User Tools

Site Tools


publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications [2019/12/23 14:48] – [Engineering (Acoustics, Electronics, Seismology, Signals, etc.)] weinbubpublications [2021/07/14 08:03] (current) – [Classical, Semiclassical and Quantum Physics] weinbub
Line 11: Line 11:
   * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], [[http://iopscience.iop.org/book/978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)   * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], [[http://iopscience.iop.org/book/978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)
 === 2017 === === 2017 ===
 +  * [[Apostol Vourdas]], [[https://www.springer.com/gp/book/9783319594941|Finite and Profinite Quantum Systems]] (Springer, 2017)
   * [[Maurice de Gosson]], [[http://www.worldscientific.com/worldscibooks/10.1142/q0089|The Wigner Transform]], Advanced Textbooks in Mathematics (World Scientific, 2017)   * [[Maurice de Gosson]], [[http://www.worldscientific.com/worldscibooks/10.1142/q0089|The Wigner Transform]], Advanced Textbooks in Mathematics (World Scientific, 2017)
   * [[Josef Weinbub]], [[David K. Ferry]], [[Irena Knezevic]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[http://www.iue.tuwien.ac.at/pdf/ib_2017/hashed_links/p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017)   * [[Josef Weinbub]], [[David K. Ferry]], [[Irena Knezevic]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[http://www.iue.tuwien.ac.at/pdf/ib_2017/hashed_links/p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017)
Line 79: Line 80:
  
 ==== Classical, Semiclassical and Quantum Physics ====  ==== Classical, Semiclassical and Quantum Physics ==== 
 +
 +=== 2021 ===
 +  * [[Michael te Vrugt]], Gyula I Tóth, [[Raphael Wittkowski]], [[https://arxiv.org/abs/2106.00137|Master equations for Wigner functions with spontaneous collapse and their relation to thermodynamic irreversibility]], arXiv:2106.00137 (2021)
 +
 +=== 2020 ===
 +
 +  * [[Michael te Vrugt]], [[Raphael Wittkowski]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/andp.202000266|Orientational order parameters for arbitrary quantum systems]], Annalen der Physik **532**, 2000266 (2020)
 +  * [[Michael te Vrugt]], Hartmut Löwen, [[Raphael Wittkowski]], [[https://www.tandfonline.com/doi/full/10.1080/00018732.2020.1854965|Classical dynamical density functional theory: from fundamentals to applications]], Advances in Physics **69**, 121-247 (2020) 
 +
 === 2019 ===  === 2019 === 
 +  * T. Ikeda, A.G. Dijkstra and [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/1.5086948|Modeling and analyzing a photo-driven molecular motor system: Ratchet dynamics and non-linear optical spectra]], J. Chem. Phys. **150**, 114103 (2019)
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b01195|Low-Temperature Quantum Fokker–Planck and Smoluchowski Equations and Their Extension to Multistate Systems]], J. Chem. Theory Comput. **15**, 2517-2534 (2019)
 +  * Maxime Oliva and [[Ole Steuernagel]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.032104|Quantum Kerr oscillators' evolution in phase space: Wigner current, symmetries, shear suppression, and special states]], Phys. Rev. A **99**, 032104 (2019)
 +  * Maxime Oliva and [[Ole Steuernagel]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.020401|Dynamic Shear Suppression in Quantum Phase Space]], Phys. Rev. Lett. **122**, 020401 (2019)
 +  * Z. Xiao, T. Fuse, S. Ashhab, F. Yoshihara, [[Kouichi Semba]], M. Sasaki, M. Takeoka, and J. P. Dowling, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.013827|Fast amplification and rephasing of entangled cat states in a qubit-oscillator system]], Phys. Rev. A **99**, 013827 (2019)
   * T. Hahn, D. Groll, T. Kuhn and [[Daniel Wigger]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.024306|Influence of excited state decay and dephasing on phonon quantum state preparation]], Phys. Rev. B **100**, 024306 (2019)   * T. Hahn, D. Groll, T. Kuhn and [[Daniel Wigger]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.024306|Influence of excited state decay and dephasing on phonon quantum state preparation]], Phys. Rev. B **100**, 024306 (2019)
   * [[Guillem Albareda Piquer]], Aaron Kelly, and Angel Rubio, [[https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.023803|Nonadiabatic quantum dynamics without potential energy surfaces]], Phys. Rev. Materials **3**, 023803 (2019)   * [[Guillem Albareda Piquer]], Aaron Kelly, and Angel Rubio, [[https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.023803|Nonadiabatic quantum dynamics without potential energy surfaces]], Phys. Rev. Materials **3**, 023803 (2019)
Line 97: Line 112:
  
 === 2018 === === 2018 ===
 +  * Jack Clarke and [[Michael R. Vanner]], [[https://iopscience.iop.org/article/10.1088/2058-9565/aada1d/meta|Growing macroscopic superposition states via cavity quantum optomechanics]], Quantum Science and Technology **4**, 014003 (2018)
 +  * K. E. Khosla, [[Michael R. Vanner]], N. Ares, and E. A. Laird, [[https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021052|Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator]], Phys. Rev. X **8**, 021052 (2018)
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://doi.org/10.1016/j.chemphys.2018.07.013|Phase-Space Wavepacket Dynamics of Internal Conversion via Conical Intersection: Multi-State Quantum Fokker-Planck Equation Approach]], Chem. Phys. **515**, 203-213 (2018)
   * V. M. Bastidas, B. Renoust, [[Kae Nemoto]], and W. J. Munro, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224307|Ergodic-localized junctions in periodically driven systems]], Phys. Rev. B **98**, 224307 (2018)   * V. M. Bastidas, B. Renoust, [[Kae Nemoto]], and W. J. Munro, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224307|Ergodic-localized junctions in periodically driven systems]], Phys. Rev. B **98**, 224307 (2018)
   * [[Omar Morandi]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aac3ef/meta|Quantum motion with trajectories: beyond the Gaussian beam approximation]], J. Phys. A: Math. Theor. **51**, 255301 (2018)   * [[Omar Morandi]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aac3ef/meta|Quantum motion with trajectories: beyond the Gaussian beam approximation]], J. Phys. A: Math. Theor. **51**, 255301 (2018)
Line 114: Line 132:
  
