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Abstract A domain decomposition approach for the

parallelization of the Wigner Monte Carlo method al-

lows the huge memory requirements to be distributed

amongst many computational units, thereby making

large multi-dimensional simulations feasible. Two do-

main decomposition techniques – a uniform slab and

uniform block decomposition – are compared and the

design and implementation of the block decomposition

approach, using the message passing interface, is dis-

cussed. The parallel performance of the two approaches

is evaluated by simulating a representative physical prob-

lem. Our results show that the presumably inferior slab

decomposition method is in fact superior to the block

decomposition approach, due to the additional over-

head incurred by the block decomposition method to

set up its communication layer.

1 Introduction

The Wigner formalism [1] provides an attractive alter-

native to the non-equilibrium Green’s function formal-

ism, as it provides a reformulation of quantum mechan-

ics – usually defined through operators and wave func-

tions – in the phase space using functions and vari-

ables [2]. Thereby, the Wigner formalism gives a more

intuitive description, which also facilitates the reuse of

many classical concepts and notions. The biggest ad-

vantages of using a phase space formulation are that

open boundary conditions, transients, and decoherence
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effects can be considered and are easily implemented

from a computational point of view. It is the coherent

evolution which presents the computational challenge

when solving the Wigner(-Boltzmann) transport equa-

tion.

Both stochastic and deterministic methods have been

applied to solve the one-dimensional Wigner equation.

However, only the Wigner Monte Carlo method, us-

ing the signed-particle technique [3][4], has made multi-

dimensional Wigner simulations viable thus far [5][6]; a

multi-dimensional approach is essential for the simula-

tion of realistic semiconductor devices.

The signed-particle technique is based on the gen-

eration of (numerical) particles with + and − signs

(weighting), as determined by the Wigner potential, to

solve the coherent evolution problem. The number of

particles increases exponentially due to particle gener-

ation, which occurs at a rate depending on the potential

differences present in the spatial domain. This dramatic

increase of particles (and the associated computational

load) is counteracted by the concept of particle anni-

hilation: particles with opposite signs, within the same

cell of the phase space, annihilate each other since they

have the same probabilistic future, but their contribu-

tions to physical quantities computed from the Wigner

function cancel each other. Indeed, it is the annihilation

step that has made the signed-particle Wigner Monte

Carlo simulations computationally feasible.

The annihilation algorithm [7] requires the entire

phase space to be represented by an array whose size

is proportional to the dimensionality and resolution of

the phase space – this quickly results in exorbitant

memory requirements, which easily exceed the limited

memory of a single workstation [8]. The following (con-

servative) example clarifies this aspect: a simulation

setup is given by a two-dimensional spatial domain of
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100nm × 100nm with a resolution of ∆x = 1nm and

a three-dimensional k-space with 100 k-values per di-

rection. The associated phase-space grid would there-

fore consist of 1002× 1003 cells, each represented by an

integer of (at least) 2 bytes. This would demand a to-

tal memory consumption of O
(
210

)
bytes, i.e. approx-

imately 20GB. Each MPI process is assigned to a sin-

gle CPU core. A supercomputer node typically consists

of 16 cores and 32 − 64GB of memory; each core has

2−4GB of memory available, which is insufficient for a

domain replication in each process. Although the avail-

able node memory is expected to increase in the future,

so is the number of computing cores, essentially keeping

the memory-per-core-ratio constant. Due to this fact –

in addition to the already significant computational de-

mands – an efficient distributed parallel computation

approach (limiting the memory demand to a maximum

of around 2− 4GB per MPI process) is crucial to facil-

itate the use of Wigner simulations for realistic, multi-

dimensional device structures.

Conventional parallelization approaches for Monte

Carlo methods split the particle ensemble amongst com-

putational units, where each subensemble can be treated

completely independently and is therefore termed em-

barrassingly parallel [9]. This approach offers excellent

parallel efficiency, but necessitates domain replication

when working in a distributed-memory context via the

message passing interface (MPI) – the de facto stan-

dard for large-scale parallel computations – to avoid

additional communication. An approach that requires

domain replication is not feasible for the Wigner Monte

Carlo method due to the huge memory demands asso-

ciated with the annihilation algorithm. The necessity

for domain replication is avoided by a spatial domain-

decomposition approach and has been introduced for

the Wigner Monte Carlo method in an one-dimensional

simulation setting [8] and successfully applied to two-

dimensional simulations [10]. The implementations use

MPI and are based on the Wigner Ensemble Monte

Carlo simulator, which is part of the free open source

ViennaWD simulation package [11].

