A.2 Correction for Direct Tunneling

The equation derived above is only valid for triangular barriers, that is the case of high applied voltages. In [19] SCHUEGRAF proposed a correction to the FOWLER-NORDHEIM formula to account for tunneling in the direct tunneling regime. In this case the transmission coefficient is

$\displaystyle TC({\mathcal{E}})=\exp\left(-\frac{2}{\hbar} \int_0^{\ensuremath{...
...mathcal{E}}_\mathrm{c}}-{\mathcal{E}}_x)}\,\ensuremath {\mathrm{d}}x\right) \ ,$    

where $ \ensuremath{t_\mathrm{diel}}$ is the dielectric thickness. The conduction band edge is again approximated by a linear shape

$\displaystyle \ensuremath {{\mathcal{E}}_\mathrm{c}}(x)=\ensuremath{{\mathcal{E...
... {\mathrm{q}}\Phi_1 - \ensuremath {\mathrm{q}}\ensuremath{E_\mathrm{diel}}x \ .$    

The band edges $ \ensuremath {\mathrm{q}}\Phi$ and $ \ensuremath {\mathrm{q}}\Phi_0$ are given by (see the right part of Fig. A.1)

$\displaystyle \renewcommand {\arraystretch }{2.8} \begin{array}{rcl} \ensuremat...
...thrm{q}}\ensuremath{E_\mathrm{diel}}\ensuremath{t_\mathrm{diel}}\ . \end{array}$    

As for the triangular energy barrier, it is assumed that the electrodes have equal work functions: $ \Delta \ensuremath{\Phi_\mathrm{W}}= 0$. Using these expressions, the transmission coefficient becomes

$\displaystyle \renewcommand {\arraystretch }{2.8} \begin{array}{rcl} TC({\mathc...
... {\mathrm{q}}\Phi_0-{\mathcal{E}}_x\right)^{3/2} \right)\right) \ . \end{array}$ (A.15)

The exponent can be approximated using a first order TAYLOR series expansion around $ \ensuremath {\mathrm{q}}\Phi_1$ and $ \ensuremath {\mathrm{q}}\Phi_1-\ensuremath {\mathrm{q}}\ensuremath{E_\mathrm{diel}}\ensuremath{t_\mathrm{diel}}$, respectively:

$\displaystyle \renewcommand {\arraystretch }{2.8} \begin{array}{rcl} \displayst...
...\ensuremath{E_\mathrm{diel}}\ensuremath{t_\mathrm{diel}})^{1/2} \ . \end{array}$ (A.16)

With the temporary variable $ \eta$

$\displaystyle \displaystyle \eta = \left(\ensuremath {\mathrm{q}}\Phi - {\mathc...
...ensuremath{E_\mathrm{diel}}\ensuremath{t_\mathrm{diel}}\right)^{1/2}\right) \ ,$    

the tunnel current density becomes

$\displaystyle J=\frac{4\pi \ensuremath {\mathrm{q}}\ensuremath{m_\mathrm{eff}}}...
...}}_\mathrm{f,1}}-{\mathcal{E}}_x) \,\ensuremath {\mathrm{d}}{\mathcal{E}}_x \ .$ (A.17)

With the abbreviations

$\displaystyle \renewcommand {\arraystretch }{2.8} \begin{array}{rcl} a &=& \dis...
...ath{E_\mathrm{diel}}\ensuremath{t_\mathrm{diel}})^{1/2} \right) \ , \end{array}$ (A.18)

the tunnel current density can be written as

$\displaystyle J = a \exp(b) \int_{\ensuremath{{\mathcal{E}}_\mathrm{f,1}}}^{\en...
...}}_\mathrm{f,1}}- {\mathcal{E}}_x)\,\ensuremath {\mathrm{d}}{\mathcal{E}}_x \ .$ (A.19)

With $ \epsilon =
{\mathcal{E}}_x - \ensuremath{{\mathcal{E}}_\mathrm{f,1}}$ this yields

$\displaystyle J = -a \exp(b) \int_{\ensuremath{{\mathcal{E}}_\mathrm{f,2}}- \en...
...mathrm{f,1}}}^0 \exp(c \epsilon) \epsilon\,\ensuremath {\mathrm{d}}\epsilon \ .$ (A.20)

Using (A.10) this integral becomes

$\displaystyle J = \frac{a \exp(b)}{c^2} \left( 1 - \exp\left(-c (\ensuremath{{\...
...thcal{E}}_\mathrm{f,1}}-\ensuremath{{\mathcal{E}}_\mathrm{f,2}})\right) \right)$ (A.21)

which, for $ \ensuremath{{\mathcal{E}}_\mathrm{f,1}} \gg \ensuremath{{\mathcal{E}}_\mathrm{f,2}}$, simplifies to

$\displaystyle J = \frac{a \exp(b)}{c^2} \ ,$ (A.22)

or, inserting the expressions for $ a$, $ b$, and $ c$

$\displaystyle J =\frac{\ensuremath {\mathrm{q}}^3 \ensuremath{m_\mathrm{eff}}}{...
..._1 - \ensuremath {\mathrm{q}}\ensuremath{V_\mathrm{diel}})^{3/2} \right)\right)$ (A.23)

which is the equation used in [19]. In some publications, the equation is rewritten to make it more similar to the FOWLER-NORDHEIM formula:

$\displaystyle J= \frac {\ensuremath {\mathrm{q}}^3\ensuremath{m_\mathrm{eff}}} ...
... B_2} {3\hbar \ensuremath {\mathrm{q}}\ensuremath{E_\mathrm{diel}}} \right) \ ,$ (A.24)

with the additional correction terms $ B_1, B_2$ given as

$\displaystyle \renewedcommand{arraystretch}{2.5}\begin{array}{l} \displaystyle ...
...hrm{diel}}}{\ensuremath {\mathrm{q}}\Phi_1}\right)^{3/2}\right) \ . \end{array}$ (A.25)

A. Gehring: Simulation of Tunneling in Semiconductor Devices