 === 2017 === === 2017 ===
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://doi.org/10.1063/1.4989537|Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchal Fokker-Planck Equation approach]], J. Chem. Phys. **146**, 014102 (2017)
   * X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317303290|Microwave photonics with superconducting quantum circuits]], Phys. Rep. **718-719**, 1 (2017)   * X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317303290|Microwave photonics with superconducting quantum circuits]], Phys. Rep. **718-719**, 1 (2017)
   * J. Zhang, Y.X. Liu, R.B. Wu, K. Jacobs, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317300479|Quantum feedback: theory, experiments, and applications]], Phys. Rep. **679**, 1 (2017)   * J. Zhang, Y.X. Liu, R.B. Wu, K. Jacobs, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317300479|Quantum feedback: theory, experiments, and applications]], Phys. Rep. **679**, 1 (2017)
Line 120: Line 139:
   * Alex E. Bernardini and Mariana Chinaglia, [[https://doi.org/10.1088/1742-6596/880/1/012038|Topological view of quantum tunneling coherent destruction]], J. Phys.: Conf. Ser.  **880**, 012038 (2017)   * Alex E. Bernardini and Mariana Chinaglia, [[https://doi.org/10.1088/1742-6596/880/1/012038|Topological view of quantum tunneling coherent destruction]], J. Phys.: Conf. Ser.  **880**, 012038 (2017)
   * Alex E. Bernardini and Orfeu Bertolami, [[https://doi.org/10.1209/0295-5075/120/20002|Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics]], EPL **120**, 20002 (2017)   * Alex E. Bernardini and Orfeu Bertolami, [[https://doi.org/10.1209/0295-5075/120/20002|Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics]], EPL **120**, 20002 (2017)
-  * A. Larkin, V. Filinov, [[https://www.doi.org/10.4236/jamp.2017.52035|Phase Space Path Integral Representation for Wigner Function]], JAMP **5**, 392 (2017)+  * A. Larkin, V. Filinov, [[https://www.doi.org/10.4236/jamp.2017.52035|Phase Space Path Integral Representation for Wigner Function]], Journal of Applied Mathematics and Physics **5**, 392 (2017) 
 +  * Dimitris Kakofengitis and [[Ole Steuernagel]], [[https://link.springer.com/article/10.1140/epjp/i2017-11634-2|Wigner's quantum phase space current in weakly anharmonic weakly excited two-state systems]], European Physical Journal Plus. **132**, 381 (2017) 
 +  * Dimitris Kakofengitis, Maxime Oliva, and [[Ole Steuernagel]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.022127|Wigner's representation of quantum mechanics in integral form and its applications]], Physical Review A. **95**, 022127 (2017)
  
 === 2016 === === 2016 ===
 +  * R. Grossmann, A. Sakurai, and [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/10.7566/JPSJ.85.034803|Electron pumping under non-Markovian dissipation: The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016) 
   * [[Daniel Wigger]], H. Gehring, V.M. Axt, [[Doris Reiter]] and T. Kuhn, [[https://link.springer.com/article/10.1007/s10825-016-0856-8|Quantum dynamics of optical phonons generated by optical excitations of a quantum dot]], J. Comput. Electron **15**, 1158 (2016)   * [[Daniel Wigger]], H. Gehring, V.M. Axt, [[Doris Reiter]] and T. Kuhn, [[https://link.springer.com/article/10.1007/s10825-016-0856-8|Quantum dynamics of optical phonons generated by optical excitations of a quantum dot]], J. Comput. Electron **15**, 1158 (2016)
   * [[Todd Tilma]], [[Mark Everitt]], [[John Samson]], W. J. Munro, and [[Kae Nemoto]]: “Wigner Functions for Arbitrary Quantum Systems”,  Phys. Rev. Lett., Vol.117, 180401, DOI: [[http://dx.doi.org/10.1103/PhysRevLett.117.180401|10.1103/PhysRevLett.117.180401]], [[https://arxiv.org/abs/1601.07772|arXiv]], 2016.   * [[Todd Tilma]], [[Mark Everitt]], [[John Samson]], W. J. Munro, and [[Kae Nemoto]]: “Wigner Functions for Arbitrary Quantum Systems”,  Phys. Rev. Lett., Vol.117, 180401, DOI: [[http://dx.doi.org/10.1103/PhysRevLett.117.180401|10.1103/PhysRevLett.117.180401]], [[https://arxiv.org/abs/1601.07772|arXiv]], 2016.
Line 131: Line 153:
  
 === 2015 === === 2015 ===
 +  * [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/1.4916647|Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations]], J. Chem. Phys. **142**, 144110 (2015)
   * Peter Degenfeld-Schonburg, Carlos Navarrete–Benlloch, and [[Michael J. Hartmann]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.053850|Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators]], Phys. Rev. A **91**, 053850 (2015)   * Peter Degenfeld-Schonburg, Carlos Navarrete–Benlloch, and [[Michael J. Hartmann]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.053850|Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators]], Phys. Rev. A **91**, 053850 (2015)
   * Mehdi Abdi, Matthias Pernpeintner, Rudolf Gross, Hans Huebl, and [[Michael J. Hartmann]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.173602|Quantum State Engineering with Circuit Electromechanical Three-Body Interactions]], Phys. Rev. Lett. **114**, 173602 (2015)   * Mehdi Abdi, Matthias Pernpeintner, Rudolf Gross, Hans Huebl, and [[Michael J. Hartmann]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.173602|Quantum State Engineering with Circuit Electromechanical Three-Body Interactions]], Phys. Rev. Lett. **114**, 173602 (2015)
Line 142: Line 165:
  
