/​10.1002/​mma.1403|Quantum Electronic Transport in Graphene: A Kinetic and Fluid-Dynamic Approach]], Mathematical Methods in the Applied Sciences **34**, 807 (2011)
   * [[Omar Morandi]] and [[Ferdinand Schürrer]],​ [[http://​caim.simai.eu/​index.php/​caim/​article/​view/​360|Wigner model for Klein tunneling in graphene]], Comm. Appl. Indust. Math. **2**, (2011)   * [[Omar Morandi]] and [[Ferdinand Schürrer]],​ [[http://​caim.simai.eu/​index.php/​caim/​article/​view/​360|Wigner model for Klein tunneling in graphene]], Comm. Appl. Indust. Math. **2**, (2011)
 +  * [[Nicola Zamponi]], [[Luigi Barletti]], [[ https://​doi.org/​10.1002/​mma.1403|Quantum electronic transport in graphene: A kinetic and fluid‐dynamic approach]], MATH METHOD APPL SCI **34** 807 (2011)
 +  * [[Stefan Rotter]] and Ambichl, Philipp and Libisch, Florian, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.106.120602|Generating Particlelike Scattering States in Wave Transport]]",​ Physical Review Letters **106**, 120602 (2011)
  
 === 2010 === === 2010 ===
Line 327: Line 422:
 === 2018 === === 2018 ===
   * [[Kyoung-Youm Kim]], ​ [[Ting-wei Tang]], and Saehwa Kim, [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.5055686|Accuracy balancing for the simulation of gate-all-around junctionless nanowire transistors using discrete Wigner transport equation ]], AIP Adv. **8**, 115105 (2018)   * [[Kyoung-Youm Kim]], ​ [[Ting-wei Tang]], and Saehwa Kim, [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.5055686|Accuracy balancing for the simulation of gate-all-around junctionless nanowire transistors using discrete Wigner transport equation ]], AIP Adv. **8**, 115105 (2018)
 +  * Rita Claudia Iotti and [[Fausto Rossi]], [[https://​www.mdpi.com/​1099-4300/​20/​10/​726|Microscopic Theory of Energy Dissipation and Decoherence in Solid-State Quantum Devices: Need for Nonlocal Scattering Models ]], Entropy **20**, 726 (2018)
   * [[Mihail (Mixi) Nedjalkov]],​ [[Paul Ellinghaus]],​ [[Josef Weinbub]], Toufik Sadi, Asen Asenov, [[Ivan Dimov]], and [[Siegfried Selberherr]],​ [[https://​www.sciencedirect.com/​science/​article/​pii/​S0010465518300821?​via%3Dihub|Stochastic Analysis of Surface Roughness Models in Quantum Wires]], Comp. Phys. Commun. **228**, 30 (2018)   * [[Mihail (Mixi) Nedjalkov]],​ [[Paul Ellinghaus]],​ [[Josef Weinbub]], Toufik Sadi, Asen Asenov, [[Ivan Dimov]], and [[Siegfried Selberherr]],​ [[https://​www.sciencedirect.com/​science/​article/​pii/​S0010465518300821?​via%3Dihub|Stochastic Analysis of Surface Roughness Models in Quantum Wires]], Comp. Phys. Commun. **228**, 30 (2018)
   * [[David K. Ferry]] and Ian Welland, [[https://​link.springer.com/​article/​10.1007%2Fs10825-017-1094-4|Relativistic Wigner Functions in Transition Metal Dichalcogenides]],​ J. Comp. Electron. **17**, 110 (2018)   * [[David K. Ferry]] and Ian Welland, [[https://​link.springer.com/​article/​10.1007%2Fs10825-017-1094-4|Relativistic Wigner Functions in Transition Metal Dichalcogenides]],​ J. Comp. Electron. **17**, 110 (2018)
Line 333: Line 429:
   * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://​ieeexplore.ieee.org/​abstract/​document/​8605839/​authors#​authors|Role of Interfacial and Intrinsic Coulomb Impurities in Monolayer MoS2 FETs]], Proc. IEEE Nanotechnology Materials and Devices Conference (NMDC), (2018)   * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://​ieeexplore.ieee.org/​abstract/​document/​8605839/​authors#​authors|Role of Interfacial and Intrinsic Coulomb Impurities in Monolayer MoS2 FETs]], Proc. IEEE Nanotechnology Materials and Devices Conference (NMDC), (2018)
   * R.R. Sharma and [[Ram Bilas Pachori]], [[https://​link.springer.com/​article/​10.1007/​s00034-018-0846-0|Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner-Ville distribution]],​ Circ. Sys. Sig. Proc. **37**, 3330 (2018)   * R.R. Sharma and [[Ram Bilas Pachori]], [[https://​link.springer.com/​article/​10.1007/​s00034-018-0846-0|Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner-Ville distribution]],​ Circ. Sys. Sig. Proc. **37**, 3330 (2018)
 +  * Chenglong Bao, George Barbastathis,​ Hui Ji, Zuowei Shen and [[Zhengyun Zhang]], [[https://​epubs.siam.org/​doi/​abs/​10.1137/​17M1124097|Coherence Retrieval Using Trace Regularization]],​ SIAM J. Imag. Sci. **11**, 679 (2018)
  
 === 2017 === === 2017 ===
 +  * [[Maciej Woloszyn]] and [[Bartlomiej Spisak]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.96.075440|Dissipative transport of thermalized electrons through a nanodevice]],​ Phys. Rev. B **96**, 075440 (2017)  ​
   * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://​ieeexplore.ieee.org/​document/​8013152|Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses]], IEEE T. Nanotech. **16**, 1028 (2017)   * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://​ieeexplore.ieee.org/​document/​8013152|Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses]], IEEE T. Nanotech. **16**, 1028 (2017)
 +  * Rita Claudia Iotti and [[Fausto Rossi]], [[https://​link.springer.com/​article/​10.1140/​epjb/​e2017-80462-3|Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments]],​ Europ. Phys. J. B **90**, 250 (2017)
 +  * Rita Claudia Iotti, Fabrizio Dolcini and [[Fausto Rossi]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.96.115420|Wigner-function formalism applied to semiconductor quantum devices: Need for nonlocal scattering models]], Phys. Rev. B **96**, 115420 (2017)
   * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://​www.ingentaconnect.com/​contentone/​asp/​jctn/​2017/​00000014/​00000003/​art00013|Interplay Between a Gaussian Wave Packet and a Non-Reflecting Potential Analyzed Using the Wigner Equation]], J. Comput. Theor. Nanosci. **14**, 1329 (2017)   * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://​www.ingentaconnect.com/​contentone/​asp/​jctn/​2017/​00000014/​00000003/​art00013|Interplay Between a Gaussian Wave Packet and a Non-Reflecting Potential Analyzed Using the Wigner Equation]], J. Comput. Theor. Nanosci. **14**, 1329 (2017)
   * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://​ieeexplore.ieee.org/​abstract/​document/​8117451|Effects of uniaxial strain on polar optical phonon scattering and electron transport in monolayer MoS2 FETs]], Proc. IEEE  International Conference on Nanotechnology (NANO), (2017)   * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://​ieeexplore.ieee.org/​abstract/​document/​8117451|Effects of uniaxial strain on polar optical phonon scattering and electron transport in monolayer MoS2 FETs]], Proc. IEEE  International Conference on Nanotechnology (NANO), (2017)
   * Adithya Kommini and [[Zlatan Aksamija]], [[https://​iopscience.iop.org/​article/​10.1088/​1361-648X/​aaa110/​meta|Thermoelectric properties of periodic quantum structures in the Wigner–Rode formalism]],​ J. Phys. Cond. Matt. **30**, 044004 (2017)   * Adithya Kommini and [[Zlatan Aksamija]], [[https://​iopscience.iop.org/​article/​10.1088/​1361-648X/​aaa110/​meta|Thermoelectric properties of periodic quantum structures in the Wigner–Rode formalism]],​ J. Phys. Cond. Matt. **30**, 044004 (2017)
   * [[Zlatan Aksamija]], [[https://​www.taylorfrancis.com/​books/​e/​9781315108223|Nanophononics:​ Thermal Generation, Transport, and Conversion at the Nanoscale]] (Jenny Stanford Publishing, 2017)   * [[Zlatan Aksamija]], [[https://​www.taylorfrancis.com/​books/​e/​9781315108223|Nanophononics:​ Thermal Generation, Transport, and Conversion at the Nanoscale]] (Jenny Stanford Publishing, 2017)
 +  * [[Zhengyun Zhang]], Chenglong Bao, Hui Ji, Zuowei Shen, George Barbastathis,​ [[https://​doi.org/​10.1364/​JOSAA.34.002025|Apparent coherence loss in phase space tomography]],​ J. Opt. Soc. Am. A **34**, 2025 (2017)
  