In this work we investigate the feasibility of a block

domain decomposition for two-dimensional problems and

evaluate its performance relative to the slab domain de-

composition approach used in [10] and provide guidance

to which domain decomposition approach is best suited

for highly memory-intensive, two-dimensional Wigner

Monte Carlo quantum simulations. The slab decompo-

sition approach is first summarized in Section 2, where-

after the block decomposition approach is introduced in

Section 3. The parallel efficiency is evaluated based on

the execution times of a representative, two-dimensional,
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Fig. 1: A uniform slab decomposition approach uses

overlap areas (blue) to identify and transmit cross-

subdomain (red) particles. n refers to the MPI rank,

which also identifies the subdomain.

physical example in Section 4 upon which our conclu-

sions are drawn.

2 Slab Decompositioning

The so-called slab or one-dimensional decomposition

method partitions the simulation domain in one direc-

tion, whereas the second direction (in a two-dimensional

setting) is kept untouched (Fig. 1). This method has

been successfully applied to one- and two-dimensional

Wigner simulations [8][10].

This slab decomposition approach has two princi-

pal limitations: Firstly, the maximum number of sub-

domains/processes that can be used is limited by the

number of mesh points in the (single) direction of de-

compositioning – each slab has to be at least one mesh

cell wide. Secondly, memory intensive applications are

more likely to hit a memory-per-process limit with a

slab decomposition approach, as only one dimension is

partitioned. This memory limitation becomes more rel-

evant for three-dimensional simulation cases, due to the

drastic increase in memory demands. Despite these lim-

itations, the slab decomposition approach has proven to

be an attractive domain decomposition technique pro-

viding excellent parallel scalability for two-dimensional

problems [10]. This especially holds true in cases where

the decompositioning is aligned with the (dominant) di-

rection of particle propagation, meaning that the ma-

jority of particles propagate in the unpartitioned direc-
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tion. This minimizes the amount of data to be commu-

nicated, which is advantageous to parallel scalability.

To enable particles to seamlessly propagate through

the decomposed spatial domain, a communication layer

is required to enable the transfer of incoming and out-

going particles at every time step between neighbor-

ing subdomains (each assigned to one MPI process). A

slab decomposition, using N subdomains, requires Tslab
MPI communication channels (i.e. send and receive op-

erations), to be established during each time step and is

given by Tslab = 4·(N−1); each interior subdomain has

to deal with two incoming and two outgoing connections

and the two boundary subdomains have to handle only

one incoming and one outgoing connection each. Utiliz-

ing, for instance, 32 MPI processes (N = 32) requires a

total number of Tslab = 124 point-to-point communica-

tions for each time step. Although these communication

channels are not collective communications (i.e. N×N)

– each MPI process only has to communicate with its

immediate neighbors and not all other processes – the

overhead introduced to first establish these communica-

tion channels is unavoidable and potentially limits scal-

ability. The impact of the communication setup over-

head is felt even more, if the transmitted data volume

is small as the communication is primarily limited by

latency instead of bandwidth.

3 Block Decompositioning

The logical next step to advance a slab decomposi-

tion approach is to also partition the second dimension,

extending the method to a block or two-dimensional
decomposition approach. A block decomposition ap-

proach promises an improved per-process communica-

tion volume over a slab decomposition approach [12],

making it an interesting candidate for a parallel signed

particle Wigner Monte Carlo method.

The partitioning of the second dimension requires

additional logic to handle the communication for the

exchange of particles moving between the subdomains.

Aside from the obvious communication channels in the

cardinal directions, the movement of particles in the

diagonal directions must also be accounted for (Fig. 2).

The decomposition scheme assigns the rank (pro-

cess ID) of the MPI processes in an incremental fash-

ion, starting from the bottom left, increasing from left

to right and from bottom to top. Due to this specific

assignment scheme, each process can identify its di-

rect neighbors by using its own rank and the number

of subdomains in the x− and/or y−direction. For in-

stance, the top neighbor MPI process can be identified

by adding the number of subdomains in the x-direction
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Fig. 2: A uniform block decomposition approach uses

overlap areas (blue) to identify and transmit cross-

subdomain (red) particles. n refers to the subdomain

identifier, i.e., the MPI process rank, and Xparts de-

notes the number of subdomains in x-direction.

(Xparts) to the rank of the considered process. The

other neighbors can be computed analogously.

After each time step, every MPI process evaluates

all of its transfer boundaries, i.e., boundaries which

are in the interior of the simulation domain and re-

quire incoming and outgoing communication to facili-

tate particle movement between processes. Each MPI

process identifies particles in its particle subset which

will leave its subdomain in the next time step(s): par-

ticles must be located within a predetermined trans-

fer overlap area (blue region in Fig. 2) and have a

momentum directed towards a neighboring subdomain.

