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AUSTRIA 

Abstract- Applying the concept of spectral domain representation, the moment 

method or the point-matching procedure and Green's function theory, a unified ap­

proach for the computation of the static capacitance of single, coupled and comb-like 

metallic structures in anisotropic multilayered media is presented. The media can be 

electrically shielded on one or both sides. The geometry of the parallel strips may be 

arbitrary and not all the strips need to be driven electrically, i.e. they may float. An 

overview of the relevant methods is followed by a discussion of an efficient approach 

with a wide range of applicabilty. 

I.Introduction 

Many problems of greatest practical interest demand an efficient solution procedure 

for the calculation of the capacitance for metallic strips, deposited on the surface or 

within a layered dielectric structure Ill. Because of the complexity of the associated 

boundary value problem and due to the fact that generally the layers are dielectrically 

anisotropic, direct numerical method are highly time-consuming. On the other hand 

approximate formulae, which are used by other authors have a restricted range of va­

lidity. We present a rigorous semi-numerical method of analysis covering a large class 

of problems. Although only a restricted number of problems is considered here, the 

method is quite general and can be extended to embrace a class of much more compli­

cated problems. The method of analysis, a uniformly valid representation, is based on 

the concept of spectral domain representation and the method of moments, which are 

combined with an auxiliary quantity, the Green's function. First, closed-form formulae 

for the Green's function in the wavenumber domain have been derived for a variety 

of cases, which are of practical interest. Using the derived Green's function and the 

method of moments, the associated integral equation is replaced by a matrix equation, 

which can easily be solved by standard routines. Although the Green's function theory 

is by no means a new field, very recently it has found some important applications 121. 
The aim of this paper is to show that the advantages of the Green's function can be ex­

tended using the method of moments or a specialization of it, called point-matching or 

collocation method. Using the Fourier transform technique the boundary conditions are 

transformed into a set of algebraic equations. Therefrom a relation between the spec-
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tral components of the potential and charge distribution is derived , whkh immediately 

yields a closed-form expression for the Fourier transform of the Green's function. The 

unknown function, the charge distribution on the metallic strips is expressed in terms 

of basis or expansion functions. A set of weighting or testing functions and an appro­

priately defined innerproduct transform the original functional equation into a matrix 

equation. The elements of the resulting matrix are generally integrals, which must be 

evaluated numerically. However, for some cases of greatest practical interest they can 

be solved analytically. The inversion of the obtained matrix yields the unknown charge 

values on the metallic strips, and their capacitance consecutively. 

II.Theory 

Assume a sandwich structure consisting of l layers, (l + 1 interfaces), as sketched in 

Fig.l. Each layer represents a dielectric medium which can be anisotropic, isotropic or 

the free space. To unify the description of the method, the two halfspaces at the top 

and the bottom of the configuration considered are also regarded as layers. 

EO 

(l + 1)11' interface 

1th interface 

EO 

Fig.I A dielectric sandwich structure 

On one of the interfaces we assume N parallel thin metallic strips. The strips may have 

ideal conductivity. Ti"' strips are infinite (there is no variation in :r:- direction, (jz := 0), 

a restriction which is not conceptually necessary and can be removed. The geometry 

(width and spacing) of the strips may be arbitrary and not all the strips must be driven 

electrically, i.e. they can float. The problem is to find the charge distribution on the 

fingers (capacitances). 

Further, in this paper we restrict ourselves to structures, in which the electrically active 

zone (metallic strips) only lies on one of the interfaces P, Fig.2. For this class of 

problems the Green's function is a scalar function. 
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y 

t - pth interface 

<'o 

Fig.2 Geometry of interest 

For problems in which the active zone is split into k parallel planes, Fig.3, the Green's 

function is a matrix function of rank k. This class of problems will be discussed else­

where. 

-
Fig.3 A sandwich structure with more than one active rigion 

As we will see, the main task is to find an expression for the Green's function of the 

boundary value problem of interest. Before we describe the formalism, let us say a 

little more about the Green's function and its relevant properties. Consider again the 

problem sketched in Fig.2. On the interface P, instead of the metallic strips, a line 

charge source may excite the medium. The potential response of the medium to the 

line charge source is called the Green's function for the boundary value problem, G(kz). 

Due to the fact that a line charge source can be isolated or electrically shielded, two 

different cases for G(kz) must be distinguished: 

i) For an isolated line charge source, G(kz) has a pole singularity. The reason is 

that an isolated line charge source cannot exist in reality. As one can easily show, 

the charge neutrality condition for the whole metallic structure removes the pole 

singularity and makes the occuring formulae regular. 
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ii) For a non-isolated line charge source the corresponding Green's function G(k,) is 

regular in itself. These aspects will be illustrated by some examples, after we have 

discussed the basic formulae. 