 === 2016 === === 2016 ===
 +  * U. Kaczor, B. Klimas, D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://​www.degruyter.com/​view/​j/​phys.2016.14.issue-1/​phys-2016-0036/​phys-2016-0036.xml|Phase-space description of the coherent state dynamics in a small one-dimensional system]], Open Phys. **14**, 354 (2016)  ​
   * R.B. Pachori and A. Nishad, [[https://​doi.org/​10.1016/​j.sigpro.2015.07.026|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]],​ Signal Process **120**, 288 (2016)   * R.B. Pachori and A. Nishad, [[https://​doi.org/​10.1016/​j.sigpro.2015.07.026|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]],​ Signal Process **120**, 288 (2016)
 +  * Rita Claudia Iotti, Fabrizio Dolcini, Arianna Montorsi and [[Fausto Rossi]], [[https://​link.springer.com/​article/​10.1007/​s10825-016-0858-6|Electron–phonon dissipation in quantum nanodevices]],​ J. Comput. Electron. **15**, 1170 (2016)
   * [[Shaikh S. Ahmed]], et al., [[https://​ieeexplore.ieee.org/​abstract/​document/​7853846/​authors#​authors|Multiscale-multiphysics modeling of nonclassical semiconductor devices]], Proc. International Conference on Electrical and Computer Engineering (ICECE), (2016)   * [[Shaikh S. Ahmed]], et al., [[https://​ieeexplore.ieee.org/​abstract/​document/​7853846/​authors#​authors|Multiscale-multiphysics modeling of nonclassical semiconductor devices]], Proc. International Conference on Electrical and Computer Engineering (ICECE), (2016)
   * [[Ram Bilas Pachori]] and A. Nishad, [[https://​www.sciencedirect.com/​science/​article/​pii/​S0165168415002637|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]],​ Sig. Proc. **120**, 288 (2016)   * [[Ram Bilas Pachori]] and A. Nishad, [[https://​www.sciencedirect.com/​science/​article/​pii/​S0165168415002637|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]],​ Sig. Proc. **120**, 288 (2016)
  
 +=== 2015 ===
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], D. Szydlowski, [[https://​link.springer.com/​article/​10.1007/​s10825-015-0733-x|Dynamical localisation of conduction electrons in one-dimensional disordered systems]], J. Comput. Electron. **14**, 916 (2015) ​
 +  * Roberto Rosati, Fabrizio Dolcini and [[Fausto Rossi]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.92.235423|Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation]],​ Phys. Rev. B **92**, 235423 (2015)
  
 === 2014 === === 2014 ===
Line 355: Line 461:
  
 === 2013 === === 2013 ===
 +  * Rosati, Roberto and Dolcini, Fabrizio and Iotti, Rita Claudia and [[Fausto Rossi]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.88.035401|Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme]], Phys. Rev. B **88**, 035401 (2013)
   * P. Jain and [[Ram Bilas Pachori]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0016003213000069|Marginal energy density over the low frequency range as a feature for voiced/​non-voiced detection in noisy speech signals]], J. Frank. Ins. **350**, 678 (2013)   * P. Jain and [[Ram Bilas Pachori]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0016003213000069|Marginal energy density over the low frequency range as a feature for voiced/​non-voiced detection in noisy speech signals]], J. Frank. Ins. **350**, 678 (2013)
   * V. Bajaj and [[Ram Bilas Pachori]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0169260713002265|Automatic classification of sleep stages based on the time-frequency image of EEG signals]], Comp. Meth. Prog. Biomed. **112**, 320 (2013)   * V. Bajaj and [[Ram Bilas Pachori]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0169260713002265|Automatic classification of sleep stages based on the time-frequency image of EEG signals]], Comp. Meth. Prog. Biomed. **112**, 320 (2013)
 +  * Lei Tian, [[Zhengyun Zhang]], [[Jonathan Petruccelli]],​ and George Barbastathis,​ [[https://​doi.org/​10.1364/​OE.21.010511|Wigner function measurement using a lenslet array]], Opt. Express **21**, 10511 (2013)
 +  * D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​28/​10/​105022/​pdf|Phase-space description of wave packet approach to electronic transport in nanoscale systems]], Semicond. Sci. Technol. **28**, 105022 (2013) ​
 +  * P. Wójcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://​aip.scitation.org/​doi/​abs/​10.1063/​1.4811836?​journalCode=apl|Spin filter effect at room temperature in GaN/GaMnN ferromagnetic resonant tunnelling diode]], Appl. Phys. Lett. **102**, 242411 (2013) ​
 +
 +=== 2012 ===
 +  * P. Wojcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.86.165318|Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode]], Phys. Rev. B **86**, 165318 (2012) ​
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], and J. Adamowski, [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​27/​11/​115004/​meta|Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode]], Semicond. Sci. Technol. **27**, 115004 (2012) ​
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://​aip.scitation.org/​doi/​10.1063/​1.4729895|Tuning of terahertz intrinsic oscillations in asymmetric triple-barrier resonant tunneling diodes]], J. Appl. Phys. **111**, 124310 (2012) ​
  
 === 2011 === === 2011 ===
Line 363: Line 478:
 === 2010 === === 2010 ===
   * [[Mihail (Mixi) Nedjalkov]],​ [[Hans Kosina]], and Philipp Schwaha, [[https://​link.springer.com/​article/​10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], J. Comp. Electron. **9**, 218 (2010)   * [[Mihail (Mixi) Nedjalkov]],​ [[Hans Kosina]], and Philipp Schwaha, [[https://​link.springer.com/​article/​10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], J. Comp. Electron. **9**, 218 (2010)
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​25/​12/​125012|Intrinsic current oscillations in an asymmetric triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **25**, 125012 (2010) ​
  