 === 2014 === === 2014 ===
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[http://iopscience.iop.org/article/10.1088/1367-2630/16/1/015002/meta|Self-excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira-Leggett Hamiltonian]], New J. of Phys. **16**, 015002 (2014)
   * I. Georgescu, S. Ashhab, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.153|Quantum Simulation]], Rev. Mod. Phys. **86**, 153 (2014)   * I. Georgescu, S. Ashhab, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.153|Quantum Simulation]], Rev. Mod. Phys. **86**, 153 (2014)
   * Miranowicz, J. Bajer, M. Paprzycka, Y.X. Liu, A.M. Zagoskin, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.033831|State-dependent photon blockade via quantum-reservoir engineering]], Phys. Rev. A **90**, 033831 (2014)   * Miranowicz, J. Bajer, M. Paprzycka, Y.X. Liu, A.M. Zagoskin, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.033831|State-dependent photon blockade via quantum-reservoir engineering]], Phys. Rev. A **90**, 033831 (2014)
Line 149: Line 173:
   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9444-1|Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States]],  J. Russ. Las. Res. **35**, 427 (2014)   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9444-1|Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States]],  J. Russ. Las. Res. **35**, 427 (2014)
   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9395-6|Wigner Functions and Spin Tomograms for Qubit States]], J. Russ. Las. Res. **35**, 3 (2014)   * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9395-6|Wigner Functions and Spin Tomograms for Qubit States]], J. Russ. Las. Res. **35**, 3 (2014)
-  * [[Enno Giese]], Wolfgang Zeller, Stephan Kleinert, Matthias Meister, Vincenzo Tamma, Albert Roura, and [[Wolfgang Schleich]], [[http://ebooks.iospress.nl/publication/38097|The interface of gravity and quantum mechanics illuminated by Wigner phase space]], Proc. Intern. School Phys “Enrico Fermi” **188**, 171 (2014)+  * [[Enno Giese]], Wolfgang Zeller, Stephan Kleinert, Matthias Meister, Vincenzo Tamma, [[Albert Roura]], and [[Wolfgang Schleich]], [[http://ebooks.iospress.nl/publication/38097|The interface of gravity and quantum mechanics illuminated by Wigner phase space]], Proc. Intern. School Phys “Enrico Fermi” **188**, 171 (2014) 
 +  * D. Bakalov and [[Stephan Schiller]], [[https://link.springer.com/article/10.1007/s00340-013-5703-z|The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock]], Appl. Phys. B **114**, 213 (2014)
  
 === 2013 === === 2013 ===
 +  * A. Kato and [[Yoshitaka Tanimura]], [[https://pubs.acs.org.ccindex.cn/doi/abs/10.1021/jp403056h|Quantum Suppression of Ratchet Rectification in a Brownian System Driven by a Biharmonic Force]], J. Phys. Chem. B **117**, 13132-13144 (2013)
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/abs/10.7566/JPSJ.82.033707|An approach to quantum transport based on reduced hierarchy equations of motion: Application to resonant tunneling diode]], J. Phys. Soc. Jpn **82**, 033707 (2013)
   * [[Daniel Wigger]], [[Doris Reiter]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.085301|Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Rev. B **87**, 085301 (2013)   * [[Daniel Wigger]], [[Doris Reiter]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.085301|Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Rev. B **87**, 085301 (2013)
   * Z.L. Xiang, S. Ashhab, J.Q. You, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.623|Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems]], Rev. Mod. Phys. **85**, 623 (2013)   * Z.L. Xiang, S. Ashhab, J.Q. You, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.623|Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems]], Rev. Mod. Phys. **85**, 623 (2013)
Line 160: Line 187:
   * V. Gramich, B. Kubala, S. Rohrer, and [[Joachim Ankerhold]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.247002|From Coulomb-Blockade to Nonlinear Quantum Dynamics in a Superconducting Circuit with a Resonator]], Phys. Rev. Lett. **111**, 247002 (2013)   * V. Gramich, B. Kubala, S. Rohrer, and [[Joachim Ankerhold]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.247002|From Coulomb-Blockade to Nonlinear Quantum Dynamics in a Superconducting Circuit with a Resonator]], Phys. Rev. Lett. **111**, 247002 (2013)
   * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://iopscience.iop.org/article/10.1088/0953-4075/46/22/224010/meta|Optical Bistability in Strong-Coupling Cavity QED with a Few Atoms]],  J. Phys. B Atom. Mol. Opt. Phys. **46**, 224010 (2013)   * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://iopscience.iop.org/article/10.1088/0953-4075/46/22/224010/meta|Optical Bistability in Strong-Coupling Cavity QED with a Few Atoms]],  J. Phys. B Atom. Mol. Opt. Phys. **46**, 224010 (2013)
 +  * [[Stephan Schiller]] and Gerd Breitenbach, [[https://onlinelibrary.wiley.com/doi/abs/10.1002/phbl.19990550509|Die Vermessung optischer Quantenzustände]], Phys. Bl. **55**, 39 (2013)
  
 === 2012 === === 2012 ===
Line 167: Line 195:
  
 === 2011 === === 2011 ===
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[https://pubs.acs.org.ccindex.cn/doi/abs/10.1021/jp1095618|Does hbar play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations]], J. Phys. Chem. A **115**, 4009-4022 (2011)
   * [[Doris Reiter]], [[Daniel Wigger]], J.M. Daniels, T. Papenkort, A. Vagov, V.M. Axt and T. Kuhn, [[https://onlinelibrary.wiley.com/doi/full/10.1002/pssb.201000783|Fluctuation properties of phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Status Solidi B 248, No. 4, 825-828 (2011)   * [[Doris Reiter]], [[Daniel Wigger]], J.M. Daniels, T. Papenkort, A. Vagov, V.M. Axt and T. Kuhn, [[https://onlinelibrary.wiley.com/doi/full/10.1002/pssb.201000783|Fluctuation properties of phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Status Solidi B 248, No. 4, 825-828 (2011)
   * [[Doris Reiter]], [[Daniel Wigger]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.195327|Generation and dynamics of phononic cat states after optical excitation of a quantum dot]], Phys. Rev. B. 84, 195327 (2011)   * [[Doris Reiter]], [[Daniel Wigger]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.195327|Generation and dynamics of phononic cat states after optical excitation of a quantum dot]], Phys. Rev. B. 84, 195327 (2011)
Line 189: Line 218:
  