On P the spatial distribution of the potential iJ>(z} can be written as 

+oo 

iJ>(z) = _!_ j °4i(k,)e-fk,zdk, + C 
2ir 

-oo 

(I I.1) 

where the bar denotes Fourier transformation. The constant parameter C is discussed 

in l4J. Our main task is to find an expression for °4i(k,) as follows: 

The potential and the charge distribution p(z) on P are related by 

+oo 

4>(z) = j G(zt - z)p(zt)dzt + C (I l.2) 
-oo 

or equivalently in the wavenumber space by 

4>(k,) = G(k,)!i(k,) (IJ.3) 

where G(z) and G(k,) denote Green's functions in the spatial and in the wavenumber 

domain, respectively. Insertion of (Il.3) in (II.I) yields 

+oo 

iJ>(z) = _1_ j G(k,)p(k,)e-Jk,zdk, + C 
2ir 

-oo 

(JJ.4) 

Notice that (II.4) relates the potential distribution on P to the Fourier transformation 

of the charge density on P. Generally the potential values of the strips are given, and 

the problem is to find the charge distribution on the strips. One can show that l3J, 
[4], once the charge distribution on the strips has been calculated, the field problem is 

uniquely determined. 

III.Approximation of the charge density 

To obtain an approximate formula for p(k,) in (II.4), first the fingers have to be appro­

priately discretized into substrips, Fig.4 

~m 
] 

6 ] 

zb z'· 
] ] 

Fig.4 Discretization of the metallic strips 
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Fig.4 shows a nonequidistant discr~ti~ation, ~hich takes. h1to. account ~he charg!! singu­

larities at finger-edges. Using the stepfunction approximation for the charge density 

N b 
p(z) =Po L "; · [H(z - z;) - H(z - zj)I (III.5) 

j=l 

and performing the Fourier transformation, we obtain 

N ejk,zj _ ejlc,z} 
p(kz) = Po L "; 'k 

j=l J z 
(III.6) 

where H(z) and Po are the Heaviside stepfunction and the charge normalization factor, 

respectively. Inserting (111.6) in (11.4) and interchanging the order of summation and 

integration, we have 

ef>(z) = .J!2_ E '1j +/coEoG(kz).;_[d"•(zj-z) - e-'·/c,(z}-zljdkz + C 
2irEo j=I -co Jkz 

(Ill.7) 

or upon~= 1 

N +co -( ) 
ef>(z) = L u;6;' _!_ J Eo~ kz [ej/c,(zj-z) - e-1·1c,(z}-•ljdk,, + C 

j=I Oj -co Jkz 
(111.8) 

Notice that the formulae in this and in the following two sections are generally valid and 

independent of the specific configuration of the layered structure and of the constituted 

properties of the dielectrics used. These aspects manifest themselves in the special 

forms of the corresponding Green's functions, a fact which will be demonstrated below 

by characteristic samples. 

IV .Point-matching 

For the moment let us assume that all the strips are electrically driven (there are no 

floating strips). In this case, denoting the potential and the midpoint coordinate of the 

i 1h substrip by ef>; and ~t, respectively, we have 

N +oo -( ) 
ef>(~t) = L UjOj. f J to~k kz [d·k,(zj-~i"} - ejk,(z}-~i"ljdkz + C 

j=I . 1 -oo J z 

or in a more compact form 

where 

N 
¢; = L u;6; · A(i,j) + C, i = 1 .. N 

j=I 

. . 2 +Joo £oG(kz) . e m . b m 
A(1.J) = 6- -k--[amk,,(z; - ~i ) - amk2 (z; - ~ )Jdk,, 

J 0 z 

(IV.9) 

(lV.10- a) 

(lV.10- b) 

Although (IV.10-b) is quite general, there is a lack of symmetry with respect to an 

interchange of the indices i and j, A(i,j) i A(j, i), a deficiency which will be eliminated 

in the next section. 
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V.Method of moments 

The nonsymmetry property A(i,j) "I A(i, i) is an inherent attribute of the point­

matching procedure, which generally occurs in similar problems, if we use non-equidistant 

discretization. On the other hand, to take into account the charge singularity at finger­

edges and to reduce computer resources (memory and time), the metallic strips have to 

be discretized non-equidistantly. Applying the method of moments, below it is shown 

that A(i,j) = A(i, i), independent of the discretization, equidistant or non-equidistant. 

For simplicity we write again the approximate formula for the 4>(z) 

Now we use the mean value of the potential on i 1h substrip for the¢;, 

</>; = z' ~ zb l 4>(z)dz 
t i z~ 

Inserting (V.l) in (V.2), interchanging the order of summation and integration 

z' 
and finally performing the integration j .. dz we obtain 

z~ 

N +oo - ) ,,, _"'""'a o·· 1 / 2€oG(k,. 
'l'i - L, 1 1 (z' - zb)(z~ - z~) k2 

J=l I I J J -OO z 

(V.2) 

·leJk,(zj-z[) _ e'k,(zj-zt) _ e]k,(zJ-zi"J + e'k,(zJ-z~)]dkz + C (V.3) 

or more compactly 

with 

N 
</>; = L uA · A(i,j) + C 

J=l 
(V.4) 

(V.5) 
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VI.Calculation of the Green's function in the wavenumber do­
mam 

Assume an unbounded anisotropic dielectric, which is fully characterized by a 3x3 sym­

metric positive definite matrix(~. Further, assuming that there is no spatial variation 

in x-direction (fx = 0), the distribution of the electrical potential, tf>(y, z), is governed 

by the Laplace equation 

(V 1.1) 

The y-component of the electric displacement vector D is 

(V 1.2) 

Defining E p by 

Ep = /~:;;~~ ·~ f~3 

let us now schematically discuss the solution procedure for the calculation of the Green's 

function in the wavenumber domain. 