 === 2009 === === 2009 ===
   * [[Sylvain Barraud]], [[https://​aip.scitation.org/​doi/​10.1063/​1.3226856|Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism]],​ J. Appl. Phys. **106**, 063714 (2009)   * [[Sylvain Barraud]], [[https://​aip.scitation.org/​doi/​10.1063/​1.3226856|Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism]],​ J. Appl. Phys. **106**, 063714 (2009)
   * Huu-Nha Nguyen, [[Damien Querlioz]], Sylvie Galdin-Retailleau,​ Arnaud Bournel, and [[Philippe Dollfus]], [[https://​ieeexplore.ieee.org/​document/​5091161|Wigner Monte Carlo simulation of CNTFET: Comparison between semi-classical and quantum transport]],​ Proc. IWCE, 257 (2009)   * Huu-Nha Nguyen, [[Damien Querlioz]], Sylvie Galdin-Retailleau,​ Arnaud Bournel, and [[Philippe Dollfus]], [[https://​ieeexplore.ieee.org/​document/​5091161|Wigner Monte Carlo simulation of CNTFET: Comparison between semi-classical and quantum transport]],​ Proc. IWCE, 257 (2009)
 +  * [[Zhengyun Zhang]] and Marc Levoy, [[https://​ieeexplore.ieee.org/​document/​5559007|Wigner distributions and how they relate to the light field]], Proc. IEEE International Conference on Computational Photography (ICCP), 1-10 (2009)
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], P. Wojcik, G.J. Morgan, [[https://​iopscience.iop.org/​article/​10.1088/​1742-6596/​193/​1/​012130|Wigner distribution function description of a multilayered nanostructure with magnetic impurities]],​ J. Phys.: Conf. Ser. **193**, 012130 (2009) ​
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​24/​9/​095012|Self-consistent Wigner distribution function study of gate-voltage controlled triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **24**, 095012 (2009) ​
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.80.035127|Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field]], Phys. Rev. B **80**, 035127 (2009) ​
  
 === 2008 === === 2008 ===
   * [[Damien Querlioz]], Jerome Saint-Martin,​ Arnaud Bournel, and [[Philippe Dollfus]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.78.165306|Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices]],​ Phys. Rev. B **78**, 165306 (2008)   * [[Damien Querlioz]], Jerome Saint-Martin,​ Arnaud Bournel, and [[Philippe Dollfus]], [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.78.165306|Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices]],​ Phys. Rev. B **78**, 165306 (2008)
 +  * Taj, David and [[Fausto Rossi]], [[https://​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​pssc.200776527|Quantum non-locality in systems with open boundaries: From the Wigner-function formalism to non-homogeneous Markovian master equations]],​ physica status solidi (c) **5**, 66 (2008)
  
 === 2007 === === 2007 ===
-  * [[Clemens Heitzinger]],​ [[Christian Ringhofer]],​ Shaikh Ahmed, and [[Dragica Vasileska]],​ [[https://​link.springer.com/​article/​10.1007/​s10825-006-0058-x|3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions]], ​ J. Comput. Electron. **6**, 15 (2007)+  * [[Clemens Heitzinger]],​ [[Christian Ringhofer]], ​[[Shaikh ​S. Ahmed]], and [[Dragica Vasileska]],​ [[https://​link.springer.com/​article/​10.1007/​s10825-006-0058-x|3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions]], ​ J. Comput. Electron. **6**, 15 (2007)
   * Emiliano Cancellieri,​ [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​journals.aps.org/​prb/​pdf/​10.1103/​PhysRevB.76.214301|Effect of symmetry in the many-particle Wigner function]], Phys. Rev. B **76**, 214301 (2007)   * Emiliano Cancellieri,​ [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​journals.aps.org/​prb/​pdf/​10.1103/​PhysRevB.76.214301|Effect of symmetry in the many-particle Wigner function]], Phys. Rev. B **76**, 214301 (2007)
   * Emiliano Cancellieri,​ [[Paolo Bordone]], and [[Carlo Jacoboni]], [[http://​eprints.whiterose.ac.uk/​84429/​|Effect of the Pauli Exclusion Principle in the Many-Electron Wigner Function]] (2007)   * Emiliano Cancellieri,​ [[Paolo Bordone]], and [[Carlo Jacoboni]], [[http://​eprints.whiterose.ac.uk/​84429/​|Effect of the Pauli Exclusion Principle in the Many-Electron Wigner Function]] (2007)
Line 379: Line 500:
  
 === 2006 === === 2006 ===
 +  * Taj, D and Genovese, L and [[Fausto Rossi]], [[https://​iopscience.iop.org/​article/​10.1209/​epl/​i2006-10047-3|Quantum-transport simulations with the Wigner-function formalism: Failure of conventional boundary-condition schemes]], Europhys. Lett. **74**, 1060 (2006) 
 +  * Taj, David and Genovese, L and [[Fausto Rossi]], [[https://​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​pssc.200668052|Transport in quantum devices: modelling contacts in the Wigner formalism]],​ physica status solidi (c) **3**, 2419 (2006)
   * [[Harold Grubin]], [[https://​www.scientific.net/​AST.52.36|Transient Wigner function studies of DMS barrier devices]], Adv. Sci. Techn. **52**, 36 (2006)   * [[Harold Grubin]], [[https://​www.scientific.net/​AST.52.36|Transient Wigner function studies of DMS barrier devices]], Adv. Sci. Techn. **52**, 36 (2006)
   * V. Sverdlov, T. Grasser, [[Hans Kosina]], and [[Siegfried Selberherr]],​ [[https://​link.springer.com/​article/​10.1007%2Fs10825-006-0041-6|Scattering and Space-Charge Effects in Wigner Monte Carlo Simulations of Single and Double Barrier Devices]], ​ J. Comp. Electron. **5**, 447 (2006)   * V. Sverdlov, T. Grasser, [[Hans Kosina]], and [[Siegfried Selberherr]],​ [[https://​link.springer.com/​article/​10.1007%2Fs10825-006-0041-6|Scattering and Space-Charge Effects in Wigner Monte Carlo Simulations of Single and Double Barrier Devices]], ​ J. Comp. Electron. **5**, 447 (2006)
Line 390: Line 512:
   * Patrick Loughlin and [[Leon Cohen]], [[https://​asa.scitation.org/​doi/​10.1121/​1.2001488|A Wigner approximation method for wave propagation]],​ J. Acoust. Soc. Amer **118**, 1268 (2005)   * Patrick Loughlin and [[Leon Cohen]], [[https://​asa.scitation.org/​doi/​10.1121/​1.2001488|A Wigner approximation method for wave propagation]],​ J. Acoust. Soc. Amer **118**, 1268 (2005)
   * V. Sverdlov, A. Gehring, [[Hans Kosina]], and [[Siegfried Selberherr]],​ [[https://​www.sciencedirect.com/​science/​article/​pii/​S003811010500198X?​via%3Dihub|Quantum Transport in Ultra-Scaled Double-Gate MOSFETs: A Wigner Function-Based Monte Carlo Approach]], Sol. Stat. Electron. **49**, 1510 (2005)   * V. Sverdlov, A. Gehring, [[Hans Kosina]], and [[Siegfried Selberherr]],​ [[https://​www.sciencedirect.com/​science/​article/​pii/​S003811010500198X?​via%3Dihub|Quantum Transport in Ultra-Scaled Double-Gate MOSFETs: A Wigner Function-Based Monte Carlo Approach]], Sol. Stat. Electron. **49**, 1510 (2005)
 +  * Genovese, Luigi and Taj, David and [[Fausto Rossi]], [[https://​arxiv.org/​abs/​cond-mat/​0506757|Quantum Non-Locality in Systems with Open Boundaries: Failure of the Wigner-Function Formalism]],​ arXiv:​cond-mat/​0506757 (2005)
   * Chiara Manzini and [[Luigi Barletti]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0362546X04003359|An analysis of the Wigner--Poisson problem with inflow boundary conditions]],​ Nonl. Anal. Theor. Meth. Appl. **60**, 77 (2005)   * Chiara Manzini and [[Luigi Barletti]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0362546X04003359|An analysis of the Wigner--Poisson problem with inflow boundary conditions]],​ Nonl. Anal. Theor. Meth. Appl. **60**, 77 (2005)
   * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​www.tandfonline.com/​doi/​abs/​10.1080/​00411450508951151|Multiband,​ non-parabolic Wigner-function approach to electron transport in semiconductors]],​ Trans. Theor Stat. Phys. **34**, 499 (2005)   * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​www.tandfonline.com/​doi/​abs/​10.1080/​00411450508951151|Multiband,​ non-parabolic Wigner-function approach to electron transport in semiconductors]],​ Trans. Theor Stat. Phys. **34**, 499 (2005)
   * A. Gehring and [[Hans Kosina]], [[https://​link.springer.com/​article/​10.1007/​s10825-005-7109-6|Wigner Function-Based Simulation of Quantum Transport in Scaled DG-MOSFETs Using a Monte Carlo Method]], J. Comp. Electron. **4**, 67 (2005)   * A. Gehring and [[Hans Kosina]], [[https://​link.springer.com/​article/​10.1007/​s10825-005-7109-6|Wigner Function-Based Simulation of Quantum Transport in Scaled DG-MOSFETs Using a Monte Carlo Method]], J. Comp. Electron. **4**, 67 (2005)
 +  * [[Bartlomiej Spisak]], A. Paja, G.J. Morgan, [[https://​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​pssb.200440024|Influence of spin–orbit interaction on the electrical conductivity of three-dimensional disordered systems]], phys. stat. sol. (b) **242**, 1460 (2005) ​
  
