3.5.6.1 Particle Flux Equation

In the following, the derivation of the particle flux equation is performed analogously to Stratton's approach. The starting point is again the Boltzmann transport equation with a general weight $ \ensuremath{\ensuremath{\mathitbf{X}}}$ in the form of equation (3.30). Inserting $ \ensuremath{X}
= \ensuremath{\ensuremath{\mathitbf{p}}}$ as $ \ensuremath{X}$ yields

$\displaystyle \underbrace{\vphantom{\frac{1}{\hbar}}\ensuremath{\ensuremath{\en...
...le \! \rangle}}{\ensuremath{{\tau_\ensuremath{\ensuremath{\mathitbf{j}}}}}} \,.$ (3.80)

Application of the trace approximation of tensor valued expressions (3.39) as well as a product ansatz for the energy as presented in equation (3.40) on term (i) results in

$\displaystyle \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla_{\!r}}}}}\en...
... \! \langle \ensuremath{\mathcal{E}}\ensuremath{\gamma} \rangle \! \rangle} \,.$ (3.81)

The Poisson bracket within the average in (ii) has to be expanded using (A.6). Furthermore, the inverse product rule (B.3) is used to transform the $ \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla_{\!r}}}}\ensuremath{\otimes}}\ensuremath{\ensuremath{\mathitbf{p}}}$ - term in the first term. The product ansatz for the energy as well as the trace approximation result in
$\displaystyle \ensuremath{\langle \! \langle \ensuremath{\{\ensuremath{\ensurem...
...hitbf{\nabla_{\!r}}}}}\ensuremath{\mathcal{E}} \Bigr\rangle \! \! \Bigr\rangle}$     (3.82)
$\displaystyle = \ensuremath{\langle \! \langle \ensuremath{\ensuremath{\ensurem...
...uremath{\theta_\ensuremath{\ensuremath{\mathitbf{r}}}^\ensuremath{\mathcal{E}}}$      
$\displaystyle = \ensuremath{\Bigl\langle \! \! \Bigl\langle \ensuremath{\ensure...
...uremath{\theta_\ensuremath{\ensuremath{\mathitbf{r}}}^\ensuremath{\mathcal{E}}}$      
$\displaystyle = - \ensuremath{\langle \! \langle \ensuremath{\mathcal{E}} \rang...
...ath{\theta_\ensuremath{\ensuremath{\mathitbf{r}}}^\ensuremath{\mathcal{E}}} \,.$      

The third term (iii) can be handled in a straight-forward manner. Assembly of all three terms leads to

$\displaystyle \frac{2}{3} \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla_...
...le \! \rangle}}{\ensuremath{{\tau_\ensuremath{\ensuremath{\mathitbf{j}}}}}} \,.$ (3.83)

Assuming parabolic bands and a heated, displaced Maxwellian, $ \ensuremath{\gamma}$ becomes unity and the average reads

$\displaystyle \ensuremath{\langle \! \langle \ensuremath{\mathcal{E}} \rangle \...
...{3}{2} \ensuremath{\nu}k_\ensuremath{\mathrm{B}}\ensuremath{T_\ensuremath{\nu}}$ (3.84)

normalized with the carrier concentration (3.54). Summation over all parts as well as the mobility definition consistent with the homogeneous case

$\displaystyle \ensuremath{\ensuremath{\mu}_\nu}= \frac{\mathrm{q}\ensuremath{{\tau_\ensuremath{\ensuremath{\mathitbf{j}}}}}}{m^*}$ (3.85)

yields the final form of the particle current equation
$\displaystyle - \frac{\ensuremath{\langle \! \langle \ensuremath{\ensuremath{\m...
...{\ensuremath{\ensuremath{\mathitbf{\nabla_{\!r}}}}}\ensuremath{\tilde{\varphi}}$     (3.86)
$\displaystyle \ensuremath{\ensuremath{\mathitbf{j}}_\nu}= -\frac{k_\ensuremath{...
...nsuremath{\ensuremath{\mathitbf{\nabla_{\!r}}}}}\ensuremath{\tilde{\varphi}}\,.$     (3.87)

Rewriting the particle current equation with the electrochemical potential defined in Eqs. (3.60) and (3.62) results in

$\displaystyle \ensuremath{\ensuremath{\mathitbf{j}}_\nu}= - \ensuremath{\mathrm...
...remath{\ensuremath{\mathitbf{\nabla_{\!r}}}}}\ensuremath{T_\ensuremath{\nu}}\,.$ (3.88)

M. Wagner: Simulation of Thermoelectric Devices