Every boundary of the subdomain is checked by each

MPI process: four transfer boundaries for the interior

subdomains, three at the vertical or horizontal domain

boundaries, and two at the corner subdomains. Non-

blocking point-to-point communications are used to po-

tentially overlap communication with computation for

increased efficiency.

A block decomposition, using N subdomains, re-

quires Tblock MPI communication channels to be estab-

lished during each time step: Tblock = 16 ·Ninner + 10 ·
Nbnd+ 6 ·Ncorner; each interior subdomain (inner) has

to deal with a total of 16 connections (4 in cardinal and

4 in diagonal directions for both send and receive op-

erations), each domain boundary subdomain (bnd) has
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to handle a total of 10 connections (3 in cardinal and 2

in diagonal directions for both send and receive opera-

tions), and each corner subdomain (corner) has to pro-

cess 6 connections (2 in cardinal and 1 in diagonal direc-

tions for both send and receive operations). The num-

ber of interior, boundary, and corner subdomain can

be computed by Ninner = N − 2(Xparts + Yparts− 2),

Nbnd = 2(Xparts+Yparts−4), and Ncorner = 4, where

Yparts represents the number of subdomains in the y-

direction. As an example: a simulation utilizing 32 MPI

processes and a 8× 4 (Xparts=8, Yparts=4) decompo-

sitioning scheme requires Tblock = 376 point-to-point

communications for each time step. Tblock is approxi-

mately three times larger than Tslab for this particular

scenario, i.e. three times as many communication chan-

nels need to be set up at every time step, incurring a

considerable additional communication overhead. Fur-

thermore, considering strong scaling (i.e. the number

of MPI processes and thus the number of subdomains

increases for a given problem), the majority of subdo-

mains are interior subdomains and therefore the num-

ber of communication channels increases significantly.

Aside from the communication overhead, the logic

identifying the particles leaving a particular subdomain

introduces substantial additional overhead, as the over-

lap areas have to be specialized to cover diagonal cases

and the second cardinal direction as compared to the

simpler slab decomposition approach.

All in all, block decomposition reduces the required

memory per MPI process and drastically increases the

number of MPI processes that can (potentially) be used,

albeit at the cost of introducing significant overhead,

both for the MPI communication backend and the logic

to drive the communication.

4 Results

This section evaluates the parallel execution perfor-

mance of the spatial decomposition approaches, pre-

sented in the preceding sections, by considering the

physical problem of the evolution of three minimum-

uncertainty wave packages within a two-dimensional

domain. Sixteen acceptor dopants (positive charge) are

spread over a 128 nm × 128 nm spatial domain, which

yields the potential profile shown in Fig. 3. The par-

ticle generation rate γ is proportional to potential dif-

ferences (through the definition of the Wigner poten-

tial) and is depicted in Fig. 4. The particle generation

is concentrated around each dopant within the region

corresponding to the coherence length. Here, a coher-

ence length of 30 nm is used throughout, resulting in

a discrete k-space with a resolution of ∆k = π
30 nm .

0.4

0.36

0.3

0.18

0.24

0.1

Fig. 3: Sixteen (non-identical) acceptor dopants form-

ing a potential profile with peaks between 0.3 eV and

0.4 eV.

4.3·1014

4·1014

3.2·1014

1.6·1014

2.4·1014

2.8·1013

8·1013

Fig. 4: The particle generation rate (γ [s−1]) of the asso-

ciated potential profile (Fig. 3). The generation is con-

centrated around the placed dopants.

Reflective boundary conditions are used, therefore, no

particles leave the simulation domain.

The initial condition, shown in Fig. 5, is specified

by three minimum uncertainty wave packets placed at

(50 nm, 50 nm), (50 nm, 110 nm), and (70 nm, 50 nm), hav-

ing the wave vectors (6∆k, 3∆k), (−4∆k,−6∆k), and

(5∆k,−4∆k), respectively. Each wave packet is initial-

ized using 5 · 106 particles. The evolution of the wave

packets over 300 fs, using a 0.1 fs time step, is shown in

Fig. 5-8. The wave packets get split up by the potential

peaks; interference patterns also become visible.

The total number of particles gives an indication

of the computational load and also its distribution in

the domain. The maximum number of particles for the

entire domain is limited to 64 · 107 particles; the local

maximum for each process depends on the total number

of processes used.
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Fig. 5: Normalized density (i.e. probability) at 0 fs,

showing three wave packets located in the upper left

area, serving as the initial condition. White circles de-

note locations of dopants.
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7.5·10-4

5·10-4
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Fig. 6: Normalized density (i.e. probability) at 10 fs,

showing the wave packets being warped by the (non-

local) influence of the acceptor dopants. White circles

denote locations of dopants.