 === 2004 === === 2004 ===
   * [[Carlo Jacoboni]] and [[Paolo Bordone]], [[https://​iopscience.iop.org/​article/​10.1088/​0034-4885/​67/​7/​R01/​meta|The Wigner-function approach to non-equilibrium electron transport]],​ Rep. Prog. Phys. **67**, 1033 (2004)   * [[Carlo Jacoboni]] and [[Paolo Bordone]], [[https://​iopscience.iop.org/​article/​10.1088/​0034-4885/​67/​7/​R01/​meta|The Wigner-function approach to non-equilibrium electron transport]],​ Rep. Prog. Phys. **67**, 1033 (2004)
 +  * Zaccaria, Remo Proietti and [[Fausto Rossi]], [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​19/​4/​086|Generalized Weyl--Wigner formalism for the simulation of open quantum devices: a density-matrix approach]], Semicond. Sci. Techn. **19**, S257 (2004)
   * [[Harold Grubin]], [[https://​www.spiedigitallibrary.org/​conference-proceedings-of-spie/​5584/​0000/​Wigner-function-studies-of-spin-transport-in-dilute-magnetic-semiconductor/​10.1117/​12.582770.short?​SSO=1|Wigner function studies of spin transport in dilute magnetic semiconductor barrier structures]],​ Proc. SPIE **5584** (2004)   * [[Harold Grubin]], [[https://​www.spiedigitallibrary.org/​conference-proceedings-of-spie/​5584/​0000/​Wigner-function-studies-of-spin-transport-in-dilute-magnetic-semiconductor/​10.1117/​12.582770.short?​SSO=1|Wigner function studies of spin transport in dilute magnetic semiconductor barrier structures]],​ Proc. SPIE **5584** (2004)
   * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​19/​4/​082|Numerical simulation of intervalley transitions by the Wigner-function approach]], Semicond. Sci. Techn. **19**, S244 (2004)   * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​iopscience.iop.org/​article/​10.1088/​0268-1242/​19/​4/​082|Numerical simulation of intervalley transitions by the Wigner-function approach]], Semicond. Sci. Techn. **19**, S244 (2004)
Line 403: Line 528:
   * [[Luigi Barletti]], [[https://​www.tandfonline.com/​doi/​full/​10.1081/​TT-120024764|Wigner envelope functions for electron transport in semiconductor devices]], Trans. Theor Stat. Phys. **32**, 253 (2003)   * [[Luigi Barletti]], [[https://​www.tandfonline.com/​doi/​full/​10.1081/​TT-120024764|Wigner envelope functions for electron transport in semiconductor devices]], Trans. Theor Stat. Phys. **32**, 253 (2003)
   * [[Luigi Barletti]], [[http://​www.bdim.eu/​item?​id=BUMI_2003_8_6B_3_693_0|A mathematical introduction to the Wigner formulation of quantum mechanics]],​ Bollettino dell'​Unione Matematica Italiana **6**, 693 (2003)   * [[Luigi Barletti]], [[http://​www.bdim.eu/​item?​id=BUMI_2003_8_6B_3_693_0|A mathematical introduction to the Wigner formulation of quantum mechanics]],​ Bollettino dell'​Unione Matematica Italiana **6**, 693 (2003)
 +  * Zaccaria, Remo Proietti and Iotti, Rita C and [[Fausto Rossi]], [[https://​link.springer.com/​article/​10.1023/​B:​JCEL.0000011415.34531.b1|Microscopic Modelling of Quantum Open Systems: A Generalized Wigner-Function Approach]], J. Comput. Electron. **2**, 141 (2003)
   * [[Lucio Demeio]], [[Luigi Barletti]], [[Paolo Bordone]] and [[Carlo Jacoboni]], [[https://​www.tandfonline.com/​doi/​full/​10.1081/​TT-120024766|Wigner function for multiband transport in semiconductors]],​ Trans. Theor Stat. Phys. **32**, 307 (2003)   * [[Lucio Demeio]], [[Luigi Barletti]], [[Paolo Bordone]] and [[Carlo Jacoboni]], [[https://​www.tandfonline.com/​doi/​full/​10.1081/​TT-120024766|Wigner function for multiband transport in semiconductors]],​ Trans. Theor Stat. Phys. **32**, 307 (2003)
   * [[Paolo Bordone]], Alberto Bertoni, Rossella Brunetti, and [[Carlo Jacoboni]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0378475402002410|Monte Carlo simulation of quantum electron transport based on Wigner paths]], Math. Comput. Simul. **62**, 307 (2003)   * [[Paolo Bordone]], Alberto Bertoni, Rossella Brunetti, and [[Carlo Jacoboni]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0378475402002410|Monte Carlo simulation of quantum electron transport based on Wigner paths]], Math. Comput. Simul. **62**, 307 (2003)
   * [[Carlo Jacoboni]], Rossella Brunetti, and Stefano Monastra: "​Quantum dynamics of polaron formation with the Wigner-function approach",​ Physical Review B, Vol.68, No.12, p.125205, 2003.   * [[Carlo Jacoboni]], Rossella Brunetti, and Stefano Monastra: "​Quantum dynamics of polaron formation with the Wigner-function approach",​ Physical Review B, Vol.68, No.12, p.125205, 2003.
 +  * [[Bartlomiej Spisak]], A. Paja, [[https://​www.worldscientific.com/​doi/​abs/​10.1142/​9789812704474_0036|New Approach to the Spin-Orbit Scattering of Electrons in Disordered Metallic Systems]], Proceedings of the 7th International School on Theoretical Physics, World Scientific, New Jersey-London-Hong Kong-Singapore 2003
  
