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1. Introduction

In recent years the design and technology of surface acoustic wave (SAW) interdigital
transducers have achieved such a high standard, that for some cases of greatest practi-
cal interest the one-dimensional representation and analysis of SAW filters cannot fulfill
the imposed severe requirements. Therefore, the calculation of the two-dimensional
(2D) field distribution has become indispensible, especially for accurate determination
of SAW diffration pattern due to small finger overlap. Using the 2D Green’s func-
tion in the wavenumber domain, G(kz, k), the spectral domain representation and the
moment method, we have developed a non-iterative semi-numerical method for the 2D
electrostatic field analysis of arbitrary thin metallic structures (fingers) deposited on the
surface of an anisotropic semi-infinite dielectric. Recently we have shown that G(k, k,)
can be expressed in closed form [1]. Here we will review the properties of G (kz, k;) and
show that a natural extension of the one-dimensional concept of part I can successfully
be applied to the 2D electrostatic field problem. First, an integral representation is
established and then the associated integral equation is replaced by a matrix equation.
The elements of the corresponding matrix, a modified inverse capacitance matrix, are
calculated in closed form. An efficient non-equidistant discretisation of the metallic
fingers has been chosen to take into account the edge-singularities of the fingers. The
floating fingers, which may be of arbitrary topological complexity, are easily included in
the analysis. Since the Green’s function does not depend on a special finger geometry,
for a given crystal-cut it is possible to deduce from G(kz,k;) characteristic functions,
which describe the crystal anisotropic effects of the substrate and can conveniently be
tabulated. Together with the fact that G(kz,k;) and the elements of the inverse ca-
pacitance matrix are closed-form formulae, the influences of the substrate anisotropy
and of the finger geometry on the field distribution can be investigated separately and

efficiently. An independent, critical and reasoned account of the subject is presented.
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Among others, the transverse end-effects will be discussed.
II. Theory

Consider a semi-infinite anisotropic dielectric characterized by {¢}. (¢) is a three by

three symmetric positive definite matrix [1], [2], i.e.

€11 €12 €13
(6 =| €2 ez €3
€13 €23 €33
€11 >0, €92 >0,€33>0
e11€22 — €127 > 0, €31€32 — €12 > 0, 93633 — €257 > 0
det(e) > 0.
A set of infinitely thin electrodes (fingers) may be deposited on the plane surface of the
substrate. There are no restrictions imposed on the 2D-geometry of the fingers and on

the finger potentials. The finger are assumed to have negligible sheet resistivity, Fig.1.

Fig.1: Two dimensional representation of a SAW transducer

With regard to the above conditions and assuming a time variation as ej“’t, the charge
density p(z, z) and the potential ®(z, z) on the surface (y=0) are related by a convolution
equation involving Green’s function G(z, z)
+o0 +00
O(z,2) = / / Gzt — z, 21 — 2)p(zt, z1)dztdzt + C (I1.1)
—00 —0OC
The physical meaning of the constant parameter C will be discussed in a later section.

The Fourier transform of (IL.1) is
g(kz’ kz) = a(kza kz) : ﬁ(kza kz) +C- g(kz’ kz) (II-Z)

Recently an analytical formula for a(kx, k) has been published |2}, where the properties
of G(kz, k;) extensively are discussed. G(k;,k;) has the form
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_ r
Glkasks) = K2+ K2 + \fokZ + 2Bkoks + k2 (13 -e)
wherin T = L and
o = €y1€99 — €4g (I1.3 - b)
B = €13€22 — €12€23 (1.3 ¢
7 = €633 — €53 (113 -d)

(I1.2) is an expression for the Fourier spectral components of the potential distribution
on the surface of the substrate. Therefore the potential on the surface
1 +00 +c0 ) )
B(z,2) = (27)2 / / Bllz, kz)e T F=Te IR gk, dke, + © (I1.4 - a)

—_'OO —00
can equivalently be written as

+00 +oo
1 . o
2(z,2) = (5 )’ / / Glkz, ks) - ks, ke kete1k:7 4 (II.4 - b)

00 —O0

G(z,z) and G(kz,k;) are related by

1 +00 +00 ) .

Glz,2) = (5-)° / / G ke, ky)eTkaTe=TRs2 gk dk, (I1.5)

4 — 00 —O0
In (IL.5) the integration must be interpreted in Cauchy’s sense. (II.1), (I1.4-b) and (II.5)
are our basic equations for the calculation of the charge distribution on the metallic
fingers on the surface. Following the same formalism as in the first part, we need an
expression for G(z, z). Using (II.5), changing to the polar-coordinate system and finally
using the distributional equation, (IL.6), [3]

+00 '

/ e Ik(zcosd+zsing) gy _ o 5(¢ — ¢o) (I1.6)

J | — zsingg + zcosgy| )
we obtain r )

G(z,2) = (rr.7)

2n? V2 + 22 + \/(Jz;.'2 — 2Bzz + yz?
In (IL6) &g equals arctan(—2). A detailed discussion about G(z,2z) will be given else-
where. Inserting the relation (II.7) in (II.1), approximating the charge distribution on
the fingers by two-dimensional stepfunctions and interchanging the order of summation
and integration and finally following the solution procedure discribed in part one, the-
oretically the problem is solved. Unfortunately the involved integrals are algebraically
very complicated structured and could not be evaluated analytically, a fact which re-

sults in unacceptable computation times, if the method is applied to realistic SAW
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structures.
But what about Eq.(I1.4-b)?
In fact if we use (II.4-b) instead of (II.1) we can show that the occuring integrals are

easier to handle and can be calculated in closed-form.
III. Approximation of the charge density on the fingers