Fig. 9-12 depicts the total number of particles (the

sum of positively and negatively signed particles) for

different time steps as computed by 64 processes. Over

time, the entire simulation domain is filled with parti-

cles with local maxima occurring around each dopant,

according to the generation rate γ (cf. Fig. 4). A com-

parison between the density in Fig. 5-8 and the corre-

sponding number of particles in Fig. 9-12 reveals that

there can be a significant number of particles in re-

gions with a very low density since positive and negative

particles can compensate each other when calculating

physical quantities, like the density.

All simulations presented were performed on the

VSC-3 supercomputer [13], which consists of 2020 nodes.

Each node provides 16 cores (two 8-core Intel Xeon Ivy

Bridge-EP E5-2650v2, 2.6 GHz, Hyperthreading) and

0
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7.5·10-4

5·10-4

2.5·10-4

Fig. 7: Normalized density (i.e. probability) at 50 fs,

showing a significant change in the shape of the wave

packet; interference patterns become evident. White

circles denote locations of dopants.
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5·10-4

2.5·10-4

Fig. 8: Normalized density (i.e. probability) at 300 fs,

showing a complete diffusion of the wave packets across

the entire domain. White circles denote locations of

dopants.

64 GB of system memory; the nodes are connected via

an Intel QDR-80 dual-link high-speed InfiniBand fab-

ric.

The simulation was benchmarked using 16, 32, 64,

and 128 MPI processes. Fig. 13 depicts the parallel ex-

ecution performance for the slab and the block decom-

position approach. The slab decomposition technique

offers a significantly better parallel execution perfor-

mance. As discussed in Section 3, the block decomposi-

tion method introduces significant overhead, resulting

in inferior performance relative to the slab decompo-

sition approach. Especially for 128 MPI processes, the

overhead triggers a stagnation of the scalability as the

number of particles (work load ) per process is too small

relative to the additional communication overhead.
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Fig. 9: Total Number of particles at 0 fs. White circles

denote locations of dopants.
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Fig. 10: Total Number of particles at 10 fs. White circles

denote locations of dopants.

Fig. 14-16 and Fig. 17-19 show the load balance

of the slab and the block decomposition approach at

100 fs, 200 fs, and 300 fs. The load balance between the

processes shows a variation over time, which is due to

the annihilation process.

Typically, an annihilation step improves the load bal-

ance as the processes with the largest number of parti-

cles also experience the strongest reduction, effectively

leveling the number of particles between the processes.

The annihilation intervals for the two decomposition

approaches are not the same, which can result in dif-

ferent dynamics of the load balance, but neither one of

the two decomposition approaches can be singled out

as having a superior load balancing, compared to the

other. However, the logic required to drive the block-

based communication as well as the communication it-

self takes about 1.5 to 4 times longer for the given prob-

lem than with the slab decomposition technique.
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Fig. 11: Total Number of particles at 50 fs. White circles

denote locations of dopants.
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Fig. 12: Total Number of particles at 300 fs. White cir-

cles denote locations of dopants.

5 Conclusion

We have investigated the potentially promising uniform

block decomposition approach for two-dimensional Wigner

Monte Carlo quantum simulations and compared it with

our uniform slab decomposition technique. The results

show that the overhead introduced by the block-based

communication layer significantly limits parallel perfor-

mance. For the type of simulation problem considered

here, the block decomposition method shows inferior

performance when compared to the conventional slab

decomposition technique, which, on the other hand,

again confirmed its excellent parallel performance. This

result is especially interesting, as it shows that the much

simpler to implement slab decomposition method is an

excellent method for parallelizing highly memory in-

tensive two-dimensional Wigner Monte Carlo quantum

simulations based on the signed particle method. Future

work will focus on load-balancing approaches, specifi-

cally aiming towards three-dimensional problems.
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Fig. 13: Comparison of the execution times between the

slab and the block decomposition approaches.
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Fig. 14: Load balance of the slab decomposition ap-

proach for 64 processes at 100fs. Horizontal line denotes

the mean number of particles.
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Fig. 15: Load balance of the slab decomposition ap-

proach for 64 processes at 200fs. Horizontal line denotes

the mean number of particles.
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Fig. 16: Load balance of the slab decomposition ap-

proach for 64 processes at 300fs. Horizontal line denotes

the mean number of particles.
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Fig. 17: Load balance of the block decomposition ap-

proach for 64 processes at 100fs. Horizontal line denotes

the mean number of particles.
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Fig. 18: Load balance of the block decomposition ap-

proach for 64 processes at 200fs. Horizontal line denotes

the mean number of particles.
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Fig. 19: Load balance of the block decomposition ap-

proach for 64 processes at 300fs. Horizontal line denotes

the mean number of particles.
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