 === 2002 ===  === 2002 === 
 +  * Zaccaria, Remo Proietti and [[Fausto Rossi]], [[https://​arxiv.org/​abs/​cond-mat/​0204637|Generalized Wigner Function Formulation for Quantum Systems with Open Boundaries]],​ arXiv:​cond-mat/​0204637 (2002)
   * Michalopoulou,​ Zoi-Heleni and [[Leon Cohen]], [[https://​asa.scitation.org/​doi/​abs/​10.1121/​1.4778105|Wigner--Ville representations for acoustic source localization]],​ J. Acoust. Soc. Amer. **111**, 2386 (2002)   * Michalopoulou,​ Zoi-Heleni and [[Leon Cohen]], [[https://​asa.scitation.org/​doi/​abs/​10.1121/​1.4778105|Wigner--Ville representations for acoustic source localization]],​ J. Acoust. Soc. Amer. **111**, 2386 (2002)
   * [[Lucio Demeio]], [[Luigi Barletti]], Andrea Bertoni, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0921452601013540|Wigner-function approach to multiband transport in semiconductors]],​ Phys. B Cond. Matt. **314**, 104 (2002)   * [[Lucio Demeio]], [[Luigi Barletti]], Andrea Bertoni, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0921452601013540|Wigner-function approach to multiband transport in semiconductors]],​ Phys. B Cond. Matt. **314**, 104 (2002)
Line 426: Line 554:
 === 1993 === === 1993 ===
   * [[David K. Ferry]] and J.-R. Zhou, [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.48.7944|Form of the Quantum Potential for use in Hydrodynamic Equations for Semiconductor Device Modeling]], Phys. Rev. B **48**, 7944 (1993)   * [[David K. Ferry]] and J.-R. Zhou, [[https://​journals.aps.org/​prb/​abstract/​10.1103/​PhysRevB.48.7944|Form of the Quantum Potential for use in Hydrodynamic Equations for Semiconductor Device Modeling]], Phys. Rev. B **48**, 7944 (1993)
 +
 +=== 1989 ===
 +  * [[Walter Poetz]], [[https://​aip.scitation.org/​doi/​abs/​10.1063/​1.344257|Self‐consistent model of transport in quantum well tunneling structures]],​ J. Appl. Phys. **66**, 2458 (1989)
 +
 +
 +=== 1987 ===  ​
 +  * N. Kluksdahl, [[Walter Poetz]], U. Ravaioli and [[David K. Ferry]], [[https://​www.sciencedirect.com/​science/​article/​pii/​0749603687901753|Wigner function study of a double quantum barrier resonant tunnelling diode]], Superlatt. Microstruct. **3**, 41 (1987)
 +
 +=== 1985 ===
 +  * U. Ravaioli, M.A. Osman, [[Walter Poetz]], N. Kluksdahl and [[David K. Ferry]], [[https://​www.sciencedirect.com/​science/​article/​pii/​0378436385903171|Investigation of ballistic transport through resonant-tunnelling quantum wells using wigner function approach]]",​ Physica B+C **134**, 36 (1985)
  
 === 1981 === === 1981 ===
Line 432: Line 570:
 ==== Mathematical and Theoretical Physics ====  ==== Mathematical and Theoretical Physics ==== 
 === 2019 === === 2019 ===
 +  * [[Herbert Spohn]], [[https://​link.springer.com/​article/​10.1007/​s10955-019-02320-5|Generalized Gibbs Ensembles of the Classical Toda Chain]], Journal of Statistical Physics (2019)
 +  * Marcos Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://​iopscience.iop.org/​article/​10.1088/​1751-8121/​aafdc2|Translations and reflections on the torus: identities for discrete Wigner functions and transforms]],​ J. Phys. A **52**, 095301 (2019)
   * Xiang-Guo Meng, Jian-Ming Liu, Ji-Suo Wang, and [[Hongyi Fan]], [[https://​link.springer.com/​article/​10.1140/​epjd/​e2018-90224-6|New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications]],​ Europ. Phys. J. D **73**, 32 (2019)   * Xiang-Guo Meng, Jian-Ming Liu, Ji-Suo Wang, and [[Hongyi Fan]], [[https://​link.springer.com/​article/​10.1140/​epjd/​e2018-90224-6|New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications]],​ Europ. Phys. J. D **73**, 32 (2019)
   * [[Haiyan Jiang]], [[Tiao Lu]], and Xiangjiang Zhu, [[https://​link.springer.com/​article/​10.1007/​s11464-019-0750-3|Well-posedness of a non-local abstract Cauchy problem with a singular integral]], Front. Math. Chin. **14**, 77 (2019)   * [[Haiyan Jiang]], [[Tiao Lu]], and Xiangjiang Zhu, [[https://​link.springer.com/​article/​10.1007/​s11464-019-0750-3|Well-posedness of a non-local abstract Cauchy problem with a singular integral]], Front. Math. Chin. **14**, 77 (2019)
Line 439: Line 579:
 === 2018 === === 2018 ===
     * [[Leon Cohen]], [[https://​doi.org/​10.1088/​1402-4896/​aad0fc|Transformation of quasi-distributions]],​ Phys. Scr. **93**, ​ 094001 (2018)     * [[Leon Cohen]], [[https://​doi.org/​10.1088/​1402-4896/​aad0fc|Transformation of quasi-distributions]],​ Phys. Scr. **93**, ​ 094001 (2018)
 +  * Claude Bardos and [[Norbert J. Mauser]], [[https://​www.ems-ph.org/​journals/​show_abstract.php?​issn=1027-488X&​vol=9&​iss=109&​rank=5|Kinetic Equations: A French History]], EMS Newsletter (2018)
  
 === 2017 === === 2017 ===
   * Jonathan S. Ben‐Benjamin,​ Moochan B. Kim, [[Wolfgang Schleich]], [[William B. Case]], and [[Leon Cohen]], [[https://​onlinelibrary.wiley.com/​doi/​full/​10.1002/​prop.201600092|Working in phase‐space with Wigner and Weyl]], Fortschr. Phys. **65**, 1600092 (2017)   * Jonathan S. Ben‐Benjamin,​ Moochan B. Kim, [[Wolfgang Schleich]], [[William B. Case]], and [[Leon Cohen]], [[https://​onlinelibrary.wiley.com/​doi/​full/​10.1002/​prop.201600092|Working in phase‐space with Wigner and Weyl]], Fortschr. Phys. **65**, 1600092 (2017)
   * S Agyo, [[Ci Lei]], and A Vourdas, [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.4983917|The groupoid of bifractional transformations ]], J. Math. Phys. **58**, 052103 (2017)   * S Agyo, [[Ci Lei]], and A Vourdas, [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.4983917|The groupoid of bifractional transformations ]], J. Math. Phys. **58**, 052103 (2017)
 +  * [[Hans Kastrup]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.95.052111|Wigner functions for angle and orbital angular momentum: Operators and dynamics]], Phys. Rev. A **95**, 052111 (2017)
  
  
 === 2016 === === 2016 ===
 +  * M. Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://​iopscience.iop.org/​article/​10.1088/​1751-8113/​49/​14/​145302|Representation of superoperators in double phase space]], J. Phys A **49**, 145302 (2016)
   * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto,​ Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016)   * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto,​ Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016)
   * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]],​ J.M. Sellier, [[Siegfried Selberherr]],​ [[https://​link.springer.com/​chapter/​10.1007%2F978-3-319-23413-7_97|Neumann Series Analysis of the Wigner Equation Solution]], in: Progress in Industrial Mathematics,​ The European Consortium for Mathematics in Industry **22**, 701 (2016)   * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]],​ J.M. Sellier, [[Siegfried Selberherr]],​ [[https://​link.springer.com/​chapter/​10.1007%2F978-3-319-23413-7_97|Neumann Series Analysis of the Wigner Equation Solution]], in: Progress in Industrial Mathematics,​ The European Consortium for Mathematics in Industry **22**, 701 (2016)
 +  * [[Hans Kastrup]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.94.062113|Wigner functions for the pair angle and orbital angular momentum]], Phys. Rev. A **94**, 062113 (2016)
  