 === 2006 === === 2006 ===
 +  * [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/abs/10.1143/JPSJ.75.082001|Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems]], J. Phys. Soc. Jpn. **75**, 082001 (2006)
   * Brad A. Rowland, [[Robert Wyatt]], [[https://doi.org/10.1016/j.cplett.2006.05.041|Local and non-local force analysis for Wigner function barrier scattering]] Chem. Phys. Lett. **426**, 209 (2006)    * Brad A. Rowland, [[Robert Wyatt]], [[https://doi.org/10.1016/j.cplett.2006.05.041|Local and non-local force analysis for Wigner function barrier scattering]] Chem. Phys. Lett. **426**, 209 (2006) 
 +
 === 2005 === === 2005 ===
   * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://doi.org/10.1142/5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005)   * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://doi.org/10.1142/5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005)
Line 212: Line 243:
 === 1998 === === 1998 ===
   * [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0370157397000707|The Weyl representation in classical and quantum mechanics]], Phys. Rep. **295**, 265 (1998)   * [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0370157397000707|The Weyl representation in classical and quantum mechanics]], Phys. Rep. **295**, 265 (1998)
 +  * G. Breitenbach, F. Illuminati, [[Stephan Schiller]], and J. Mlynek, [[https://iopscience.iop.org/article/10.1209/epl/i1998-00456-2/fulltext/|Broadband detection of squeezed vacuum: A spectrum of quantum states]], Europhysics Letters **44**, 192 (1998)
  
 === 1997 === === 1997 ===
Line 219: Line 251:
 === 1996 === === 1996 ===
   * S. Szabo, P. Adam, J. Janszky and [[Peter Domokos]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.53.2698|Construction of Quantum States of the Radiation Field by Discrete Coherent–State Superpositions]], Phys. Rev. A **53**, 2698 (1996)   * S. Szabo, P. Adam, J. Janszky and [[Peter Domokos]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.53.2698|Construction of Quantum States of the Radiation Field by Discrete Coherent–State Superpositions]], Phys. Rev. A **53**, 2698 (1996)
 +  * [[Stephan Schiller]], G. Breitenbach, S. F. Pereira, T. Müller, and J. Mlynek, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.2933|Quantum Statistics of the Squeezed Vacuum by Measurement of the Density Matrixin the Number State Representation]], Phys. Rev. Lett. **77**, 2933 (1996)
  
 ==== Gravitation and High Energy Physics ====  ==== Gravitation and High Energy Physics ==== 
Line 301: Line 334:
 ==== Condensed Matter: Optical and Transport properties of Systems ====  ==== Condensed Matter: Optical and Transport properties of Systems ==== 
 === 2019 === === 2019 ===
 +  * [[Nicola Zamponi]] and Ansgar Jüngel, [[https://arxiv.org/abs/1905.10186|Two spinorial drift-diffusion models for quantum electron transport in graphene]], arXiv:1905.10186 (2019)
 +  * [[Nicola Zamponi]], [[https://arxiv.org/abs/1905.10185|Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization]], arXiv:1905.10185 (2019)
   * [[Dmitry Karlovets]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aaf9d8|On Wigner function of a vortex electron]], J. Phys. A: Math. Theor. **52**, 05LT01 (2019)   * [[Dmitry Karlovets]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aaf9d8|On Wigner function of a vortex electron]], J. Phys. A: Math. Theor. **52**, 05LT01 (2019)
   * [[Thierry Goudon]] and Alexis F. Vasseur, [[https://epubs.siam.org/doi/abs/10.1137/18M1184643|Statistical Stability for Transport in Random Media]], SIAM Multiscale Model. Simul. **17**, 507 (2019)   * [[Thierry Goudon]] and Alexis F. Vasseur, [[https://epubs.siam.org/doi/abs/10.1137/18M1184643|Statistical Stability for Transport in Random Media]], SIAM Multiscale Model. Simul. **17**, 507 (2019)
Line 349: Line 384:
  
 === 2014 === === 2014 ===
 +  * Pierrat, Romain and Ambichl, Philipp and Gigan, Sylvain and Haber, Alexander and Carminati, Rémi and [[Stefan Rotter]], [[https://www.pnas.org/content/111/50/17765.short|Invariance Property of Wave Scattering Through Disordered Media]], Proceedings of the National Academy of Sciences **111**, 17765 (2014)
   * N. Crouseilles and [[Giovanni Manfredi]], [[https://www.sciencedirect.com/science/article/pii/S0010465513001963|Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit]], Comp. Phys. Comm. **185**, 448 (2014)   * N. Crouseilles and [[Giovanni Manfredi]], [[https://www.sciencedirect.com/science/article/pii/S0010465513001963|Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit]], Comp. Phys. Comm. **185**, 448 (2014)
  
Line 362: Line 398:
  
 === 2011 === === 2011 ===
 +  * [[Nicola Zamponi]] and [[Luigi Barletti]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/mma.1403|Quantum Electronic Transport in Graphene: A Kinetic and Fluid-Dynamic Approach]], Mathematical Methods in the Applied Sciences **34**, 807 (2011)
   * [[Omar Morandi]] and [[Ferdinand Schürrer]], [[http://caim.simai.eu/index.php/caim/article/view/360|Wigner model for Klein tunneling in graphene]], Comm. Appl. Indust. Math. **2**, (2011)   * [[Omar Morandi]] and [[Ferdinand Schürrer]], [[http://caim.simai.eu/index.php/caim/article/view/360|Wigner model for Klein tunneling in graphene]], Comm. Appl. Indust. Math. **2**, (2011)
   * [[Nicola Zamponi]], [[Luigi Barletti]], [[ https://doi.org/10.1002/mma.1403|Quantum electronic transport in graphene: A kinetic and fluid‐dynamic approach]], MATH METHOD APPL SCI **34** 807 (2011)   * [[Nicola Zamponi]], [[Luigi Barletti]], [[ https://doi.org/10.1002/mma.1403|Quantum electronic transport in graphene: A kinetic and fluid‐dynamic approach]], MATH METHOD APPL SCI **34** 807 (2011)
 +  * [[Stefan Rotter]] and Ambichl, Philipp and Libisch, Florian, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.120602|Generating Particlelike Scattering States in Wave Transport]]", Physical Review Letters **106**, 120602 (2011)
  
 === 2010 === === 2010 ===
Line 387: Line 425:
  
 ==== Engineering (Acoustics, Electronics, Seismology, Signals, etc.) ====  ==== Engineering (Acoustics, Electronics, Seismology, Signals, etc.) ==== 
 +
 +=== 2021 ===
 +  * R. Panda, S. Jain, R.K. Tripathy, R.R. Sharma, and [[Ram Bilas Pachori]], [[https://link.springer.com/article/10.1007/s00034-020-01537-0|Sliding mode singular spectrum analysis for the elimination of cross-terms in Wigner-Ville distribution]], Circ. Sys. Sig. Proc. **40**, 1207 (2021)
  