The complexity of the considered boundary value problem is directly reflected in the 

form of the Green's function. However, one can show that for a certain class of problems 

(halfspace, multilayered structures) the Green's function has the general form 

wherein the function J(lkzl) may or may not have a pole singularity in kz = 0, depending 

on if G(kz) is resulted from an isolated or a nonisolated line charge source, as we will 

see in more detail below. 

Now let us find general solutions for the Laplace equation (VI.1) for the following three 

fundamental cases, from which every multilayered structure can be build up. 

Solution for the Laplace's equation 

i) a < y < b, a and b finite, z arbitrary Fig.5 

y 

a 

Fig.5 A dielectric medium bounded by lower and upper sides 
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+oo 
1 I Ep </>(y z) = - !A(k,)cosh(-lkzlY)+ 

' 2ir £22 
-oo 

. ...,k . 
+B(k,)sinh(P lkzlY)J · e1•n ,y · e-Jk,zdk, + C 

£22 

+oo 
-EoEp j Ep ) D (y z) = - lkzl · !A(k,)sinh(-lkzlY + 

y ' 2ir £22 
-oo 

ii) a < y < +oo, a finite, z arbitrary, Fig.6 
y 

Fig.6 A dielectric medium bounded by lower side 

-oo 

(V J.3) 

(V J.4) 

+loo ~lk I ...,k 1c 
Dy(y,z)=Er: fk,IA(k,)·e-'n ·Y.eJ,,,•Y.e-1 "dk, (VI.6) 

-oo 

Note that (VI.5) and (VI.6) respectively, can be deduced from (VI.3) and (VI.4) by 

B(k,) = -A(k,). 

iii) -oo < y < b, b finite, z arbitrary, Fig.7 
y 

b 

Fig.7 A dielectric medium bounded by upper side 
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(V /.7) 

-oo 

(V /.8) 
-oo 

Similarly (VI.7) and (VI.8) can be deduced from (VI.3) and (Vl.4), respectively, by the 

constraint B(kz) = A(k,). 

Boundary conditions 

Let us concentrate on an interface Q, which is with a distance YI parallel to the ( x, z )· 

plane, Fig.8 Y 

Fig.8 1th interface 

The following boundary conditions must be met: 

i) 

(Vl.9) 

ii-a) if Q does not coinside with P 

(V /.10) 

ii-b) if Q coins ides with P 

(V J.11) 

With (VI.3)-(Vl.11) a given multilayered structure can now be analyzed as follows: For 

the /1hlayer, depending on the condition a < y < b, a < y < +oo or -oo < y < b, 

use the corresponding formulae for ¢(y, z) and Dy(Y, z) with A1(k.) and B1(k.) as 

unknowns. With regard to the boundary conditions stated above, establish then a 

system of algebraical equations for A1(k,) and B1(k,). Finally, succesively eliminating 

the unknowns,results in the Green's function in the wavenumber space, G(k,). 
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VIl.Exainples 

Below some simple boundary value problems with the associated Green's functions are 

given, where we have used the algorithim discussed in the preceding sections. 

Isolated line charge source 

Non-isolated line charge source 

lO 
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- - I I 
G,(k,) = G,(lk,IJ = ~.Tk.]. l+"coth(ddk.I) 

where 

and 

Notice that 

_ (lk I)= cosh(d2/kzl) + cr12cosh[(2d1 - d2)/k,/) 
Yg ' sihh(d2lk,/) + <r12sinhf(Zd1 - dz)lk,/) 

<r2 - fr! 
frl2 = --­

fr2 + fr! 

i) G(k,) = G(/k,/) 

the Green's functions have the general form 

····· 1 -
G(k,) = £olkzl . J(lk,I) 
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iii) in the limit k, -+ O, ](\k,I) tends to zero or to a constant value, depending on 

the nature of the problem. 

For an isolated line charge source 

](\k,I) -+ con8t, k, -+ 0 

whereas for a nonisolated line charge source 

](lk,I) -+ 0, k,-+ 0 

Conclusion 

Using Fourier transformation and Green's function theory combined with the point­

matching procedure or the method of moments a unified solution concept for multi­

layered dielectric media has been presented. The formulae obtained by applying the 

point-matching procedure and the method of moments, respectively, have. been com­

pared. Different properties of Green's functions for an isolated and a non-isolated line 

charge source are discussed. 
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