 === 2015 === === 2015 ===
Line 461: Line 605:
  
 === 2013 === === 2013 ===
 +  * [[Alfredo Miguel Ozorio de Almeida]], R.O. Vallejos, and E. Zambrano, [[https://​iopscience.iop.org/​article/​10.1088/​1751-8113/​46/​13/​135304/​meta|Initial or final values for semiclassical evolutions in the Weyl-Wigner representation]],​ J. Phys. A **46**, 13504 (2013)
   * [[Nuno Costa Dias]], [[Maurice de Gosson]], and [[João Nuno Prata]], [[https://​www.worldscientific.com/​doi/​abs/​10.1142/​S0129055X13430101|Metaplectic formulation of the Wigner transform and applications]],​ Rev. Math. Phys. **25**, 1343010 (2013)   * [[Nuno Costa Dias]], [[Maurice de Gosson]], and [[João Nuno Prata]], [[https://​www.worldscientific.com/​doi/​abs/​10.1142/​S0129055X13430101|Metaplectic formulation of the Wigner transform and applications]],​ Rev. Math. Phys. **25**, 1343010 (2013)
   * Zhenning Cai, Yuwei Fan, [[Ruo Li]], [[Tiao Lu]], and Yanli Wang, [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.4748971|Quantum hydrodynamic model by moment closure of Wigner equation]], J. Math. Phys. **53**, 103503 (2012)   * Zhenning Cai, Yuwei Fan, [[Ruo Li]], [[Tiao Lu]], and Yanli Wang, [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.4748971|Quantum hydrodynamic model by moment closure of Wigner equation]], J. Math. Phys. **53**, 103503 (2012)
  
 === 2012 === === 2012 ===
 +  * Earnshaw RA, Lei C, Li J, Mugassabi S and [[Apostol Vourdas]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0378437111008958|Large scale data analysis using the Wigner function]], Physica A **391**, 2401-2407 (2012)
   * [[Anton Arnold]], I. Gamba, M.P. Gualdani, S. Mischler, C. Mouhot, C. Sparber, [[https://​www.worldscientific.com/​doi/​abs/​10.1142/​S0218202512500340|The Wigner-Fokker-Planck equation: stationary states and large time behavior]], Math. Mod. Methods Appl. Sc. **22**, 1250034 (2012)   * [[Anton Arnold]], I. Gamba, M.P. Gualdani, S. Mischler, C. Mouhot, C. Sparber, [[https://​www.worldscientific.com/​doi/​abs/​10.1142/​S0218202512500340|The Wigner-Fokker-Planck equation: stationary states and large time behavior]], Math. Mod. Methods Appl. Sc. **22**, 1250034 (2012)
   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://​link.springer.com/​article/​10.1007/​s11868-012-0054-9|Quantum Mechanics in Phase Space: The Schrodinger and the Moyal Representations]],​ J. Pseudodiff. Oper. Appl. **3**, 367 (2012)   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://​link.springer.com/​article/​10.1007/​s11868-012-0054-9|Quantum Mechanics in Phase Space: The Schrodinger and the Moyal Representations]],​ J. Pseudodiff. Oper. Appl. **3**, 367 (2012)
Line 470: Line 616:
  
 === 2011 === === 2011 ===
 +  * Timothy M. Coffey, [[Robert Wyatt]], and Wm. C. Schieve, [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.107.230403|Reconstruction of the Time-Dependent Wave Function Exclusively from Position Data]], Phys. Rev. Lett. **107**, 230403 (2011)
 +  * K. Ma, [[Jian-Hua Wang]], Y. Yuan, [[http://​iopscience.iop.org/​article/​10.1088/​1674-1137/​35/​1/​003|Wigner Function for the Dirac Oscillator in Spinor Space]], Chinese Physics C **35**, 11-15 (2011)
   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0021782411000912|A Pseudo-Differential Calculus on Non-Standard Symplectic Space; Spectral and Regularity Results in Modulation Spaces]], J. Math. Pur. Appl. **96**, 423 (2011)   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0021782411000912|A Pseudo-Differential Calculus on Non-Standard Symplectic Space; Spectral and Regularity Results in Modulation Spaces]], J. Math. Pur. Appl. **96**, 423 (2011)
   * [[Maurice de Gosson]], [[https://​link.springer.com/​article/​10.1007/​s11868-011-0023-8|A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms]],​ J. Pseudo-Differ. Oper. Appl. **2**, 91 (2011)   * [[Maurice de Gosson]], [[https://​link.springer.com/​article/​10.1007/​s11868-011-0023-8|A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms]],​ J. Pseudo-Differ. Oper. Appl. **2**, 91 (2011)
  
 === 2010 === === 2010 ===
 +  * R. Mack, J. P. Dahl, H. Moya-Cessa, W. T. Strunz, [[Reinhold Walser]], and [[Wolfgang Schleich]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.82.032119|Riemann ζ function from wave-packet dynamics]], Phys. Rev. A **82**, 032119 (2010)
 +  *[[Apostol Vourdas]], [[https://​link.springer.com/​article/​10.1134/​S1063778810020055|Wigner and Weyl functions for p-adic quantum mechanics]],​ Physics of atomic nuclei **73**, 237-241 (2010)
 +  * O. Brodier and [[Alfredo Miguel Ozorio de Almeida]], [[https://​www.sciencedirect.com/​science/​article/​abs/​pii/​S0375960110004007?​via%3Dihub|Markovian evolution of Gaussian states in the semiclassical limit]], Phys. Lett. A **374**, 2315 (2010)
   * [[Basil J. Hiley]], [[https://​link.springer.com/​article/​10.1007/​s10701-009-9320-y|On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?]], Found. Phys. **40**, 356 (2010)   * [[Basil J. Hiley]], [[https://​link.springer.com/​article/​10.1007/​s10701-009-9320-y|On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?]], Found. Phys. **40**, 356 (2010)
   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://​aip.scitation.org/​doi/​10.1063/​1.3436581|A Deformation Quantization Theory for Noncommutative Quantum Mechanics]],​ J. Math. Phys. **51**, 072101 (2010)   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://​aip.scitation.org/​doi/​10.1063/​1.3436581|A Deformation Quantization Theory for Noncommutative Quantum Mechanics]],​ J. Math. Phys. **51**, 072101 (2010)
Line 480: Line 631:
 === 2009 === === 2009 ===
   * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0034487709000081|The Narcowich-Wigner spectrum of a pure state]], Rep. Math. Phys. **63**, 43 (2009)   * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0034487709000081|The Narcowich-Wigner spectrum of a pure state]], Rep. Math. Phys. **63**, 43 (2009)
 +  * Agissilaos G. Athanassoulis,​ [[Norbert J. Mauser]], and Thierry Paul, [[https://​www.sciencedirect.com/​science/​article/​pii/​S0021782409000038|Coarse-scale representations and smoothed Wigner transforms]],​ J. Math. Pur. Appl. **91**, 296 (2009) ​
 +  * Remi Carles, Clotilde Fermanian Kammerer, [[Norbert J. Mauser]], and Hans Peter Stimming, [[https://​www.aimsciences.org/​journals/​displayArticles.jsp?​paperID=3858|On the time evolution of Wigner measures for Schrodinger equations]], ​ Commun. Pure Appl. Anal. **8**, 559 (2009) ​
  