 === 2019 === === 2019 ===
Line 406: Line 447:
  
 === 2017 === === 2017 ===
 +  * [[Maciej Woloszyn]] and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.075440|Dissipative transport of thermalized electrons through a nanodevice]], Phys. Rev. B **96**, 075440 (2017)  
   * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://ieeexplore.ieee.org/document/8013152|Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses]], IEEE T. Nanotech. **16**, 1028 (2017)   * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://ieeexplore.ieee.org/document/8013152|Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses]], IEEE T. Nanotech. **16**, 1028 (2017)
   * Rita Claudia Iotti and [[Fausto Rossi]], [[https://link.springer.com/article/10.1140/epjb/e2017-80462-3|Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments]], Europ. Phys. J. B **90**, 250 (2017)   * Rita Claudia Iotti and [[Fausto Rossi]], [[https://link.springer.com/article/10.1140/epjb/e2017-80462-3|Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments]], Europ. Phys. J. B **90**, 250 (2017)
Line 416: Line 458:
  
 === 2016 === === 2016 ===
 +  * U. Kaczor, B. Klimas, D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://www.degruyter.com/view/j/phys.2016.14.issue-1/phys-2016-0036/phys-2016-0036.xml|Phase-space description of the coherent state dynamics in a small one-dimensional system]], Open Phys. **14**, 354 (2016)  
   * R.B. Pachori and A. Nishad, [[https://doi.org/10.1016/j.sigpro.2015.07.026|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]], Signal Process **120**, 288 (2016)   * R.B. Pachori and A. Nishad, [[https://doi.org/10.1016/j.sigpro.2015.07.026|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]], Signal Process **120**, 288 (2016)
   * Rita Claudia Iotti, Fabrizio Dolcini, Arianna Montorsi and [[Fausto Rossi]], [[https://link.springer.com/article/10.1007/s10825-016-0858-6|Electron–phonon dissipation in quantum nanodevices]], J. Comput. Electron. **15**, 1170 (2016)   * Rita Claudia Iotti, Fabrizio Dolcini, Arianna Montorsi and [[Fausto Rossi]], [[https://link.springer.com/article/10.1007/s10825-016-0858-6|Electron–phonon dissipation in quantum nanodevices]], J. Comput. Electron. **15**, 1170 (2016)
Line 422: Line 465:
  
 === 2015 === === 2015 ===
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], D. Szydlowski, [[https://link.springer.com/article/10.1007/s10825-015-0733-x|Dynamical localisation of conduction electrons in one-dimensional disordered systems]], J. Comput. Electron. **14**, 916 (2015) 
   * Roberto Rosati, Fabrizio Dolcini and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.235423|Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation]], Phys. Rev. B **92**, 235423 (2015)   * Roberto Rosati, Fabrizio Dolcini and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.235423|Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation]], Phys. Rev. B **92**, 235423 (2015)
  
Line 436: Line 480:
   * V. Bajaj and [[Ram Bilas Pachori]], [[https://www.sciencedirect.com/science/article/pii/S0169260713002265|Automatic classification of sleep stages based on the time-frequency image of EEG signals]], Comp. Meth. Prog. Biomed. **112**, 320 (2013)   * V. Bajaj and [[Ram Bilas Pachori]], [[https://www.sciencedirect.com/science/article/pii/S0169260713002265|Automatic classification of sleep stages based on the time-frequency image of EEG signals]], Comp. Meth. Prog. Biomed. **112**, 320 (2013)
   * Lei Tian, [[Zhengyun Zhang]], [[Jonathan Petruccelli]], and George Barbastathis, [[https://doi.org/10.1364/OE.21.010511|Wigner function measurement using a lenslet array]], Opt. Express **21**, 10511 (2013)   * Lei Tian, [[Zhengyun Zhang]], [[Jonathan Petruccelli]], and George Barbastathis, [[https://doi.org/10.1364/OE.21.010511|Wigner function measurement using a lenslet array]], Opt. Express **21**, 10511 (2013)
 +  * D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://iopscience.iop.org/article/10.1088/0268-1242/28/10/105022/pdf|Phase-space description of wave packet approach to electronic transport in nanoscale systems]], Semicond. Sci. Technol. **28**, 105022 (2013) 
 +  * P. Wójcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://aip.scitation.org/doi/abs/10.1063/1.4811836?journalCode=apl|Spin filter effect at room temperature in GaN/GaMnN ferromagnetic resonant tunnelling diode]], Appl. Phys. Lett. **102**, 242411 (2013) 
 +
 +=== 2012 ===
 +  * P. Wojcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165318|Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode]], Phys. Rev. B **86**, 165318 (2012) 
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], and J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/27/11/115004/meta|Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode]], Semicond. Sci. Technol. **27**, 115004 (2012) 
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://aip.scitation.org/doi/10.1063/1.4729895|Tuning of terahertz intrinsic oscillations in asymmetric triple-barrier resonant tunneling diodes]], J. Appl. Phys. **111**, 124310 (2012) 
  
 === 2011 === === 2011 ===
Line 442: Line 493:
 === 2010 === === 2010 ===
   * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and Philipp Schwaha, [[https://link.springer.com/article/10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], J. Comp. Electron. **9**, 218 (2010)   * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and Philipp Schwaha, [[https://link.springer.com/article/10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], J. Comp. Electron. **9**, 218 (2010)
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/25/12/125012|Intrinsic current oscillations in an asymmetric triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **25**, 125012 (2010) 
  
