User Tools

Site Tools


ruo_li

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Last revision Both sides next revision
ruo_li [2017/09/04 06:50]
weinbub created
ruo_li [2019/11/06 12:35]
weinbub [Email]
Line 23: Line 23:
  
 ===== Wigner-specific research ===== ===== Wigner-specific research =====
 +(selection)
  
-R. Li, T. Lu and Z.-P. Sun, Parity-decomposition and moment analysis for stationary Wigner equation with inflow boundary conditions, Frontier of Mathematics in China, 12(4), pp. 907-919, 2017 DOI 10.1007/​s11464-017-0612-9. ​ 
- 
-R. Li, T. Lu and Z.-P. Sun, Stationary Wigner Equation with Inflow Boundary Conditions: Will a Symmetric Potential Yield a Symmetric Solution?, SIAM Journal on Applied Mathematics,​ 74(3), 2014, pp.885-897, DOI: 10.1137/​130941754,​ http://​epubs.siam.org/​toc/​smjmap/​74/​3 ​ 
- 
-R. Li, T. Lu, Y.-L. Wang and W.-Q. Yao, Numerical Validation for High Order Hyperbolic Moment System of Wigner Equation, Communcations in Computational Physics, Vol. 15, pp. 569--595, 2014. DOI: 10.4208/​cicp.091012.120813a. ​ 
- 
-Z.-N. Cai, Y.-W. Fan, R. Li, T. Lu and Y.-L. Wang, Quantum Hydrodynamic Model by Moment Closure of Wigner Equation, Journal of Mathematical Physics, 53(10), 2012, DOI: 10.1063/​1.4748971,​ http://​link.aip.org/​link/?​JMP/​53/​103503 ​ 
  
 +  * [[Ruo Li]], [[Tiao Lu]], and [[Zhangpeng Sun]], [[https://​epubs.siam.org/​doi/​abs/​10.1137/​130941754|Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution?​]],​ SIAM J. Appl. Math. **74**, 885 (2014)
 +  * [[Ruo Li]], [[Tiao Lu]], and [[Zhangpeng Sun]], [[https://​arxiv.org/​abs/​1406.4213v1|Convergence of semi-discrete stationary Wigner equation with inflow boundary conditions]],​ arXiv:​1406.4213 (2014)
 +  * Zhenning Cai, Yuwei Fan, [[Ruo Li]], [[Tiao Lu]], and Yanli Wang, [[https://​aip.scitation.org/​doi/​full/​10.1063/​1.4748971|Quantum hydrodynamic model by moment closure of Wigner equation]], J. Math. Phys. **53**, 103503 (2012)
  
 ===== Affiliation(s) ===== ===== Affiliation(s) =====
Line 37: Line 34:
   * Changjiang Professor, School of Mathematical Sciences, Peking University, China   * Changjiang Professor, School of Mathematical Sciences, Peking University, China
  
-===== Email ===== 
-  
-[[rli@pku.edu.cn]] 
  
 ===== Additional information ===== ===== Additional information =====
  
   * [[http://​dsec.pku.edu.cn/​~rli/​index.php|Personal Website]]   * [[http://​dsec.pku.edu.cn/​~rli/​index.php|Personal Website]]
ruo_li.txt ยท Last modified: 2020/03/07 10:26 by weinbub