 === 2008 === === 2008 ===
 +  * [[Fabricio Toscano]], A. Kenfack, A. R. R. Carvalho, J. M. Rost, and [[Alfredo Miguel Ozorio de Almeida]],​[[https://​royalsocietypublishing.org/​doi/​abs/​10.1098/​rspa.2007.0263|Husimi-Wigner representation of chaotic eigenstates]],​ Proc. Roy. Soc. A **464**, 1503 (2008)
   * [[William B. Case]], [[http://​aapt.scitation.org/​doi/​10.1119/​1.2957889|Wigner functions and Weyl transforms for pedestrians]],​ Amer. J. Phys. **76**, 937 (2008)   * [[William B. Case]], [[http://​aapt.scitation.org/​doi/​10.1119/​1.2957889|Wigner functions and Weyl transforms for pedestrians]],​ Amer. J. Phys. **76**, 937 (2008)
   * Bastos, Catarina, Bertolami, Orfeu, [[Nuno Costa Dias]], and [[João Nuno Prata]], [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.2944996|Weyl--Wigner formulation of noncommutative quantum mechanics]],​ J. Math. Phys. **49**, 072101 (2008)   * Bastos, Catarina, Bertolami, Orfeu, [[Nuno Costa Dias]], and [[João Nuno Prata]], [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.2944996|Weyl--Wigner formulation of noncommutative quantum mechanics]],​ J. Math. Phys. **49**, 072101 (2008)
Line 508: Line 662:
   * Lorenzo Galleani and [[Leon Cohen]], [[https://​www.tandfonline.com/​doi/​abs/​10.1080/​09500340308234579|Reply to:​‘Comment on “wigner equation of motion for time-dependent potentials”’by besieris and davis]], J. Mod. Opt. **50**, 2275 (2003)   * Lorenzo Galleani and [[Leon Cohen]], [[https://​www.tandfonline.com/​doi/​abs/​10.1080/​09500340308234579|Reply to:​‘Comment on “wigner equation of motion for time-dependent potentials”’by besieris and davis]], J. Mod. Opt. **50**, 2275 (2003)
   * [[Hongyi Fan]], [[https://​iopscience.iop.org/​article/​10.1088/​0253-6102/​40/​4/​409|General Wigner Transforms Studied by Virtue of Weyl Ordering of the Wigner Operator]], Commun. Theor. Phys. **40**, 409 (2003)   * [[Hongyi Fan]], [[https://​iopscience.iop.org/​article/​10.1088/​0253-6102/​40/​4/​409|General Wigner Transforms Studied by Virtue of Weyl Ordering of the Wigner Operator]], Commun. Theor. Phys. **40**, 409 (2003)
 +  * Christof Sparber, Peter A. Markowich, and [[Norbert J. Mauser]], [[https://​content.iospress.com/​articles/​asymptotic-analysis/​asy540|Wigner Functions versus WKB-Methods in Multivalued Geometrical Optics]], Asymp. Anal. **33**, 153 (2003) ​
 +
  
 === 2002 === === 2002 ===
Line 520: Line 676:
  
 === 2001 === === 2001 ===
 +  * [[Fabricio Toscano]], Marcus A. M. de Aguiar, and [[Alfredo Miguel Ozorio de Almeida]], [[https://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.86.59|Scars of the Wigner function]], Phys. Rev. Lett. **86**, 59 (2001)
   * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0375960101007472|Causal Interpretation and Quantum Phase Space]], Phys. Lett. A **291**, 355 (2001)   * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0375960101007472|Causal Interpretation and Quantum Phase Space]], Phys. Lett. A **291**, 355 (2001)
    * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://​aip.scitation.org/​doi/​10.1063/​1.1415086|Generalized Weyl--Wigner map and Vey quantum mechanics]],​ J. Math. Phys. **42**, 5565 (2001)    * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://​aip.scitation.org/​doi/​10.1063/​1.1415086|Generalized Weyl--Wigner map and Vey quantum mechanics]],​ J. Math. Phys. **42**, 5565 (2001)
  
 === 2000 === === 2000 ===
 +  * G. Giakasa, L.K. Stergioulas,​ and [[Apostol Vourdas]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S002192909900216X|Time-frequency analysis and filtering of kinematic signals with impacts using the Wigner function: accurate estimation of the second derivative]],​ Journal Biomech. **33**, 567-574 (2000)
   *  [[Anton Arnold]], H. Lange, P.F. Zweifel, [[https://​aip.scitation.org/​doi/​10.1063/​1.1318732|A discrete-velocity,​ stationary Wigner equation]], J. Math. Phys. **41**, 7167 (2000)   *  [[Anton Arnold]], H. Lange, P.F. Zweifel, [[https://​aip.scitation.org/​doi/​10.1063/​1.1318732|A discrete-velocity,​ stationary Wigner equation]], J. Math. Phys. **41**, 7167 (2000)
 +
 +=== 1999 ===
 +  * S. Chountasis, [[Apostol Vourdas]], and C. Bendjaballah,​ [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.60.3467|Fractional fourier operators and generalized Wigner functions]],​ Physical Review A **60**, 3467 (1999)
 +  * S. Chountasis, L. K. Stergioulas,​ and [[Apostol Vourdas]], [[https://​www.tandfonline.com/​doi/​abs/​10.1080/​09500349908231397|Quantum filtering of noise in the Wigner function]], Journal Mod. Optics **46**, 2131-2134 (1999)
 +  * [[Jan Naudts]], [[https://​link.springer.com/​article/​10.1023/​A:​1026614130824|Off-Shell Relativistic Quantum Mechanics and Formulation of Dirac'​s Equation Using Characteristic Matrices]], Int. J. Theor. Phys. **38**, 431 (1999)
 +
 +=== 1998 ===
 +  * S. Chountasis and [[Apostol Vourdas]], [[https://​journals.aps.org/​pra/​abstract/​10.1103/​PhysRevA.58.1794|Weyl and Wigner functions in an extended phase space formalism]],​ Physical Review A **58**, 1794-1798 (1998)
  