 === 2009 === === 2009 ===
Line 447: Line 499:
   * Huu-Nha Nguyen, [[Damien Querlioz]], Sylvie Galdin-Retailleau, Arnaud Bournel, and [[Philippe Dollfus]], [[https://ieeexplore.ieee.org/document/5091161|Wigner Monte Carlo simulation of CNTFET: Comparison between semi-classical and quantum transport]], Proc. IWCE, 257 (2009)   * Huu-Nha Nguyen, [[Damien Querlioz]], Sylvie Galdin-Retailleau, Arnaud Bournel, and [[Philippe Dollfus]], [[https://ieeexplore.ieee.org/document/5091161|Wigner Monte Carlo simulation of CNTFET: Comparison between semi-classical and quantum transport]], Proc. IWCE, 257 (2009)
   * [[Zhengyun Zhang]] and Marc Levoy, [[https://ieeexplore.ieee.org/document/5559007|Wigner distributions and how they relate to the light field]], Proc. IEEE International Conference on Computational Photography (ICCP), 1-10 (2009)   * [[Zhengyun Zhang]] and Marc Levoy, [[https://ieeexplore.ieee.org/document/5559007|Wigner distributions and how they relate to the light field]], Proc. IEEE International Conference on Computational Photography (ICCP), 1-10 (2009)
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], P. Wojcik, G.J. Morgan, [[https://iopscience.iop.org/article/10.1088/1742-6596/193/1/012130|Wigner distribution function description of a multilayered nanostructure with magnetic impurities]], J. Phys.: Conf. Ser. **193**, 012130 (2009) 
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/24/9/095012|Self-consistent Wigner distribution function study of gate-voltage controlled triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **24**, 095012 (2009) 
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.035127|Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field]], Phys. Rev. B **80**, 035127 (2009) 
  
 === 2008 === === 2008 ===
Line 453: Line 508:
  
 === 2007 === === 2007 ===
-  * [[Clemens Heitzinger]], [[Christian Ringhofer]], Shaikh Ahmed, and [[Dragica Vasileska]], [[https://link.springer.com/article/10.1007/s10825-006-0058-x|3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions]],  J. Comput. Electron. **6**, 15 (2007)+  * [[Clemens Heitzinger]], [[Christian Ringhofer]], [[Shaikh S. Ahmed]], and [[Dragica Vasileska]], [[https://link.springer.com/article/10.1007/s10825-006-0058-x|3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions]],  J. Comput. Electron. **6**, 15 (2007)
   * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://journals.aps.org/prb/pdf/10.1103/PhysRevB.76.214301|Effect of symmetry in the many-particle Wigner function]], Phys. Rev. B **76**, 214301 (2007)   * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://journals.aps.org/prb/pdf/10.1103/PhysRevB.76.214301|Effect of symmetry in the many-particle Wigner function]], Phys. Rev. B **76**, 214301 (2007)
   * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[http://eprints.whiterose.ac.uk/84429/|Effect of the Pauli Exclusion Principle in the Many-Electron Wigner Function]] (2007)   * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[http://eprints.whiterose.ac.uk/84429/|Effect of the Pauli Exclusion Principle in the Many-Electron Wigner Function]] (2007)
Line 476: Line 531:
   * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://www.tandfonline.com/doi/abs/10.1080/00411450508951151|Multiband, non-parabolic Wigner-function approach to electron transport in semiconductors]], Trans. Theor Stat. Phys. **34**, 499 (2005)   * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://www.tandfonline.com/doi/abs/10.1080/00411450508951151|Multiband, non-parabolic Wigner-function approach to electron transport in semiconductors]], Trans. Theor Stat. Phys. **34**, 499 (2005)
   * A. Gehring and [[Hans Kosina]], [[https://link.springer.com/article/10.1007/s10825-005-7109-6|Wigner Function-Based Simulation of Quantum Transport in Scaled DG-MOSFETs Using a Monte Carlo Method]], J. Comp. Electron. **4**, 67 (2005)   * A. Gehring and [[Hans Kosina]], [[https://link.springer.com/article/10.1007/s10825-005-7109-6|Wigner Function-Based Simulation of Quantum Transport in Scaled DG-MOSFETs Using a Monte Carlo Method]], J. Comp. Electron. **4**, 67 (2005)
 +  * [[Bartlomiej Spisak]], A. Paja, G.J. Morgan, [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200440024|Influence of spin–orbit interaction on the electrical conductivity of three-dimensional disordered systems]], phys. stat. sol. (b) **242**, 1460 (2005) 
  
 === 2004 === === 2004 ===
Line 491: Line 547:
   * [[Paolo Bordone]], Alberto Bertoni, Rossella Brunetti, and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0378475402002410|Monte Carlo simulation of quantum electron transport based on Wigner paths]], Math. Comput. Simul. **62**, 307 (2003)   * [[Paolo Bordone]], Alberto Bertoni, Rossella Brunetti, and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0378475402002410|Monte Carlo simulation of quantum electron transport based on Wigner paths]], Math. Comput. Simul. **62**, 307 (2003)
   * [[Carlo Jacoboni]], Rossella Brunetti, and Stefano Monastra: "Quantum dynamics of polaron formation with the Wigner-function approach", Physical Review B, Vol.68, No.12, p.125205, 2003.   * [[Carlo Jacoboni]], Rossella Brunetti, and Stefano Monastra: "Quantum dynamics of polaron formation with the Wigner-function approach", Physical Review B, Vol.68, No.12, p.125205, 2003.
 +  * [[Bartlomiej Spisak]], A. Paja, [[https://www.worldscientific.com/doi/abs/10.1142/9789812704474_0036|New Approach to the Spin-Orbit Scattering of Electrons in Disordered Metallic Systems]], Proceedings of the 7th International School on Theoretical Physics, World Scientific, New Jersey-London-Hong Kong-Singapore 2003
  
 === 2002 ===  === 2002 === 
Line 528: Line 585:
 ==== Mathematical and Theoretical Physics ====  ==== Mathematical and Theoretical Physics ==== 
 === 2019 === === 2019 ===
 +  * [[Herbert Spohn]], [[https://link.springer.com/article/10.1007/s10955-019-02320-5|Generalized Gibbs Ensembles of the Classical Toda Chain]], Journal of Statistical Physics (2019)
   * Marcos Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aafdc2|Translations and reflections on the torus: identities for discrete Wigner functions and transforms]], J. Phys. A **52**, 095301 (2019)   * Marcos Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aafdc2|Translations and reflections on the torus: identities for discrete Wigner functions and transforms]], J. Phys. A **52**, 095301 (2019)
   * Xiang-Guo Meng, Jian-Ming Liu, Ji-Suo Wang, and [[Hongyi Fan]], [[https://link.springer.com/article/10.1140/epjd/e2018-90224-6|New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications]], Europ. Phys. J. D **73**, 32 (2019)   * Xiang-Guo Meng, Jian-Ming Liu, Ji-Suo Wang, and [[Hongyi Fan]], [[https://link.springer.com/article/10.1140/epjd/e2018-90224-6|New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications]], Europ. Phys. J. D **73**, 32 (2019)
Line 567: Line 625:
  