A nonequidistant discretization of the fingers which is appropriate to our specific prob-
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lem is shown in Fig.2.
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Fig.2: Discretization of jth finger
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For our calculations we have chosen a two dimensional stepfunction approximation for

the charge density, which formally can be written as

N
p(z,2) = po Yy _o;fi(z,2) (I11.1 - a)
=1
with
fi(z,2) = [H(z - :cg) —H(z—27)] - [H(z - zg) — H(z — 2j)] ({111 -a)
where
po ... charge normalizing factor, N ... total number of finger subdivisions, o;

charge on jth subdivision H ... Heaviside’s stepfunction
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IV. Approximation of the potential distribution on the surface

Using the formula

1 Foo oo . )
Pl kz) = (5-)? f / o(z, 2)e e eTe s dk,

and inserting p(z, z), (IIL.1-a) in (IV.1-a) we obtain
—eI0 eIt T — gid
kzk,

N
ﬁ(kz, kz) = 0 Z
7=1

with
a=ks- (& + 8L} + k- (" + Agy)
b= ko (£ + A& + ks (I ~ Ag))
e =ky- (€] — A&j) + ks - (T + Ag)
d=kg- (& — A&j) + k- (5" — Ag))

(IVvii—a)

(Iv.1 - b) |

(IV.1-¢)
(IV.1~d)
(IV.1—¢)
(IV.1— d)

Insertion of G(kz, kz), (IL.3-a) and p(ks, kz), (IV.1-b) in (IL.4-b), changing the order of

summation and integralon and changing to the polar coordinate system one can show

that
po & *
&(z,2) = %JEI%AEJ'AQ rAj(z,2) +C
with _ ,
s 1 (1) () (3) (4
£5(0,2) = e (40,9 + 40062+ 40 )+ )
1 c e
Ag- )(a:,z) = |al - IT(a,ﬁ,’Y,—Es—;)
(2) — bl . _e ¢
A] (I,Z) |b’ IT(asﬂs'Ya b" b)
B) (s ) = lol - _e b
A (z,2) = |e| - IT(B, 7, o c)
4 b a
Ag )(1‘7,2) = ld' . IT(ﬂa a;'Yi_Es‘_E
a= a:g- —
b= :1:;- -z
c= z;’ —z
d= z; —z
“and

1
du
VPiu? + 2pgu + p3 + VuZ + 1

uy
I7(p1,p2, p3, 41, u2) = /
t

(IV.2—a)
(IV.2 - b)
(va—o)
(vz-a
(IVv.2—e)
(IV.2 - f)
(Iv.2 —g)
(IV.2 - h)

As briefly we have discussed in [1] the above integral can be calculated in closed form.
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V. Point-Matching

According to the fact that the value of potential on the #** subdivision is known and
equals ¢;, (¢; = ®(z = £, 2 = ¢)), and using (IV.2-a) we obtain

N ,
__po e n L
i = 2W50£01A§JA§J AT+ C; i=1.. N (V.1)
With 552 =1 and 0;A&;A¢; = gj we get
N v
¢i = Z q]' ° A*(i,j) + G; 1= 1, W N (V.Z)
=1

where we used A*(z,j) for A;f(g‘g"7 ™).
V1. A Modified Inverse Capacitance Matrix

To explain the meaning of C In (VI.2-a) we introduce a reference transducer with the

following properties:
i} the geometry of the fingers may show a quadrantal symmetry
ii) the potentials of the fingers must be quadrantal antisymmetric

One can show that for this reference transducer C is exactly zero. If a transducer consid-
ered relative to the above reference transducer has a structural or electrical mismatch,
C is not equal zero. Therefore C can be regarded as a system mismatch parameter,
which is apriori unknown.

Equating C = gy, and A*(i, N +1) =1, (V.2) can be written as

N+1 , .
$i=y g¢;-A(i,5); i=1..N (VI1)
7=1

The explicit formulation of the charge neutrality condition,
N
> g¢i=0 (VI1.2)
7=1

together with (VL.1) these are N+1 equations for the N4-1 unknowns ¢;, (f = 1 ... N-+1),

which compactly can be written as

¢ = (4 13
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VII. Floating Fingers

In two dimensional representation the floating fingers are metallic plates, which are
disconnected from the active fingers. Therefore their potentials are initially unknown
and the charge integral on a floating finger equals zero.

Above we have regarded the system mismatch parameter C as a further component of
the vector ¢*, which resulted to an additional column in 4*. Further to make the matrix
equation invertable the charge neutrality condition was regarded as an additional row
in A*. The same procedure can be applied here. The unknown potential of a floating
finger will be regarded as a further component of the ¢* ( corresponding to the addition
of a column to A*) and the charge neutrality condition of a floating finger can be taken

into account as a further row in A*, so we have

¢=(4)g | (VIL1)

Results

Fig.3 and Fig.4 show two examples of our calculations based on the formalism described

above.

Fig.3 2D charge distribution on two parallel metallic plates on LiNbO3 substrate.
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Eﬁ

Fig.4 2D charge distribution on two parallel metallic plates on LiNbOj3 subtrate.

The plates are shifted in transversal direction.
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