 === 1996 === === 1996 ===
Line 557: Line 723:
 === 2019 === === 2019 ===
   * Zhenzhu Chen, [[Sihong Shao]], and [[Wei Cai]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0021999119304553|A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences]],​ J. Comput. Phys. **396**, 54 (2019)   * Zhenzhu Chen, [[Sihong Shao]], and [[Wei Cai]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S0021999119304553|A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences]],​ J. Comput. Phys. **396**, 54 (2019)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://​ieeexplore.ieee.org/​document/​8794705|Complex Absorbing Potential Formalism Accounting for Open Boundary Conditions Within the Wigner Transport Equation]], IEEE Trans. Nanotechnology **18**, 830 (2019)
 +  * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://​content.sciendo.com/​view/​journals/​caim/​10/​1/​article-p20.xml|Wigner Monte Carlo simulation without discretization error of the tunneling rectangular barrier]], Commun. Appl. Ind. Math. **10**, 20 (2019)
 +  * [[Orazio Muscato]] and Wolfgang Wagner, [[https://​www.aimsciences.org/​article/​doi/​10.3934/​krm.2019003|A stochastic algorithm without time discretization error for the Wigner equation]], Kin. Rel. Mod. **12**, 59 (2019)
   * Yunfeng Xiong and [[Sihong Shao]], [[http://​www.global-sci.com/​intro/​article_detail/​cicp/​12832.html|The Wigner Branching Random Walk: Efficient Implementation and Performance Evaluation]],​ Commun. Comput. Phys **25**, 871 (2019)   * Yunfeng Xiong and [[Sihong Shao]], [[http://​www.global-sci.com/​intro/​article_detail/​cicp/​12832.html|The Wigner Branching Random Walk: Efficient Implementation and Performance Evaluation]],​ Commun. Comput. Phys **25**, 871 (2019)
   * [[Sihong Shao]] and Yunfeng Xiong, [[http://​global-sci.com/​intro/​article_detail/​nmtma/​12690.html|A branching ​   * [[Sihong Shao]] and Yunfeng Xiong, [[http://​global-sci.com/​intro/​article_detail/​nmtma/​12690.html|A branching ​
Line 566: Line 735:
 === 2018 === === 2018 ===
   * A S Larkin, V S Filinov and V E Fortov [[https://​doi.org/​10.1088/​1751-8121/​aa98d0|Peculiarities of the momentum distribution functions of strongly correlated charged fermions]], J. Phys. A: Math. Theor. **51**, 035002 (2018)   * A S Larkin, V S Filinov and V E Fortov [[https://​doi.org/​10.1088/​1751-8121/​aa98d0|Peculiarities of the momentum distribution functions of strongly correlated charged fermions]], J. Phys. A: Math. Theor. **51**, 035002 (2018)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://​ieeexplore.ieee.org/​abstract/​document/​8464085|Numerical Analysis of the Transient Behavior of the Non-Equilibrium Quantum Liouville Equation]], IEEE Trans. Nanotechnology **17**, 1197(2018)
  
 === 2017 === === 2017 ===
   *[[Maarten Van de Put]], Bart Soree, and [[Wim Magnus]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S002199911730640X|Efficient solution of the Wigner–Liouville equation using a spectral decomposition of the force field]], J. Comp. Phys. **350**, 314 (2017)   *[[Maarten Van de Put]], Bart Soree, and [[Wim Magnus]], [[https://​www.sciencedirect.com/​science/​article/​pii/​S002199911730640X|Efficient solution of the Wigner–Liouville equation using a spectral decomposition of the force field]], J. Comp. Phys. **350**, 314 (2017)
 +  * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://​iopscience.iop.org/​article/​10.1088/​1742-6596/​906/​1/​012011/​meta|Efficient Monte Carlo-based algorithms for the Wigner transport equation]], J. Phys. Conf. Ser. **906**, 012011 (2017)
   * Andrea Thomann and Alfio Borzì, [[https://​doi.org/​10.1002/​num.22072|Stability and accuracy of a pseudospectral scheme for the Wigner function equation]], Numer. Meth. Part. Differ. Equat. **33**, 62 (2017)   * Andrea Thomann and Alfio Borzì, [[https://​doi.org/​10.1002/​num.22072|Stability and accuracy of a pseudospectral scheme for the Wigner function equation]], Numer. Meth. Part. Differ. Equat. **33**, 62 (2017)
 +  * Khuram Shahzad Khalid, Lukas Schulz and [[Dirk Schulz]], [[https://​ieeexplore.ieee.org/​abstract/​document/​8023854|Self-Energy Concept for the Numerical Solution of the Liouville-von Neumann Equation]], IEEE Trans. Nanotechnology **16**, 1053 (2017)
  
 === 2016 === === 2016 ===
   * Yunfeng Xiong, Zhenzhu Chen, and [[Sihong Shao]], [[https://​doi.org/​10.1137/​15M1051373|An advective-spectral-mixed method for time-dependent many-body Wigner simulations]],​ SIAM J. Sci. Comput **38**, B491 (2016)   * Yunfeng Xiong, Zhenzhu Chen, and [[Sihong Shao]], [[https://​doi.org/​10.1137/​15M1051373|An advective-spectral-mixed method for time-dependent many-body Wigner simulations]],​ SIAM J. Sci. Comput **38**, B491 (2016)
 +  * [[Orazio Muscato]] and Wolfgang Wagner, [[https://​epubs.siam.org/​doi/​10.1137/​16M105798X|A Class of Stochastic Algorithms for the Wigner Equation]], SIAM J. Sci. Comp. **38**, A1483 (2016)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://​ieeexplore.ieee.org/​document/​7501465|Application of a slowly varying Envelope Function onto the Analysis of the Wigner Transport Equation]], IEEE Trans. Nanotechnology **15**, 801 (2016)
 +  * [[Dirk Schulz]] and Azhar Mahmood, [[https://​ieeexplore.ieee.org/​document/​7339425|Approximation of a Phase Space Operator for the Numerical Solution of the Wigner Equation]], IEEE J. Quantum Electron. **52**, ​ 8700109 (2016)
  
 === 2015 === === 2015 ===
   * [[Sihong Shao]] and Jean Michel Sellier, [[https://​doi.org/​10.1016/​j.jcp.2015.08.002|Comparison of deterministic and stochastic methods for time-dependent Wigner simulations]],​ J. Comput. Phys. **300**, 167 (2015)   * [[Sihong Shao]] and Jean Michel Sellier, [[https://​doi.org/​10.1016/​j.jcp.2015.08.002|Comparison of deterministic and stochastic methods for time-dependent Wigner simulations]],​ J. Comput. Phys. **300**, 167 (2015)
 +  * [[Christian B. Mendl]], [[https://​www.worldscientific.com/​doi/​abs/​10.1142/​S0129183115501132|Matrix-valued quantum lattice Boltzmann method]], Int. J Mod. Phys. C **26**, 1550113 (2015)
 +  * Martin L. R. Fürst, Markus Kotulla, [[Christian B. Mendl]], and [[Herbert Spohn]], [[https://​iopscience.iop.org/​article/​10.1088/​1751-8113/​48/​9/​095204/​meta|Quantum Boltzmann equation for spin-dependent reactions in the kinetic regime]], J. Phys. A: Math. Theo. **48**, 095204 (2015)
   * [[Josef Weinbub]], [[Paul Ellinghaus]],​ and [[Siegfried Selberherr]],​ [[https://​link.springer.com/​chapter/​10.1007%2F978-3-319-26520-9_34|Parallelization of the Two-Dimensional Wigner Monte Carlo Method]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 309 (2015)   * [[Josef Weinbub]], [[Paul Ellinghaus]],​ and [[Siegfried Selberherr]],​ [[https://​link.springer.com/​chapter/​10.1007%2F978-3-319-26520-9_34|Parallelization of the Two-Dimensional Wigner Monte Carlo Method]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 309 (2015)
   * [[Josef Weinbub]], [[Paul Ellinghaus]],​ [[Mihail (Mixi) Nedjalkov]],​ [[https://​link.springer.com/​article/​10.1007%2Fs10825-015-0730-0|Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method]], J. Comp. Electron. **14**, 922 (2015)   * [[Josef Weinbub]], [[Paul Ellinghaus]],​ [[Mihail (Mixi) Nedjalkov]],​ [[https://​link.springer.com/​article/​10.1007%2Fs10825-015-0730-0|Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method]], J. Comp. Electron. **14**, 922 (2015)
publications.txt · Last modified: 2020/03/07 12:04 by weinbub