 === 2012 === === 2012 ===
 +  * Earnshaw RA, Lei C, Li J, Mugassabi S and [[Apostol Vourdas]], [[https://www.sciencedirect.com/science/article/pii/S0378437111008958|Large scale data analysis using the Wigner function]], Physica A **391**, 2401-2407 (2012)
   * [[Anton Arnold]], I. Gamba, M.P. Gualdani, S. Mischler, C. Mouhot, C. Sparber, [[https://www.worldscientific.com/doi/abs/10.1142/S0218202512500340|The Wigner-Fokker-Planck equation: stationary states and large time behavior]], Math. Mod. Methods Appl. Sc. **22**, 1250034 (2012)   * [[Anton Arnold]], I. Gamba, M.P. Gualdani, S. Mischler, C. Mouhot, C. Sparber, [[https://www.worldscientific.com/doi/abs/10.1142/S0218202512500340|The Wigner-Fokker-Planck equation: stationary states and large time behavior]], Math. Mod. Methods Appl. Sc. **22**, 1250034 (2012)
   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://link.springer.com/article/10.1007/s11868-012-0054-9|Quantum Mechanics in Phase Space: The Schrodinger and the Moyal Representations]], J. Pseudodiff. Oper. Appl. **3**, 367 (2012)   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://link.springer.com/article/10.1007/s11868-012-0054-9|Quantum Mechanics in Phase Space: The Schrodinger and the Moyal Representations]], J. Pseudodiff. Oper. Appl. **3**, 367 (2012)
Line 572: Line 631:
  
 === 2011 === === 2011 ===
 +  * Timothy M. Coffey, [[Robert Wyatt]], and Wm. C. Schieve, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.230403|Reconstruction of the Time-Dependent Wave Function Exclusively from Position Data]], Phys. Rev. Lett. **107**, 230403 (2011)
 +  * K. Ma, [[Jian-Hua Wang]], Y. Yuan, [[http://iopscience.iop.org/article/10.1088/1674-1137/35/1/003|Wigner Function for the Dirac Oscillator in Spinor Space]], Chinese Physics C **35**, 11-15 (2011)
   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0021782411000912|A Pseudo-Differential Calculus on Non-Standard Symplectic Space; Spectral and Regularity Results in Modulation Spaces]], J. Math. Pur. Appl. **96**, 423 (2011)   * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0021782411000912|A Pseudo-Differential Calculus on Non-Standard Symplectic Space; Spectral and Regularity Results in Modulation Spaces]], J. Math. Pur. Appl. **96**, 423 (2011)
   * [[Maurice de Gosson]], [[https://link.springer.com/article/10.1007/s11868-011-0023-8|A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms]], J. Pseudo-Differ. Oper. Appl. **2**, 91 (2011)   * [[Maurice de Gosson]], [[https://link.springer.com/article/10.1007/s11868-011-0023-8|A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms]], J. Pseudo-Differ. Oper. Appl. **2**, 91 (2011)
  
 === 2010 === === 2010 ===
 +  * R. Mack, J. P. Dahl, H. Moya-Cessa, W. T. Strunz, [[Reinhold Walser]], and [[Wolfgang Schleich]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.032119|Riemann ζ function from wave-packet dynamics]], Phys. Rev. A **82**, 032119 (2010)
 +  *[[Apostol Vourdas]], [[https://link.springer.com/article/10.1134/S1063778810020055|Wigner and Weyl functions for p-adic quantum mechanics]], Physics of atomic nuclei **73**, 237-241 (2010)
   * O. Brodier and [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0375960110004007?via%3Dihub|Markovian evolution of Gaussian states in the semiclassical limit]], Phys. Lett. A **374**, 2315 (2010)   * O. Brodier and [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0375960110004007?via%3Dihub|Markovian evolution of Gaussian states in the semiclassical limit]], Phys. Lett. A **374**, 2315 (2010)
   * [[Basil J. Hiley]], [[https://link.springer.com/article/10.1007/s10701-009-9320-y|On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?]], Found. Phys. **40**, 356 (2010)   * [[Basil J. Hiley]], [[https://link.springer.com/article/10.1007/s10701-009-9320-y|On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?]], Found. Phys. **40**, 356 (2010)
Line 633: Line 696:
  
 === 2000 === === 2000 ===
 +  * G. Giakasa, L.K. Stergioulas, and [[Apostol Vourdas]], [[https://www.sciencedirect.com/science/article/pii/S002192909900216X|Time-frequency analysis and filtering of kinematic signals with impacts using the Wigner function: accurate estimation of the second derivative]], Journal Biomech. **33**, 567-574 (2000)
   *  [[Anton Arnold]], H. Lange, P.F. Zweifel, [[https://aip.scitation.org/doi/10.1063/1.1318732|A discrete-velocity, stationary Wigner equation]], J. Math. Phys. **41**, 7167 (2000)   *  [[Anton Arnold]], H. Lange, P.F. Zweifel, [[https://aip.scitation.org/doi/10.1063/1.1318732|A discrete-velocity, stationary Wigner equation]], J. Math. Phys. **41**, 7167 (2000)
  
 === 1999 === === 1999 ===
 +  * S. Chountasis, [[Apostol Vourdas]], and C. Bendjaballah, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.60.3467|Fractional fourier operators and generalized Wigner functions]], Physical Review A **60**, 3467 (1999)
 +  * S. Chountasis, L. K. Stergioulas, and [[Apostol Vourdas]], [[https://www.tandfonline.com/doi/abs/10.1080/09500349908231397|Quantum filtering of noise in the Wigner function]], Journal Mod. Optics **46**, 2131-2134 (1999)
   * [[Jan Naudts]], [[https://link.springer.com/article/10.1023/A:1026614130824|Off-Shell Relativistic Quantum Mechanics and Formulation of Dirac's Equation Using Characteristic Matrices]], Int. J. Theor. Phys. **38**, 431 (1999)   * [[Jan Naudts]], [[https://link.springer.com/article/10.1023/A:1026614130824|Off-Shell Relativistic Quantum Mechanics and Formulation of Dirac's Equation Using Characteristic Matrices]], Int. J. Theor. Phys. **38**, 431 (1999)
 +
 +=== 1998 ===
 +  * S. Chountasis and [[Apostol Vourdas]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.58.1794|Weyl and Wigner functions in an extended phase space formalism]], Physical Review A **58**, 1794-1798 (1998)
  
 === 1996 === === 1996 ===
Line 666: Line 735:
   * Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, and Robert Raussendorf, [[https://link.aps.org/doi/10.1103/PhysRevX.5.021003|Wigner Function Negativity and Contextuality in Quantum Computation on Rebits]], Phys. Rev. X **5**, 021003 (2015)   * Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, and Robert Raussendorf, [[https://link.aps.org/doi/10.1103/PhysRevX.5.021003|Wigner Function Negativity and Contextuality in Quantum Computation on Rebits]], Phys. Rev. X **5**, 021003 (2015)
  
-==== Numerical Methods for Wigner Equation ==== +==== Numerical Methods ====  
 +=== 2020 === 
 +  * [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/5.0011599|Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM)]], J. Chem. Phys. **153**, 020901 (2020) 
 === 2019 === === 2019 ===
   * Zhenzhu Chen, [[Sihong Shao]], and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999119304553|A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences]], J. Comput. Phys. **396**, 54 (2019)   * Zhenzhu Chen, [[Sihong Shao]], and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999119304553|A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences]], J. Comput. Phys. **396**, 54 (2019)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/document/8794705|Complex Absorbing Potential Formalism Accounting for Open Boundary Conditions Within the Wigner Transport Equation]], IEEE Trans. Nanotechnology **18**, 830 (2019)
   * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://content.sciendo.com/view/journals/caim/10/1/article-p20.xml|Wigner Monte Carlo simulation without discretization error of the tunneling rectangular barrier]], Commun. Appl. Ind. Math. **10**, 20 (2019)   * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://content.sciendo.com/view/journals/caim/10/1/article-p20.xml|Wigner Monte Carlo simulation without discretization error of the tunneling rectangular barrier]], Commun. Appl. Ind. Math. **10**, 20 (2019)
   * [[Orazio Muscato]] and Wolfgang Wagner, [[https://www.aimsciences.org/article/doi/10.3934/krm.2019003|A stochastic algorithm without time discretization error for the Wigner equation]], Kin. Rel. Mod. **12**, 59 (2019)   * [[Orazio Muscato]] and Wolfgang Wagner, [[https://www.aimsciences.org/article/doi/10.3934/krm.2019003|A stochastic algorithm without time discretization error for the Wigner equation]], Kin. Rel. Mod. **12**, 59 (2019)
Line 680: Line 753:
 === 2018 === === 2018 ===
   * A S Larkin, V S Filinov and V E Fortov [[https://doi.org/10.1088/1751-8121/aa98d0|Peculiarities of the momentum distribution functions of strongly correlated charged fermions]], J. Phys. A: Math. Theor. **51**, 035002 (2018)   * A S Larkin, V S Filinov and V E Fortov [[https://doi.org/10.1088/1751-8121/aa98d0|Peculiarities of the momentum distribution functions of strongly correlated charged fermions]], J. Phys. A: Math. Theor. **51**, 035002 (2018)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/abstract/document/8464085|Numerical Analysis of the Transient Behavior of the Non-Equilibrium Quantum Liouville Equation]], IEEE Trans. Nanotechnology **17**, 1197(2018)
  
 === 2017 === === 2017 ===
Line 686: Line 759:
   * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://iopscience.iop.org/article/10.1088/1742-6596/906/1/012011/meta|Efficient Monte Carlo-based algorithms for the Wigner transport equation]], J. Phys. Conf. Ser. **906**, 012011 (2017)   * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://iopscience.iop.org/article/10.1088/1742-6596/906/1/012011/meta|Efficient Monte Carlo-based algorithms for the Wigner transport equation]], J. Phys. Conf. Ser. **906**, 012011 (2017)
   * Andrea Thomann and Alfio Borzì, [[https://doi.org/10.1002/num.22072|Stability and accuracy of a pseudospectral scheme for the Wigner function equation]], Numer. Meth. Part. Differ. Equat. **33**, 62 (2017)   * Andrea Thomann and Alfio Borzì, [[https://doi.org/10.1002/num.22072|Stability and accuracy of a pseudospectral scheme for the Wigner function equation]], Numer. Meth. Part. Differ. Equat. **33**, 62 (2017)
 +  * Khuram Shahzad Khalid, Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/abstract/document/8023854|Self-Energy Concept for the Numerical Solution of the Liouville-von Neumann Equation]], IEEE Trans. Nanotechnology **16**, 1053 (2017)
  
 === 2016 === === 2016 ===
   * Yunfeng Xiong, Zhenzhu Chen, and [[Sihong Shao]], [[https://doi.org/10.1137/15M1051373|An advective-spectral-mixed method for time-dependent many-body Wigner simulations]], SIAM J. Sci. Comput **38**, B491 (2016)   * Yunfeng Xiong, Zhenzhu Chen, and [[Sihong Shao]], [[https://doi.org/10.1137/15M1051373|An advective-spectral-mixed method for time-dependent many-body Wigner simulations]], SIAM J. Sci. Comput **38**, B491 (2016)
   * [[Orazio Muscato]] and Wolfgang Wagner, [[https://epubs.siam.org/doi/10.1137/16M105798X|A Class of Stochastic Algorithms for the Wigner Equation]], SIAM J. Sci. Comp. **38**, A1483 (2016)   * [[Orazio Muscato]] and Wolfgang Wagner, [[https://epubs.siam.org/doi/10.1137/16M105798X|A Class of Stochastic Algorithms for the Wigner Equation]], SIAM J. Sci. Comp. **38**, A1483 (2016)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/document/7501465|Application of a slowly varying Envelope Function onto the Analysis of the Wigner Transport Equation]], IEEE Trans. Nanotechnology **15**, 801 (2016)
 +  * [[Dirk Schulz]] and Azhar Mahmood, [[https://ieeexplore.ieee.org/document/7339425|Approximation of a Phase Space Operator for the Numerical Solution of the Wigner Equation]], IEEE J. Quantum Electron. **52**,  8700109 (2016)
  
 === 2015 === === 2015 ===
publications.1577112483.txt.gz · Last modified: 2019/12/23 14:48 by weinbub

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki